Difference between revisions of "Team:Humboldt Berlin/Hardware"

Line 482: Line 482:
 
                     <!----------------------------------------------------------------------->
 
                     <!----------------------------------------------------------------------->
 
                     <UL class="no-bulletpoint">
 
                     <UL class="no-bulletpoint">
                     <h3 class="headline3">2 Overview of single components</h3>
+
                     <h3 class="headline3">Overview of single components</h3>
 
                     <p class="block-text medium-sized">
 
                     <p class="block-text medium-sized">
  
Line 877: Line 877:
 
                     <!----------------------------------------------------------------------->
 
                     <!----------------------------------------------------------------------->
 
                     <UL class="no-bulletpoint">
 
                     <UL class="no-bulletpoint">
                     <h3 class="headline3">3 Assembly Instructions</h3>
+
                     <h3 class="headline3"> Assembly Instructions</h3>
 
                     <p class="block-text medium-sized">
 
                     <p class="block-text medium-sized">
  

Revision as of 18:39, 20 October 2019

MathJax example

plasmid

Hardware

OPEN PBR LOGO

Introduction

Producing reliable cultivation data can be fairly difficult, time consuming and pricey.
We decided to adress this problem by creating OPEN PBR, a modular cultivation setup for photosynthetic organisms with up to 9 separate cultivation vessels.
While gathering knowledge with our efforts in Human Practices, we quickly recognized the need for a platform that enables the user to vary many parameters during cultivation of microalgae while still being affordable and capable of generating reproducible data.
The OPEN PBR fulfills these demands by providing a modular setup for cultivation of algae in turbido- or chemostat mode. With all components defined an openly available, it remains highly modular while using standardized vessels to provide reproducibility.
By using an existing model of general equations describing a chemostat with light as limiting substrate, we were able to pin down necessary functions and devices for performing them. For easy assembly of the device, files for lasercutting, a list of components and where to order them and an assembly guideline are provided below.

Our Open PBR Electronic Gas Supply LED-Panel Pumps Cultivation Chamber Sensors Casing
Klick on part-labels for more information

    Designing the bioreactor

  • Chemostat equation

  • Light Gradient

  • OD Measurement

  • ???

Bringing Chlamy to iGEM

Chemostat Equation

This chapter gives an overview over important parameters for cultivation resulting from the general chemostat equation.

Overview of the hierarchical and modular cloning system

The chemostat equation which we treated as a part of modeling provides us with an overview of general parameters important to a microbial culture. If we want to cultivate in turbidostat-mode, we need to remove liquid from the culture continuously. This removing is quantified through dilution rate \( D \): \begin{equation} D = \frac{1}{V_{c} \cdot \frac{\mathrm{d}}{\mathrm{d}t} V_{in} } \end{equation} \begin{array}{r l} V_c:& \text{Volume of culture in} mL \\ V_{in}: & \text{Volume of added medium in} mL \end{array} This equation shows us how


Overview of the hierarchical and modular cloning system

Fig. 1. Universal MoClo fusion sites.

Figcap

WHAAAT?

WHAAAT?

WHAAAT?

cloning strategy

Fig. 2. Blablabla.

Figcaption.
Read more Read less

Light Gradient

An important aspect of photosynthetic growth is illumination. Read about the light environment in a cultivation vessel here.

Overview of the hierarchical and modular cloning system

WHAAT?


Overview of the hierarchical and modular cloning system

Fig. 1. Universal MoClo fusion sites.

Figcap

WHAAAT?

WHAAAT?

WHAAAT?

cloning strategy

Fig. 2. Blablabla.

Figcaption.
Read more Read less

OD Measurement

With the same equation describing the light gradient inside the culture, we can define a relationship to measure cell density and other parameters.

Overview of the hierarchical and modular cloning system

Measurement of \(OD\) is based on the Beer-Lambert law (see our model for further information). From this law, \(OD\) is defined as: \begin{equation} OD = - log(\frac{I(\lambda)}{I_0(\lambda)}) = \epsilon_X \cdot c_X \cdot d \end{equation} \newcommand\T{\Rule{0pt}{1em}{.3em}} \begin{array}{r l} I_0(\lambda, t): & \text{light intensity upon entrance into vessel in} \: \frac{\mu mol}{m^2 \cdot s} \\ \epsilon_X: & \text{light attenuation coefficent for algae in} \: \frac{L}{mol \cdot cm} \\ bg: & \text{background turbidity} \: \frac{1}{cm} \\ d: & \text{light path in} cm \end{array}
Generally speaking, realization of the setup should make the variables in the equation as indifferent to parameters that have an impact on measurement as possible.


Cultivation vessel with chlamydomonas Reinhaditii

Fig. 1. Universal MoClo fusion sites.

Figcap

WHAAAT?

WHAAAT?

