Difference between revisions of "Team:TUDelft/Description"

 
(38 intermediate revisions by 4 users not shown)
Line 1: Line 1:
{{:Team:TUDelft/Header}}
+
{{:Team:TUDelft/Load}}
 
{{:Team:TUDelft/Head}}
 
{{:Team:TUDelft/Head}}
{{:Team:TUDelft/Banner}}
+
{{:Team:TUDelft/Header}}
 +
 
 
<html>
 
<html>
 
     <head>
 
     <head>
        <meta charset="utf-8">
 
        <meta name="viewport" content="width=device-width, initial-scale=1">
 
        <link rel="stylesheet" href="https://maxcdn.bootstrapcdn.com/bootstrap/3.4.0/css/bootstrap.min.css">
 
        <script src="https://ajax.googleapis.com/ajax/libs/jquery/3.4.1/jquery.min.js"></script>
 
        <script src="https://maxcdn.bootstrapcdn.com/bootstrap/3.4.0/js/bootstrap.min.js"></script>
 
 
         <style>
 
         <style>
 +
            #Overview {color: #000000; background-color: #f8fcfe;}
 +
            #OurMotivation {color: #000000; background-color: #f8fcfe;}
 +
            #SciPhi29 {color: #000000; background-color: #f8fcfe;}
 +
            #Orthogonality {color: #000000; background-color:#f8fcfe;}
 +
            #Controllability {color: #000000; background-color: #f8fcfe;}
 +
            #Standardization {color: #000000; background-color: #f8fcfe;}
 +
            #Impact {color: #000000; background-color:#f8fcfe;}
  
 +
        </style>
 +
    </head>
  
            .affix {
+
    <body data-spy="scroll" data-target="#myScrollspy" data-offset="180">
                top: 30%;
+
        <div id="Overview">
                left: 5%;
+
            <div class="Banner container-fluid text-center mb-0 align-items-center ">
  
            }
+
                <div class="display-2 mb-0">
            ul.nav-pills {
+
                    <br>
                top: 20%;
+
                    <br>
                left: 5%;
+
                    <br>
                position:fixed;
+
                    <br>
            }
+
                    <img class="banneroh" src = "https://static.igem.org/mediawiki/2019/5/5c/T--TUDelft--Description_logo.png" alt="Project Description">
  
            #description {color: #000000; background-color: #f8fcfe;}
+
                </div>           
             #section2 {color: #000000; background-color:#f8fcfe;}
+
             </div>       
            #reference1 {color: #000000; background-color: #f8fcfe;}
+
        </div>
  
 +
        <div class="centerjustify2">
 +
            <nav class="col-sm-3"  id="myScrollspy">
 +
                <ul class=" nav nav-pills nav-stacked accordion" data-spy= "affix" data-offset-top="180">
 +
                    <li><a class="jump" href="#Overview">Sci-Phi 29</a></li>
 +
                    <li><a class="jump" href="#OurMotivation">Motivation</a></li>
 +
                    <li><a class="jump" href="#Orthogonality">Orthogonality</a></li>
 +
                    <li><a class="jump" href="#Controllability">Controllability</a></li>
 +
                    <li><a class="jump" href="#Standardization">Standardization</a></li>
 +
                    <li><a class="jump" href="#Impact">Impact</a></li>
 +
                </ul>
 +
            </nav>
 +
            <div class="centerjustify2">
  
  
             @media screen and (max-width: 800px) {
+
             </div>
                #myScrollspy  {
+
        </div>
                    display:none;
+
  
                }
 
            }
 
        </style>
 
    </head>
 
  
 +
        <div class="centerjustify2">
 +
<h1>Sci-Phi 29: Enabling orthogonal replication and predictable expression to expand the repertoire of engineerable bacteria</h1>
 +
<br>
 +
            <center><img style="width:100%;" src="https://static.igem.org/mediawiki/2019/e/ef/T--TUDelft--Visualabstractdiscription.png"></center>
 +
            <br>
 +
            <p>
  
 +
Many of the world’s issues, like pollution and climate change, could be tackled with biotechnology, by using microorganisms that digest certain substrates, like plastic or CO<sub>2</sub>. On earth, we have a huge biodiversity of microbes that could potentially utilize all these substrates and convert it to useful products. However, in reality, biotechnology sticks to a limited number of microbial chassis; since there is a lack of characterized parts for genetic engineering of unconventional microbes, we cannot harness the potential of all microbes on the planet.
  
