Difference between revisions of "Team:CSMU Taiwan"

Line 40: Line 40:
 
                             <h1 style="padding-top: 1.8em !important; padding-left: 2em !important; margin: 0em !important; height: 87% !important; margin-bottom: 11em !important;margin-left: 6em; margin-top: 5em; padding-right: 5em !important; /* font-size: 18px !important; */; width: 102%; overflow-x: hidden !important; padding: 0; height: 100%; overflow: scroll; letter-spacing: 0px; line-height: 27px !important; color: white; position: absolute; left: 0em; z-index: 20;">Abstract</h1>
 
                             <h1 style="padding-top: 1.8em !important; padding-left: 2em !important; margin: 0em !important; height: 87% !important; margin-bottom: 11em !important;margin-left: 6em; margin-top: 5em; padding-right: 5em !important; /* font-size: 18px !important; */; width: 102%; overflow-x: hidden !important; padding: 0; height: 100%; overflow: scroll; letter-spacing: 0px; line-height: 27px !important; color: white; position: absolute; left: 0em; z-index: 20;">Abstract</h1>
 
                             <p style="padding-top: 9.5em !important;padding-left: 6em !important;margin: 0em !important;height: 87% !important;margin-bottom: 11em !important;margin-left: 6em;margin-top: 5em;padding-right: 5em !important;font-size: 18px !important;width: 102%;overflow-x: hidden !important;padding: 0;height: 100%;overflow: scroll;letter-spacing: 0px;line-height: 27px !important;color: white;    position: absolute;    left: 0em;    z-index: 20;">
 
                             <p style="padding-top: 9.5em !important;padding-left: 6em !important;margin: 0em !important;height: 87% !important;margin-bottom: 11em !important;margin-left: 6em;margin-top: 5em;padding-right: 5em !important;font-size: 18px !important;width: 102%;overflow-x: hidden !important;padding: 0;height: 100%;overflow: scroll;letter-spacing: 0px;line-height: 27px !important;color: white;    position: absolute;    left: 0em;    z-index: 20;">
                                 Access to Synthetic Biology by an interested layperson is currently hampered by several barriers, including a required background knowledge and availability of expensive and often bulky technological equipment. <font size="+1"><b>Printeria</b></font> is a fully-equipped bioengineering device able to automate the process of printing genetic circuits in bacteria but made as simple and easy to operate as a domestic desktop printer. It breaks down these barriers using a digital microfluidic system creating little droplets that can be mixed and moved across predefined electrode paths on a PCB surface. Printeria combines this novel system with Golden Gate Technology, low-cost sensors and electronics, and a user-friendly software application. In this way, the user is capable of assembling DNA parts in a one-step reaction and control all steps: from the parts assembly and transformation to perform experiments of the printed genetic circuit with high accuracy.
+
                                 Influenza spreads around the world in a yearly outbreak, resulting in 3~5 million cases of severe illness and 250,000~500,000 deaths. The recent antibody-type flu screening is approximately 60% accurate and only distinguishes the basic types of influenza. Antigenic drift and shift make the prediction of the upcoming epidemic subtype of influenza a challenging task. Antibodies take time to be developed, but this slow yet potent remedy can’t meet its urgent demands. To solve this problem, we utilize aptamer which is known for its specific recognition of unique proteins of influenza viruses. By improving the conventional method, we developed a rapid detection device which effectively targets influenza. Furthermore, we have also managed to exploit the aptamers to inhibit virus infection. Our project not only seeks to provide a lower cost, fast production and highly-stable detection tool, but also has strong potential for new treatment and prevention.
                                Printeria opens the door to a world of applications affordable for the general public.
+
 
                             </p>
 
                             </p>
 
                         </div><img alt="image" loop="infinite" src="https://static.igem.org/mediawiki/2018/3/37/T--Valencia_UPV--ImagenHomeNegroDerUPV2018.jpeg" style="
 
                         </div><img alt="image" loop="infinite" src="https://static.igem.org/mediawiki/2018/3/37/T--Valencia_UPV--ImagenHomeNegroDerUPV2018.jpeg" style="

Revision as of 02:06, 13 October 2019

Stack Multipurpose HTML Template

Stack Multipurpose HTML Template
image

Abstract

Influenza spreads around the world in a yearly outbreak, resulting in 3~5 million cases of severe illness and 250,000~500,000 deaths. The recent antibody-type flu screening is approximately 60% accurate and only distinguishes the basic types of influenza. Antigenic drift and shift make the prediction of the upcoming epidemic subtype of influenza a challenging task. Antibodies take time to be developed, but this slow yet potent remedy can’t meet its urgent demands. To solve this problem, we utilize aptamer which is known for its specific recognition of unique proteins of influenza viruses. By improving the conventional method, we developed a rapid detection device which effectively targets influenza. Furthermore, we have also managed to exploit the aptamers to inhibit virus infection. Our project not only seeks to provide a lower cost, fast production and highly-stable detection tool, but also has strong potential for new treatment and prevention.

image

Long Story Short