WHAAAT?

cloning strategy

Fig. 2. Blablabla.

Figcaption.
Read more Read less

    Overview of single components

  • Sensors

  • Illumination

  • Gas mixing and pumps

  • Cultivation vessel

  • Casing

In this chapter, we give an overview for all functions and components of the system. The aim is to serve as an introduction for assembling the system with the instructions provided in the last chapter.

Sensors

In this chapter, we will show you the sensors we are implementing in our setup. We build our own photometer and are using a prebuilt thermometer for temperature monitoring.

Overview of the hierarchical and modular cloning system

This already defines the components we need for measuring amount of algae cells, an LED that emits light ( \(I_0)\) ), a sensor that detects light after passage through the vessel and the vessel itself. It is important to measure under the same conditions every time, because otherwise \( I_0 \) can vary due to scattering of light at the vessel. Linearer Opt 101 in wichtigem Bereich (PAR)


The light detectors are inside of the metal strip

Fig. 1. Universal MoClo fusion sites.

Figcap

WHAAAT?

WHAAAT?

WHAAAT?

cloning strategy

Fig. 2. Blablabla.

Figcaption.
Read more Read less

Illumination

Here we want to explain our thoughts for illumination of the culture. An important aspect of illumination of photosynthetic cultures is intensity and wavelength distribution of light, which are explained here.

spectrum

WHAAT?


Overview of the hierarchical and modular cloning system

Fig. 1. Universal MoClo fusion sites.

Figcap

WHAAAT?

WHAAAT?

WHAAAT?

cloning strategy

Fig. 2. Blablabla.

Figcaption.
Read more Read less

Gas mixing and pumps

For operating our culture in chemostat mode, we need pumps for transportation of medium in and out of our culture vessel as well as for mixing of gas into the culture for growth. This chapter aims to explain important parameters while choosing a pump for the setup.

Overview of the hierarchical and modular cloning system

WHAAT?


Our Gas and mixing pumps

Fig. 1. Universal MoClo fusion sites.

Figcap

WHAAAT?

WHAAAT?

WHAAAT?

cloning strategy

Fig. 2. Blablabla.

Figcaption.
Read more Read less

Cultivation vessel

Because of Human Practices and Modeling, we decided to build a flat-panel cultivation vessel for our culture. Here we briefly explain our thoughts while building our own vessel and choosing vessels that fit our cultivation setup.

Overview of the hierarchical and modular cloning system

WHAAT?


flat-panel cultivation vessel

Fig. 1. Universal MoClo fusion sites.

Figcap

WHAAAT?

WHAAAT?

WHAAAT?

empty cltivation vessel with tubes

Fig. 2. Blablabla.

Figcaption.
Read more Read less

Casing

We shortly explain necessary properties of the case that holds our cultivation setup.

Overview of the hierarchical and modular cloning system

WHAAT?


Overview of the hierarchical and modular cloning system

Fig. 1. Universal MoClo fusion sites.

Figcap

WHAAAT?

WHAAAT?

WHAAAT?

cloning strategy

Fig. 2. Blablabla.

Figcaption.
Read more Read less

    Assembly Instructions

  • Github Project

  • Tools

  • PDF Instructions

This chapter provides you with everything you need to rebuild our setup on your own - including software, a list of used parts and assembly instructions.

Github Project

Visit our Github page, where assembly instructions, list of parts and software are provided together and are kept up to date!

Overview of the hierarchical and modular cloning system

WHAAT?


Overview of the hierarchical and modular cloning system

Fig. 1. Universal MoClo fusion sites.

Figcap

WHAAAT?

WHAAAT?

WHAAAT?

cloning strategy

Fig. 2. Blablabla.

Figcaption.
Read more Read less

Tools

Container preview

Overview of the hierarchical and modular cloning system

WHAAT?


Overview of the hierarchical and modular cloning system

Fig. 1. Universal MoClo fusion sites.

Figcap

WHAAAT?

WHAAAT?

WHAAAT?

cloning strategy

Fig. 2. Blablabla.

Figcaption.
Read more Read less

PDF Instructions

Look at our PDF instructions where we provide you with a detailed step-by-step tutorial to build your own OPEN PBR!

Overview of the hierarchical and modular cloning system

WHAAT?


Overview of the hierarchical and modular cloning system

Fig. 1. Universal MoClo fusion sites.

Figcap

WHAAAT?

WHAAAT?

WHAAAT?

cloning strategy

Fig. 2. Blablabla.