    <body data-spy="scroll" data-target="#myScrollspy" data-offset="180">   
 
        <div class="se-pre-con">
 
        </div>
 
  
        <div id="description">  
+
            </p>
             <div class="Banner container-fluid text-center mb-0 align-items-center ">
+
             <br>
 +
<p>
  
                <div class="display-2 mb-0">
+
Sci-Phi 29 is a versatile platform which allows expressing your gene of interest in a controllable manner across different bacterial species and independently of the host due to the concept of orthogonal replication. To make Sci-Phi 29 a standardized and user-friendly platform we provide a Modular Cloning (MoClo) compatible collection of parts. Sci-Phi 29 is a versatile platform to further explore the bacterial diversity providing new opportunities for the advancement of synthetic biology.
                    <br>
+
                    <br>
+
                    <br>
+
                    <br>
+
                    <img src = "https://static.igem.org/mediawiki/2019/5/5c/T--TUDelft--Description_logo.png" alt="Project Description" style="width:60%";
+
  
 +
</p>
 +
<br>
  
 +
            <div id="OurMotivation">
 +
                <h1>Motivation</h1>
 +
                <br>
 +
                <p>
  
                        </div>
+
There are more than one trillion different bacterial species living on Earth <a href="#Locey2016">(Locey & Lennon, 2016)</a>. Every single one of these bacteria occupies its own niche, providing unlimited potential for synthetic biology.
                 </div>    
+
                 </p>
            </div>  
+
                <br>
 +
                <p>
  
            <div class="container">
+
                  In an ideal world every single bacteria could be engineered to our own benefits, meaning that any type of substrate can be converted into any desired product. Exploring this potential would mean we can broaden the range of substrates and environmental conditions which is currently used in synthetic biology. However, nowadays, synthetic biology is limited to a very small subset of these organisms, where the most commonly used bacteria are <i>Escherichia coli</i> and <i>Bacillus subtilis</i> <a href="#Adams2016">(Adams, 2016)</a>.
                <div class="row">
+
                    <nav class="col-sm-3" id="myScrollspy">
+
                        <ul class=" nav nav-pills nav-stacked" data-spy= "affix" data-offset-top="180">
+
                            <li><a href="#description">Description </a></li>
+
                            <li><a href="#section2">Section 2</a></li>
+
                            <li><a href="#reference1">References</a></li>
+
                        </ul>
+
                    </nav>
+
  
 +
                </p>
 +
                <br>
 +
                <p>
  
                    <div class="centerjustify">
+
Without a doubt, <i>E. coli</i> is the most widely used chassis in synthetic biology with the largest toolkit of genetic parts and regulatory elements, such as promoters, regulatory binding sites and terminators, as well as DNA vectors <a href="#Adams2016">(Adams, 2016)</a>. However, whenever exploiting the potential of a non-model bacterial organism for the first time there is a lack of genetic tools <a href="#Calero2019">(Calero & Nikel, 2019)</a>. Therefore, when moving to an unconventional bacterial species, there is the need of developing new genetic tools. This includes characterized species-specific promoters, replicative and suicide vectors, to cover a wide range of expression levels and genome engineering tools, such as CRISPR devices <a href="#Calero2019">(Calero & Nikel, 2019)</a>. 
  
 +
                </p>
 +
                <br>
  
                        <h2 style="color: #00A6D6";>Project Description & Inspiration</h2>
+
                <figure>
                        <p>
+
                    <center><img style="width:100%;" src="https://static.igem.org/mediawiki/2019/8/84/T--TUDelft--steps_parts.png"></center>
                            What if we could domesticate bacteria on the same scale as we have been doing with crops and livestock for thousands of years? That is the question that inspired the TU Delft iGEM team of 2019.
+
                    <figcaption class="centermodel"><br><b>Figure 1: Genetic tools that are required to express genetic circuits in non-model bacteria.  
                            We realized that we live on a planet with an immensely rich biodiversity, including millions of different bacterial species <a href="#Schloss2016">(Schloss et al., 2016)</a>. On estimate only 1% of bacteria on Earth can be cultured, and from that small percentage only a few species can be genetically edited <a href="#Shapira2017">(Shapira, Kwon & Youtie, 2017)</a>. Researchers still lack the necessary knowledge to use many non-model microorganisms to their full potential. Especially, host-specific regulatory parts need to be characterized before a novel organism strain is genetically adaptable <a href="#Bervoets2019">(Bervoets & Charlier, 2019)</a>.
+
</b>
                        </p>
+
                    </figcaption>
                        <br>
+
                </figure>
                        <br>
+
                <br>
                        <p> Unfortunately, it is very expensive and time-consuming to characterize the regulatory parts of only a single organism for future uses in synthetic biology <a href="#Shapira2017">(Shapira, Kwon & Youtie, 2017)</a>.
+
                            Furthermore, these regulatory parts are host-specific. This means knowledge about the parts in one organism is probably not applicable to another organism. Many discoveries made in the field of synthetic biology thus have to be adapted to be functional in another cell platform <a href="#Bervoets2019">(Bervoets & Charlier, 2019)</a>. These limitations restrict us to a handful of genetically adaptable organisms for biotechnological applications <a href="#Shapira2017">(Shapira, Kwon & Youtie, 2017</a>; <a href="#Vartoukian2010">Vartoukian, Palmer & Wade, 2010)</a>. Examples of such model organisms are <i>Escherichia coli</i> and <I>Bacillus subtilis</i>. We already use these bacteria to produce a wide range of products, including antibiotics, proteins and biofuels <a href="#Vartoukian2010">(Vartoukian, Palmer & Wade, 2010)</a>.
+
                        </p>  
+
  
