Difference between revisions of "Team:Humboldt Berlin/Model"

Line 145: Line 145:
 
</p>
 
</p>
 
<p class="block-text medium-sized">
 
<p class="block-text medium-sized">
The overall goal of the model is to determine the time needed to degrade 1 mg of PET. The expression rate, secretion rate and kinetics of the enzymes, such as also the cultivation density, influence the degradation rate of PET. Based on this assumption, the model was designed to take these factors into account. The model was programmed in Tellurium (Choi et al., 2018) and encompasses six reactions. The reactions are as follows, as can be seen on Fig. 1.  
+
The overall goal of the model is to determine the time needed to degrade 1 mg of PET. The expression rate, secretion rate and kinetics of the enzymes, such as also the cultivation density, influence the degradation rate of PET. Based on this assumption, the model was designed to take these factors into account. The model was programmed in Tellurium (Choi et al., 2018) and encompasses six reactions. The reactions are as listed on Fig. 1.  
  
 
</p>
 
</p>

Revision as of 16:25, 8 October 2019

code

Modeling

Why Modeling?

Sample Text (introduction to modeling) blablablablablablablablablablab lablablablablablablablabalablaaaaaaaaaaaaa aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa aaaa aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa aaaaaaaaaaaaaaaaa aaaaaaaaaaaaaaaaa aaaaaaaaaaaaaaaaaaa aaaaaaaaaaaaaa aaaaaaa aaaaaaaaaaaaaaaaaaaaaa aaaaaaaaaaaaaaaaa aaaaaaaaaaaaaaaaaaaaaa

ideonella grafic
Fig. 1. - Overview of the PET degradation model

PET degradation by Chlamydomonas reinhardtii

A C. reinhardtii which expresses and secretes the enzymes PETase and MHETase could pose as a solution for the problem of micro-plastic polluted water. Nevertheless, the viability of PET-degradation by C. reinhardtii at a larger scale is yet unknown. Models of biological systems allow us to design experiments in silico that are difficult to reproduce in vivo and give us special insights into the role that parameters might play in the given biological system. Therefore, to assess the efficiency of PET-degradation by C. reinhardtii, a model of PET degradation was designed.

The overall goal of the model is to determine the time needed to degrade 1 mg of PET. The expression rate, secretion rate and kinetics of the enzymes, such as also the cultivation density, influence the degradation rate of PET. Based on this assumption, the model was designed to take these factors into account. The model was programmed in Tellurium (Choi et al., 2018) and encompasses six reactions. The reactions are as listed on Fig. 1.

"The overall goal of the model is to determine the time needed to degrade 1 mg of PET."

Reaction Rate Value
R1: --> PETase_in 12,5 ml 20 ml
R2: --> MHETase_in 12,5 ml 20 ml
R3: PETase_in --> PETase_out 3,5 ml 5,6 ml
R4: MHETase_in --> MHETase_out 471,5 ml 754,4 ml
R5: PET + PETase_out --> MHET + PETase_out 7,2 g 14,4 g
R6: MHET + MHETase_out --> TPA + EG + PETase_out 7,2 g 14,4 g

Bereits 1874 hatte der Chirurg Theodor Billroth in Wien zweifelsfrei den das Wachstum von Bakterien hemmenden Effekt des Pilzes Penicillium erkannt.[8] Im Jahr 1923 erforschte in San José Clodomiro Picado Twight, ein ehemaliger Wissenschaftler des Institut Pasteur, die wachstumshemmende Wirkung auf Staphylokokken und Streptokokken. Seine Forschungsergebnisse wurden 1927 von der Société de biologie in Paris veröffentlicht.[9] Die weitaus öffentlichkeitswirksamere (Wieder-)Entdeckung der Penicilline begann mit einer verschimmelten Bakterienkultur ein Jahr darauf: Alexander Fleming, der sich am St. Mary’s Hospital in London mit Staphylokokken beschäftigte, hatte 1928 vor den Sommerferien eine Agarplatte mit Staphylokokken beimpft und dann beiseite gestellt. Bei seiner Rückkehr entdeckte er am 28. September 1928, dass auf dem Nährboden ein Schimmelpilz (Penicillium notatum) wuchs und sich in der Nachbarschaft des Pilzes die Bakterien nicht vermehrt hatten. Fleming nannte den bakterientötenden Stoff, der aus dem Nährmedium gewonnen werden konnte, Penicillin und beschrieb ihn für die Öffentlichkeit erstmals 1929 im British Journal of Experimental Pathology.[10] Er untersuchte die Wirkung des Penicillins auf unterschiedliche Bakterienarten und tierische Zellen; dabei stellte er fest, dass Penicillin nur grampositive Bakterien wie Staphylokokken, Streptokokken oder Pneumokokken abtötete, nicht aber gramnegative Bakterien wie beispielsweise Salmonellen. Auch gegenüber weißen Blutkörperchen und menschlichen Zellen oder für Kaninchen erwies es sich als ungiftig. Fleming kam trotz dieser Kenntnis offenbar nicht auf die Idee, Penicillin als Medikament einzusetzen.