Figcaption.
Read more Read less

Crozet, P., Navarro, F. J., Willmund, F., Mehrshahi, P., Bakowski, K., Lauersen, K. J., ... Lemaire, S. D. (2018). Birth of a Photosynthetic Chassis: A MoClo Toolkit Enabling Synthetic Biology in the Microalga Chlamydomonas reinhardtii. ACS Synthetic Biology, 7(9), 2074-2086. Retrieved from https://doi.org/10.1021/acssynbio.8b00251. doi:10.1021/acssynbio.8b00251

Ebrahim, A., Lerman, J. A., Palsson, B. O., & Hyduke, D. R. (2013). COBRApy: COnstraints-Based Reconstruction and Analysis for Python. BMC Systems Biology, 7(1), 74. https://doi.org/10.1186/1752-0509-7-74

Engler, C., Kandzia, R. & Marillonnet, S. (2008). A One Pot, One Step, Precision Cloning Method with High Throughput Capability. PLOS ONE, 3(11), e3647. Retrieved from https://doi.org/10.1371/journal.pone.0003647. doi:10.1371/journal.pone.0003647

Greiner, A., Kelterborn, S., Evers, H., Kreimer, G., Sizova, I. & Hegemann, P. (2017). Targeting of Photoreceptor Genes in Chlamydomonas reinhardtii via Zinc-Finger Nucleases and CRISPR/Cas9. The Plant Cell. 29. tpc.00659.2017. 10.1105/tpc.17.00659.

Imam, S. , Schäuble, S. , Valenzuela, J. , López García de Lomana, A. , Carter, W. , Price, N. D. and Baliga, N. S. (2015), A refined genome‐scale reconstruction of Chlamydomonas metabolism provides a platform for systems‐level analyses. Plant J, 84: 1239-1256. doi:10.1111/tpj.13059

Kelterborn, S., Boehning, F., Evers, H., Sizova, I., Baidukova, O., & Hegemann, P. (2019). Gene editing in green alga Chlamydomonas reinhardtii via CRISPR-Cas9 ribonucleoproteins. Unpublished work.

Kliphuis, A. M. J., Klok, A. J., Martens, D. E., Lamers, P. P., Janssen, M., & Wijffels, R. H. (2012). Metabolic modeling of Chlamydomonas reinhardtii: Energy requirements for photoautotrophic growth and maintenance. Journal of Applied Phycology, 24(2), 253–266. https://doi.org/10.1007/s10811-011-9674-3

Loera‐Quezada, M. M., Leyva‐González, M. A., Velázquez‐Juárez, G. , Sanchez‐Calderón, L. , Do Nascimento, M. , López‐Arredondo, D. and Herrera‐Estrella, L. (2016), A novel genetic engineering platform for the effective management of biological contaminants for the production of microalgae. Plant Biotechnol J, 14: 2066-2076. doi:10.1111/pbi.12564

Ma, Y., Yao, M., Li, B., Ding, M., He, B., Chen, S., ... & Yuan, Y. (2018). Enhanced poly (ethylene terephthalate) hydrolase activity by protein engineering. Engineering, 4(6), 888-893. Mali, P., Yang, L., Esvelt, K. M., Aach, J., Guell, M., DiCarlo, J. E., Norville, J. E., and Church, G. M. “RNA-Guided Human Genome Engineering via Cas9,” Science, vol. 339, pp. 823–826, feb 2013.

Merchant, S. S., Prochnik, S. E., Vallon, O., Harris, E. H., Karpowicz, S. J., Witman, G. B., … Grossman, A. R. (2007). The Chlamydomonas genome reveals the evolution of key animal and plant functions. Science (New York, N.Y.), 318(5848), 245–250. doi:10.1126/science.1143609

Patron, N. J., Orzaez, D., Marillonnet, S., Warzecha, H., Matthewman, C., Youles, M., . . . Haseloff, J. (2015). Standards for plant synthetic biology: a common syntax for exchange of DNA parts. New Phytologist, 208(1), 13-19. Retrieved from https://doi.org/10.1111/nph.13532. doi:10.1111/nph.13532

Weber, E., Engler, C., Gruetzner, R., Werner, S., & Marillonnet, S. (2011). A Modular Cloning System for Standardized Assembly of Multigene Constructs. PLOS ONE, 6(2), e16765. Retrieved from https://doi.org/10.1371/journal.pone.0016765. doi:10.1371/journal.pone.0016765

Palm, G. J., Reisky, L., Böttcher, D., Müller, H., Michels, E. A., Walczak, M. C., ... & Weber, G. (2019). Structure of the plastic-degrading Ideonella sakaiensis MHETase bound to a substrate. Nature communications, 10(1), 1717.

Strenkert, S., Schmollinger, S., Gallaher, S. D., Salomé, P. A., Purvine, S. O., Nicora, C. D., Mettler-Altmann, T., Soubeyrand, E., Weber, A. P. M., Lipton, M. S., Basset, G. J., Merchant, S. S. Proceedings of the National Academy of Sciences Feb 2019, 116 (6) 2374-2383; DOI:10.1073/pnas.1815238116

<-----------------------------------------------Script----------------------------------------------------->