                        <br>
+
                <p>
                        <br>
+
                        <p>
+
                            Since researchers can already do so much with this handful of model organisms, our team wondered what we could achieve if we could utilize other bacteria as well. We had an initial interest in bacterial diversity, and in exploring the capabilities of non-model bacterial strains.
+
                            Many non-model bacterial organisms have interesting properties. Think of the ability to consume specific substrates (e.g. cellulose, organic waste matter); live in harsh conditions (e.g. high temperatures or salinity); or high growth rates. Because of these properties, non-model bacteria are of interest in the fields of synthetic biology and metabolic engineering, where researchers try to improve and utilize those metabolic capabilities. When we realized that a whole toolkit must be developed for each bacterial species in order to genetically adapt it, we decided on our final project: <b>Sci-Phi 29</b>.
+
                            <br>
+
                            <br>
+
                            Our team intends to create a universal toolbox based on orthogonal gene expression techniques. Our toolbox is based on the phi29 and T7 systems, which work independently from their environment. We will enhance the following properties (<b>Figure 1</b>):
+
                        </p>
+
                        <ul>
+
                            <li> <b>Orthogonal replication:</b> The Sci-Phi29 plasmid will replicate individually of the genome thanks to the replication system of the Phi29 bacteriophage. This consists of protein-primed DNA synthesis by terminal proteins (TP) and a specific DNA polymerase (ϕ29 Pol) that is activated when binding to the TP protein</li>
+
                            <li> <b>Orthogonal transcription:</b> The Sci-Phi29 plasmid will carry out transcription through the use of a set of T7 promoters and an encoded T7 polymerase</li>
+
                        </ul>
+
                        <br>
+
                        <figure>
+
                            <center>
+
                                <a href="https://static.igem.org/mediawiki/2019/d/d1/T--TUDelft--orthogonalitywhite.png"><img src = "https://static.igem.org/mediawiki/2019/5/5d/T--TUDelft--Orthogonalityoverview.png" alt="Overview Universality" class="imagetu"> </a>
+
  
                                <figcaption><b>Figure 1. Orthogonal replication and transcription.</b> Our approach consists of engineering a plasmid that incorporates orthogonal replication inspired by the Φ29 bacteriophage system (linear DNA with proteins covalently bound to the 5' termini) and T7 orthogonal transcription.</figcaption>
+
The iGEM Registry of Standard Biological Parts by itself already contains over 20,000 documented parts. All these parts are characterised for expression in their specific host. However, we cannot faithfully express these parts between different bacterial species. Furthermore, the behaviour of these parts across bacteria is unpredictable as regulatory layers differ across species <a href="#Calero2019">(Calero & Nikel, 2019)</a>. To solve these problems, we created Sci-Phi 29, a platform that allows expression of parts across different bacterial species in a controllable and predictable manner.  
                            </center>
+
                        </figure>
+
  
                        <br>
+
                </p>
 +
            </div>
  
                        <p>
+
       
                            Utilizing these properties, we will create a universal platform that can be used for a bacterium of your choice, without the need of the characterization as described above. This means that our system can even by used in non-model organisms (<b>Figure 2</b>). Furthermore, by combining this system with high-throughput tools, it will enable simultaneous testing of genetic circuits in dozens of bacterial strains. This will allow scientists to test which bacterium is best suited for production of a particular product. Sci-Phi 29 will function as the key to unlock organisms for everybody’s benefit, so we can help push synthetic biology to the next level.
+
            <br>
                        </p>
+
 