Results: Variating the Cultivation Density

Bereits 1874 hatte der Chirurg Theodor Billroth in Wien zweifelsfrei den das Wachstum von Bakterien hemmenden Effekt des Pilzes Penicillium erkannt.[8] Im Jahr 1923 erforschte in San José Clodomiro Picado Twight, ein ehemaliger Wissenschaftler des Institut Pasteur, die wachstumshemmende Wirkung auf Staphylokokken und Streptokokken. Seine Forschungsergebnisse wurden 1927 von der Société de biologie in Paris veröffentlicht.[9] Die weitaus öffentlichkeitswirksamere (Wieder-)Entdeckung der Penicilline begann mit einer verschimmelten Bakterienkultur ein Jahr darauf: Alexander Fleming, der sich am St. Mary’s Hospital in London mit Staphylokokken beschäftigte, hatte 1928 vor den Sommerferien eine Agarplatte mit Staphylokokken beimpft und dann beiseite gestellt. Bei seiner Rückkehr entdeckte er am 28. September 1928, dass auf dem Nährboden ein Schimmelpilz (Penicillium notatum) wuchs und sich in der Nachbarschaft des Pilzes die Bakterien nicht vermehrt hatten. Fleming nannte den bakterientötenden Stoff, der aus dem Nährmedium gewonnen werden konnte, Penicillin und beschrieb ihn für die Öffentlichkeit erstmals 1929 im British Journal of Experimental Pathology.[10] Er untersuchte die Wirkung des Penicillins auf unterschiedliche Bakterienarten und tierische Zellen; dabei stellte er fest, dass Penicillin nur grampositive Bakterien wie Staphylokokken, Streptokokken oder Pneumokokken abtötete, nicht aber gramnegative Bakterien wie beispielsweise Salmonellen. Auch gegenüber weißen Blutkörperchen und menschlichen Zellen oder für Kaninchen erwies es sich als ungiftig. Fleming kam trotz dieser Kenntnis offenbar nicht auf die Idee, Penicillin als Medikament einzusetzen. Fast zehn Jahre später – 1938 – machten sich Howard W. Florey, Ernst B. Chain und Norman Heatley daran, systematisch alle von Mikroorganismen gebildeten Stoffe zu untersuchen, von denen bekannt war, dass sie Bakterien schädigten. So stießen sie auch auf Flemings Penicillin. Sie reinigten es und untersuchten seine therapeutische Wirkung zunächst an Mäusen und dann auch an Menschen. Im Jahre 1939 isolierte René Dubos vom Rockefeller Institute for Medical Research aus menschlichen Tränen das Tyrothricin und zeigte, dass es die Fähigkeit besaß, bestimmte bakterielle Infektionen zu heilen. 1941 unternahmen Florey und Chain den ersten klinischen Test, der allerdings nur auf wenige Personen beschränkt war. Da die Herstellung von Penicillin noch sehr mühsam war, gewannen sie es sogar aus dem Urin der behandelten Personen zurück.[11]

PET 1 to 10
Fig. 2. - Results of the simulation for the cultivation density 1:10
PET 1 to 100
Fig. 3. - Results of the simulation for the cultivation density 1:100

Small Text Left Column

Small Text Right Column