Team:NTHU Taiwan/Improve

Improve

Background

The composite part BBa_K has an improvement on the natural acyl-CoA responsive promoter pfadBA submitted by iGEM12_NTU-Taida (BBa_K817033). However, according to their result, this promoter has a massive leakage, which has a very high value of downstream reporter gene baseline expression. Besides, the fold change after 0.04% of oleic acid induction has only achieved 1.67-fold, considered no significant signal rise. Thus, we coupled an endogenous thioesterase coding gene with this promoter. By doing so, we can perform a tunable and dynamic gene expression.

Mechanism

In the microbial, carbon source such as glucose or fatty acid will be metabolized to acetyl-CoA. When a fatty acid is needed to be catabolized into other macromolecules, the acetyl-CoA will be converted into Acyl-ACP and finally formed free fatty acid. The following is the detailed mechanism of the biosynthetic and degradation pathway of fatty acid. [1]

Nevertheless, the accumulation of Acyl-ACP will negatively inhibit the conversion of malonyl-CoA to Acyl-ACP and thus repress biosynthesis of free fatty acid. Thus, the endogenous TesA gene which encodes a thioesterase will hydrolyze these Acyl-ACP and subsequently produce a significant level of free fatty acid.

Concept of design

As you know, a high concentration of fatty acid will promote β-oxidation but not synthesis of fatty acid. However, overexpression of TesA can help E.coli to deplete the Acyl-ACP and thus rescue the production of free fatty acid. The more fatty acid present, the more acyl-CoA can be converted and thus the higher transcription rate can pfadBA can be achieved. The following was the mechanism proposed.

Some previous literature has reported that the strain carries TesA overexpression is capable of showing 10 to 25-fold of fluorescence than the native promoter [2]. This result matched our proposed model.

Result

As we predicted that the fluorescence fold change after induction of fatty acid will be greater as tesA has produce more fatty acid. The result shows that the fold change of fluorescence after 16 hours 5mM oleic acid induction can come up to 9-fold. This has greatly improved the native strength of the promoter since it can only increase to about 2-fold. This modification helped us to control the strength of promoter more precisely compared to the native pfadBA since the induced-transcription range of the promoter has been broaden.

Figure 1. Protein expression of fatty acid promoter TesA-FadBA after 16 hours of induction under different fatty acid concentration (n=3).

Future work

According to the previous research, the fold change should be able to reached 10 to 25-fold. We deduce that the problem is we used a weaker promoter placed before TesA, thus the fatty acid produced endogenously is fewer than previously reported. Hence, we proposed to insert the TesA sequence directly at the downstream of pfadBA promoter and made it regulated by this promoter. Once we have added the fatty acid, then pfadBA promoter will be activated, RFP and tesA will be produced. Tes A will further catalyze the formation of fatty acid through the dissociation of Acyl-ACP. The more fatty acid, the more pfadBA will be activated and more TesA protein will be produced. This will form a positive feedback loop and thus the fold change will become higher.

References

  1. Janßen, H. J., & Steinbüchel, A. (2014). Fatty acid synthesis in Escherichia coli and its applications towards the production of fatty acid based biofuels. Biotechnology for biofuels, 7(1), 7.
  2. Zhang, F., Carothers, J. M., & Keasling, J. D. (2012). Design of a dynamic sensor-regulator system for production of chemicals and fuels derived from fatty acids. Nature biotechnology, 30(4), 354.

FOLLOW US

CONTACT US

nthuxigem@gmail.com