                        <figure>
+
            <div id="Orthogonality">
                            <center>
+
                <h1>Orthogonality</h1>
                                <a href="https://static.igem.org/mediawiki/2019/e/e2/T--TUDelft--overviewuniversalitywhite.png"><img src = "https://static.igem.org/mediawiki/2019/c/ca/T--TUDELFT--overviewuniversality.png" alt="Overview Universality" class="imagetu"> </a>
+
                                <figcaption><b>Figure 2. Universal gene expression platform.</b> The goal of our toolkit is to create a universal gene expression platform that would enable genetic engineering of any prokaryote.</figcaption>
+
                            </center>
+
                        </figure>
+
                    </div>
+
                </div>
+
 
                 <br>
 
                 <br>
 +
                <p>
 +
To express genetic tools across multiple bacterial species, we were inspired by the replication machinery of the phi29 bacteriophage, a unique protein-primed based DNA replication machinery. Protein primed replication, unlike the conventional DNA or RNA primed mechanism, greatly simplifies the design of replication systems. This machinery is able to replicate a linear piece of DNA by using only four proteins: DNA polymerase (DNAP, p2), Terminal Proteins (TP, p3) Single Stranded Binding Protein (SSB, p5) and Double Stranded Binding Protein (DSB, p6) <a href="#VanNies2018">(Van Nies et al., 2018)</a>.
  
 +
                </p>
 +
                <br>
  
                 <div class="centerjustify">
+
                 <p>
                    <div id="section2">
+
 
                        <h2 style="color: #00A6D6;">Section 2</h2>
+
The mechanism of the phi29 replication machinery is visualized in Video 1:
                        <p>Try to scroll this section and look at the navigation list while scrolling!</p>
+
 
                        <p>Try to scroll this section and look at the navigation list while scrolling!</p>
+
                </p>
                        <p>Try to scroll this section and look at the navigation list while scrolling!</p>
+
<br>
                        <p>Try to scroll this section and look at the navigation list while scrolling!</p>
+
                <center><video controls autoplay loop muted width="60%">
                        <p>Try to scroll this section and look at the navigation list while scrolling!</p>
+
                    <source src="https://static.igem.org/mediawiki/2019/1/1d/T--TUDelft--replicationanimationnew.mp4" type="video/mp4">
                        <p>Try to scroll this section and look at the navigation list while scrolling!</p>
+
                    </video></center>
                        <p>Try to scroll this section and look at the navigation list while scrolling!</p>
+
<figcaption class="centermodel"><br><b>Video 1: The replication process begins with the binding of the phi29 DNAP and TP complex at both origins of replication (OriR and OriL), which flank the protein-primed linear plasmid. The DSB proteins aid in the process of replication and binds with a higher frequency at the origins of replication, destabilizing the region and facilitating strand displacement. The SSB proteins bind to the displaced DNA strand preventing strand switching of DNA polymerase and protecting the linear plasmid from host nucleases <a href="#Mencia2011">(Mencia et al., 2011)</a>.</b>
                        <p>Try to scroll this section and look at the navigation list while scrolling!</p>
+
                     </figcaption>
                        <p>Try to scroll this section and look at the navigation list while scrolling!</p>
+
                        <p>Try to scroll this section and look at the navigation list while scrolling!</p>
+
                        <p>Try to scroll this section and look at the navigation list while scrolling!</p>
+
                        <p>Try to scroll this section and look at the navigation list while scrolling!</p>
+
                        <p>Try to scroll this section and look at the navigation list while scrolling!</p>
+
                        <p>Try to scroll this section and look at the navigation list while scrolling!</p>
+
                    </div>   
+
                    <br>
+
                    <br>
+
                    <br> 
+
                    <div id="reference1">
+
                        <h3> References </h3>
+
                        <div class="reftu">
+
                            <ul style="list-style:none;">
+
                                <li>
+
                                    <a id="Bervoets2019" href="https://doi.org/10.1093/femsre/fuz001" target="_blank">
+
                                        Bervoets, I., and Charlier, D. (2019). Diversity, versatility and complexity of bacterial gene regulation mechanisms: opportunities and drawbacks for applications in synthetic biology. <i>FEMS Microbiology Reviews</i>, 43(3), 304–339.
+
                                    </a>
+
                                </li>
+
                                <li>
+
                                    <a id="Schloss2016" href="https://doi.org/10.1128/mBio.00201-16" target="_blank">
+
                                        Schloss, P. D., Girard, R. A., Martin, T., Edwards, J., and Thrash, J. C. (2016). Status of the Archaeal and Bacterial Census: an Update. <i>MBio</i>, 7(3), e00201-16.
+
                                    </a>
+
                                </li>
+
                                <li>
+
                                    <a id="Shapira2017" href="https://doi.org/10.1007/s11192-017-2452-5" target="_blank">
+
                                        Shapira, P., Kwon, S., and Youtie, J. (2017). Tracking the emergence of synthetic biology. <i>Scientometrics</i>, 112(3), 1439–1469.
+
                                    </a>
+
                                </li>
+
                                <li>
+
                                    <a id="Vartoukian2010" href="https://doi.org/10.1111/j.1574-6968.2010.02000.x" target="_blank">
+
                                        Vartoukian, S. R., Palmer, R. M., and Wade, W. G. (2010). Strategies for culture of ‘unculturable’ bacteria. <i>FEMS Microbiology Letters</i>, 309(1), 1-7.
+
                                    </a>
+
                                </li>
+
                            </ul>
+
                        </div>
+
                     </div>
+
                </div>
+
 
             </div>
 
             </div>
 +
 
             <br>
 
             <br>
 +
            <p>
 +
 +
When trying to express the phi29 replication machinery in <I>E. coli</I> we came into contact with <a target="_blank" href="https://2019.igem.org/Team:TUDelft/Human_Practices#Design">Dr. Chang Liu and Dr. Julian Willis</a>, experts on expression of orthogonal replication machinery, who informed us that the expression of these four proteins had to be tightly controlled in prokaryotes. If the expression is too high, these proteins can interfere with the host’s genome, while if the expression is too low replication might not occur at all. In light of this discovery we redesigned our experiments by expressing these proteins using different T7 promoter variants and different IPTG concentrations for induction of these proteins. See results <a target="_blank" href="https://2019.igem.org/Team:TUDelft/Results#ToxicityAssay">here</a>.
 +
 +
            </p>
 
             <br>
 
             <br>
 +
            <p>
 +
 +
                By using the PURE system we <a target="_blank" href="https://2019.igem.org/Team:TUDelft/Results#Replication">demonstrated replication</a> <I>in vitro</I> of our own linear construct, which is flanked by the phi29 origins of replication.
 +
 +
            </p>
 +
 +
            <div id="Controllability">
 +
                <h1>Controllability</h1>
 +
                <br>
 +
                <p>
 +
Using orthogonal replication allows us to transfer and replicate genetic parts between bacterial species. However, many variables play a role in the behaviour of genetic circuits inside cells. This includes variation in plasmid copy number, transcription, and translation. Therefore, it is difficult to introduce reliable parts for the genetic engineering of different bacteria <a href="#Segal2018">(Segall-Shapiro et al., 2018)</a>, since the same parts may behave differently across organisms.
 +
 +
                </p>
 +
                <br>
 +
                <p>
 +
 +
To tackle the issue of variation in expression across species, we took our platform to the next level by integrating the concept of controllability, which is based on a systems engineering approach. To make expression host-independent, we included an incoherent feed-forward loop (iFFL) in <a target="_blank" href="https://2019.igem.org/Team:TUDelft/Design">our design</a>. An iFFL can be used to make the output of a system independent of the input (Figure 2).
 +
 +
                </p>
 +
                <br>
 +
 +
                <figure>
 +
                    <center><img src="https://static.igem.org/mediawiki/2019/5/5a/T--TUDelft--iFFL.png" style="width:60%" class="centermodel"></center>
 +
                    <figcaption class="centermodel"><br><b>Figure 2: Left: Scheme of an incoherent Feed Forward Loop. Right: The increasing ‘red’ line indicates how the output normally increases linearly with the input. The stable ‘green’ line depicts the addition of a repressor which results in independence of the output to the input.
 +
</b>
 +
                    </figcaption>
 +
                </figure>
 +
                <br>
 +
                <p>
 +
 +
According to <a target="_blank" href="https://2019.igem.org/Team:TUDelft/Model">our model</a> and <a target="_blank" href="https://2019.igem.org/Team:TUDelft/Results#Controllability">experimental validation</a>, regulation of these interbacterial variables ensures stable expression across different bacterial species.   
 +
 +
                </p>
 +
            </div>
 +
 
             <br>
 
             <br>
  
 +
            <div id="Standardization">
 +
                <h1>Standardization of Sci-Phi 29</h1>
 +
                <br>
  
 +
                <p>
 +
 +
Through concepts of orthogonality and controllability, we have shown that existing parts can be expressed in a standardized manner across bacterial species. To achieve standardization of our platform, we made our part collection Modular Cloning (MoClo) compatible <a href="#Weber2011">(Weber et al., 2011)</a>. <a target="_blank" href="https://2019.igem.org/Team:TUDelft/Parts">Our part collection</a> provides 35 MoClo compatible parts that can be used for predictable expression of genes across different bacterial species. To overcome the need to identify parts for different bacterial hosts, <a target="_blank" href="https://2019.igem.org/Team:TUDelft/Design">our collection provides regulatory elements</a> (promoters, RBSs, terminators) that work in a plethora of bacterial species.
 +
 +
                </p>
 +
            </div>
 +
 +
            <br>
 +
 +
            <div id="Impact">
 +
                <h1>Impact of Sci-Phi 29</h1>
 +
                <br>
 +
                <img style="float: left; padding-right:20px;" src="https://static.igem.org/mediawiki/2019/d/d7/T--TUDelft--World.png" width="15%"> 
 +
                 
 +
                <p>
 +
Sci-Phi 29 enables orthogonal replication and predictable expression to expand the repertoire of genetically engineerable bacteria. To envision a future where Sci-Phi 29 can be used to tackle a real-world problem, we created a hypothetical <a target="_blank" href="https://2019.igem.org/Team:TUDelft/Human_Practices#UseCaseScenario">use-case scenario</a>, where we used our platform to, engineer <i>P. putida</i> using Sci-Phi 29 to be of use in removal of microplastics from waste water streams. This use case scenario showed the potential our platform holds.
 +
                </p>
 +
                <br>
 +
                <p>
 +
                   
 +
We as a team are fascinated by the microbial diversity and wanted to share our fascination with the rest of the world. That is why our goal this year was to introduce as many people as possible to the hidden world of microbes. We organized multiple events because we wanted to make sure that everyone has access to the invisible microbial world. During our <a target="_blank" href="https://2019.igem.org/Team:TUDelft/Public_Engagement#Foldscope">‘Foldscope’ event</a>, we taught participants how to fold their own origami microscope and how to use these microscopes.With the proceeds of this workshop, we were able to send 100 of these microscopes to urban areas in India, so the children there also have access to the fascinating world of microbiology. Besides showing people the potential of synthetic biology, we hope to inspire people so that they are to share our excitement for scientific exploration. 
 +
 +
                </p>
 +
            </div>
 +
 +
 +
            <br>
 +
            <h3>References</h3>
 +
            <div class="reftu">
 +
                <ul style="list-style:none;">
 +
                    <li>
 +
                        <a target="_blank" id="Adams2016" href="http://doi.org/10.1021/acssynbio.6b00256">Adams, B. L. (2016). The Next Generation of Synthetic Biology Chassis: Moving Synthetic Biology from the Laboratory to the Field. ACS Synthetic Biology, 5(12), 1328–1330.  </a>
 +
                    </li>
 +
                    <li>
 +
                        <a target="_blank" id="Calero2019" href="http://doi.org/10.1111/1751-7915.13292">Calero, P., & Nikel, P. I. (2019). Chasing bacterial chassis for metabolic engineering: a perspective review from classical to non-traditional microorganisms. Microbial Biotechnology, 12(1), 98–124.
 +
                        </a>
 +
                    </li>
 +
                    <li>
 +
                        <a target="_blank" id="Locey2016" href="http://doi.org/10.1073/pnas.1521291113">Locey, K. J., & Lennon, J. T. (2016). Scaling laws predict global microbial diversity. Proceedings of the National Academy of Sciences of the United States of America, 113(21), 5970–5975.
 +
                        </a>
 +
                    </li>
 +
<li>
 +
                        <a target="_blank" id="Mencia2011" href="http://doi.org/10.1073/pnas.1114397108
 +
">Mencía, M., Gella, P., Camacho, A., de Vega, M., & Salas, M. (2011). Terminal protein-primed amplification of heterologous DNA with a minimal replication system based on phage Phi29. Proceedings of the National Academy of Sciences of the United States of America, 108(46), 18655–18660.
 +
 +
                        </a>
 +
                    </li>
 +
                    <li>
 +
                        <a target="_blank" id="Segal2018" href="http://doi.org/10.1038/nbt.4111">Segall-Shapiro, T. H., Sontag, E. D., & Voigt, C. A. (2018). Engineered promoters enable constant gene expression at any copy number in bacteria. Nature Biotechnology, 36(4), 352–358.
 +
 +
 +
                        </a>
 +
                    </li>
 +
                    <li>
 +
                        <a target="_blank" id="VanNies2018" href="http://doi.org/10.1038/s41467-018-03926-1">Van Nies, P., Westerlaken, I., Blanken, D., Salas, M., Mencía, M., & Danelon, C. (2018). Self-replication of DNA by its encoded proteins in liposome-based synthetic cells. Nature Communications, 9(1), 1–12.
 +
                        </a>
 +
                    </li>
 +
                    <li>
 +
                        <a target="_blank" id="Weber2011" href="http://doi.org/10.1371/journal.pone.0016765">Weber, E., Engler, C., Gruetzner, R., Werner, S., & Marillonnet, S. (2011). A modular cloning system for standardized assembly of multigene constructs. PloS One, 6(2), e16765. </a>
 +
                    </li>
 +
 +
                </ul>
 +
            </div>
 +
 +
        </div>
 +
    </body>
 +
 +
    <script> $('.toggle').click(function(e) {
 +
            e.preventDefault();
 +
 +
            var $this = $(this);
 +
 +
            if ($this.next().hasClass('show')) {
 +
                $this.next().removeClass('show');
 +
                $this.next().slideUp(350);
 +
            } else {
 +
                $this.parent().parent().find('li .inner').removeClass('show');
 +
                $this.parent().parent().find('li .inner').slideUp(350);
 +
                $this.next().toggleClass('show');
 +
                $this.next().slideToggle(350);
 +
            }
 +
        });
 +
 +
        $(document).on("click", ".toggle-text-buttom", function() {
 +
 +
 +
            if ($(this).text() == "Read More") {
 +
 +
                $(this).text("Read Less");
 +
 +
                // Use a jquery selector using the `.attr()` of the link
 +
                $("#toggle-textm-" + $(this).attr("toggle-textm")).slideDown();
 +
 +
            } else {
 +
 +
                $(this).text("Read More");
 +
 +
                // Use a jquery selector using the `.attr()` of the link
 +
                $("#toggle-textm-" + $(this).attr("toggle-textm")).slideUp();
 +
 +
            }
  
 +
        });
  
 +
    </script>
  
            </body>
+
</html>
        </html>
+
  
{{:Team:TUDelft/Footer2}}
+
{{:Team:TUDelft/Footer}}

Latest revision as of 07:23, 14 December 2019

Sci-Phi 29

Sci-Phi 29: Enabling orthogonal replication and predictable expression to expand the repertoire of engineerable bacteria



Many of the world’s issues, like pollution and climate change, could be tackled with biotechnology, by using microorganisms that digest certain substrates, like plastic or CO2. On earth, we have a huge biodiversity of microbes that could potentially utilize all these substrates and convert it to useful products. However, in reality, biotechnology sticks to a limited number of microbial chassis; since there is a lack of characterized parts for genetic engineering of unconventional microbes, we cannot harness the potential of all microbes on the planet.


Sci-Phi 29 is a versatile platform which allows expressing your gene of interest in a controllable manner across different bacterial species and independently of the host due to the concept of orthogonal replication. To make Sci-Phi 29 a standardized and user-friendly platform we provide a Modular Cloning (MoClo) compatible collection of parts. Sci-Phi 29 is a versatile platform to further explore the bacterial diversity providing new opportunities for the advancement of synthetic biology.


Motivation


There are more than one trillion different bacterial species living on Earth (Locey & Lennon, 2016). Every single one of these bacteria occupies its own niche, providing unlimited potential for synthetic biology.


In an ideal world every single bacteria could be engineered to our own benefits, meaning that any type of substrate can be converted into any desired product. Exploring this potential would mean we can broaden the range of substrates and environmental conditions which is currently used in synthetic biology. However, nowadays, synthetic biology is limited to a very small subset of these organisms, where the most commonly used bacteria are Escherichia coli and Bacillus subtilis (Adams, 2016).


Without a doubt, E. coli is the most widely used chassis in synthetic biology with the largest toolkit of genetic parts and regulatory elements, such as promoters, regulatory binding sites and terminators, as well as DNA vectors (Adams, 2016). However, whenever exploiting the potential of a non-model bacterial organism for the first time there is a lack of genetic tools (Calero & Nikel, 2019). Therefore, when moving to an unconventional bacterial species, there is the need of developing new genetic tools. This includes characterized species-specific promoters, replicative and suicide vectors, to cover a wide range of expression levels and genome engineering tools, such as CRISPR devices (Calero & Nikel, 2019).



Figure 1: Genetic tools that are required to express genetic circuits in non-model bacteria.

The iGEM Registry of Standard Biological Parts by itself already contains over 20,000 documented parts. All these parts are characterised for expression in their specific host. However, we cannot faithfully express these parts between different bacterial species. Furthermore, the behaviour of these parts across bacteria is unpredictable as regulatory layers differ across species (Calero & Nikel, 2019). To solve these problems, we created Sci-Phi 29, a platform that allows expression of parts across different bacterial species in a controllable and predictable manner.


Orthogonality


To express genetic tools across multiple bacterial species, we were inspired by the replication machinery of the phi29 bacteriophage, a unique protein-primed based DNA replication machinery. Protein primed replication, unlike the conventional DNA or RNA primed mechanism, greatly simplifies the design of replication systems. This machinery is able to replicate a linear piece of DNA by using only four proteins: DNA polymerase (DNAP, p2), Terminal Proteins (TP, p3) Single Stranded Binding Protein (SSB, p5) and Double Stranded Binding Protein (DSB, p6) (Van Nies et al., 2018).


The mechanism of the phi29 replication machinery is visualized in Video 1:



Video 1: The replication process begins with the binding of the phi29 DNAP and TP complex at both origins of replication (OriR and OriL), which flank the protein-primed linear plasmid. The DSB proteins aid in the process of replication and binds with a higher frequency at the origins of replication, destabilizing the region and facilitating strand displacement. The SSB proteins bind to the displaced DNA strand preventing strand switching of DNA polymerase and protecting the linear plasmid from host nucleases (Mencia et al., 2011).

When trying to express the phi29 replication machinery in E. coli we came into contact with Dr. Chang Liu and Dr. Julian Willis, experts on expression of orthogonal replication machinery, who informed us that the expression of these four proteins had to be tightly controlled in prokaryotes. If the expression is too high, these proteins can interfere with the host’s genome, while if the expression is too low replication might not occur at all. In light of this discovery we redesigned our experiments by expressing these proteins using different T7 promoter variants and different IPTG concentrations for induction of these proteins. See results here.


By using the PURE system we demonstrated replication in vitro of our own linear construct, which is flanked by the phi29 origins of replication.

Controllability


Using orthogonal replication allows us to transfer and replicate genetic parts between bacterial species. However, many variables play a role in the behaviour of genetic circuits inside cells. This includes variation in plasmid copy number, transcription, and translation. Therefore, it is difficult to introduce reliable parts for the genetic engineering of different bacteria (Segall-Shapiro et al., 2018), since the same parts may behave differently across organisms.


To tackle the issue of variation in expression across species, we took our platform to the next level by integrating the concept of controllability, which is based on a systems engineering approach. To make expression host-independent, we included an incoherent feed-forward loop (iFFL) in our design. An iFFL can be used to make the output of a system independent of the input (Figure 2).



Figure 2: Left: Scheme of an incoherent Feed Forward Loop. Right: The increasing ‘red’ line indicates how the output normally increases linearly with the input. The stable ‘green’ line depicts the addition of a repressor which results in independence of the output to the input.

According to our model and experimental validation, regulation of these interbacterial variables ensures stable expression across different bacterial species.


Standardization of Sci-Phi 29


Through concepts of orthogonality and controllability, we have shown that existing parts can be expressed in a standardized manner across bacterial species. To achieve standardization of our platform, we made our part collection Modular Cloning (MoClo) compatible (Weber et al., 2011). Our part collection provides 35 MoClo compatible parts that can be used for predictable expression of genes across different bacterial species. To overcome the need to identify parts for different bacterial hosts, our collection provides regulatory elements (promoters, RBSs, terminators) that work in a plethora of bacterial species.


Impact of Sci-Phi 29


Sci-Phi 29 enables orthogonal replication and predictable expression to expand the repertoire of genetically engineerable bacteria. To envision a future where Sci-Phi 29 can be used to tackle a real-world problem, we created a hypothetical use-case scenario, where we used our platform to, engineer P. putida using Sci-Phi 29 to be of use in removal of microplastics from waste water streams. This use case scenario showed the potential our platform holds.


We as a team are fascinated by the microbial diversity and wanted to share our fascination with the rest of the world. That is why our goal this year was to introduce as many people as possible to the hidden world of microbes. We organized multiple events because we wanted to make sure that everyone has access to the invisible microbial world. During our ‘Foldscope’ event, we taught participants how to fold their own origami microscope and how to use these microscopes.With the proceeds of this workshop, we were able to send 100 of these microscopes to urban areas in India, so the children there also have access to the fascinating world of microbiology. Besides showing people the potential of synthetic biology, we hope to inspire people so that they are to share our excitement for scientific exploration.


References