Difference between revisions of "Team:Humboldt Berlin/Description"

 
(53 intermediate revisions by 7 users not shown)
Line 1: Line 1:
 
{{Humboldt_Berlin}}
 
{{Humboldt_Berlin}}
 
<html>
 
<html>
 
  
 
<div class="has-animations description no-js" id="container">
 
<div class="has-animations description no-js" id="container">
Line 27: Line 26:
 
                             <div class="submenu">
 
                             <div class="submenu">
 
                                 <a href="/Team:Humboldt_Berlin/Team">Team members</a>
 
                                 <a href="/Team:Humboldt_Berlin/Team">Team members</a>
                                 <a href="/Team:Humboldt_Berlin/Collaborations">Collaboration</a>
+
                                 <a href="/Team:Humboldt_Berlin/Collaborations">Collaborations</a>
 
                             </div>
 
                             </div>
 
                         </div>
 
                         </div>
Line 36: Line 35:
 
                                 <a class="active" href="/Team:Humboldt_Berlin/Description">Description</a>
 
                                 <a class="active" href="/Team:Humboldt_Berlin/Description">Description</a>
 
                                 <a href="/Team:Humboldt_Berlin/Design">Design</a>
 
                                 <a href="/Team:Humboldt_Berlin/Design">Design</a>
                                 <a href="/Team:Humboldt_Berlin/Experiments">Experimentals</a>
+
                                 <a href="/Team:Humboldt_Berlin/Experiments">Experiments</a>
 
                                 <a href="/Team:Humboldt_Berlin/Notebook">Notebook</a>
 
                                 <a href="/Team:Humboldt_Berlin/Notebook">Notebook</a>
 
                                 <a href="/Team:Humboldt_Berlin/Contribution">Contribution</a>
 
                                 <a href="/Team:Humboldt_Berlin/Contribution">Contribution</a>
Line 71: Line 70:
 
                             <a>Awards</a>
 
                             <a>Awards</a>
 
                             <div class="submenu">
 
                             <div class="submenu">
                                <a href="/Team:Humboldt_Berlin/Entrepreneurship">Entrepreneurship</a>
 
 
                                 <a href="/Team:Humboldt_Berlin/Hardware">Hardware</a>
 
                                 <a href="/Team:Humboldt_Berlin/Hardware">Hardware</a>
 
                                 <a href="/Team:Humboldt_Berlin/Measurement">Measurement</a>
 
                                 <a href="/Team:Humboldt_Berlin/Measurement">Measurement</a>
 
                                 <a href="/Team:Humboldt_Berlin/Model">Model</a>
 
                                 <a href="/Team:Humboldt_Berlin/Model">Model</a>
 
                                 <a href="/Team:Humboldt_Berlin/Plant">Plant</a>
 
                                 <a href="/Team:Humboldt_Berlin/Plant">Plant</a>
                                <a href="/Team:Humboldt_Berlin/Software">Software</a>
 
 
                             </div>
 
                             </div>
 
                         </div>
 
                         </div>
 
                         <div class="devider"></div>
 
                         <div class="devider"></div>
                         <a href="https://igem.org/2019_Judging_Form?team=Humboldt_Berlin">
+
                         <a href="https://2019.igem.org/Team:Humboldt_Berlin/Achievements">
 
                             For Judges
 
                             For Judges
 
                         </a>
 
                         </a>
Line 92: Line 89:
 
                 <img src="https://static.igem.org/mediawiki/2019/e/e9/T--Humboldt_Berlin--description-header.jpg" alt="notebook" />
 
                 <img src="https://static.igem.org/mediawiki/2019/e/e9/T--Humboldt_Berlin--description-header.jpg" alt="notebook" />
 
             </section>
 
             </section>
           
+
 
 
             <h1 class="page-headline description">Description</h1>
 
             <h1 class="page-headline description">Description</h1>
 
         </div>
 
         </div>
Line 98: Line 95:
 
         <section class="page-content fixed-header-content">
 
         <section class="page-content fixed-header-content">
 
             <h2 class="page-subheadline">How & why</h2>
 
             <h2 class="page-subheadline">How & why</h2>
 +
 +
 
             <div class="width-limit">
 
             <div class="width-limit">
  
<div class="two-columns">
+
                <div class="two-columns">
 
                     <div>
 
                     <div>
<h3 class="headline3">Chlamy who?</h3>
+
                        <h3 class="headline3">Chlamy who?</h3>
 
                         <p class="block-text medium-sized">
 
                         <p class="block-text medium-sized">
                             For various biosynthetic experimental designs, chosen chassis have been bacterial, with the disadvantage of lacking post-translational modifications. A growing community of plant synthetic biologists have however laid the focus increasingly in the utilization of freshwater alga <i>Chlamydomonas reinhardtii</i> as a biosynthetic expression platform (Jinkerson & Jonikas, 2015; Scaife et al., 2015). Being eukaryotic, this microalga is able to perform post-translational modifications, allowing the expression of more complex proteins, while being easy to cultivate and to handle (Merchant et al., 2007). A variety of transformation methods, including but not limited to biolistic transformation, glass bead agitation and electroporation are well-established for this model organism (Boynton et al., 1988). Its ability to grow photoautotrophically makes it an ideal chassis to tackle a variety of complex problems in an environmentally-friendly way.<br><br>
+
                             Most projects at iGEM and in synthetic biology in general choose to work with bacterial chassis. However, a growing community of plant synthetic biologists have laid the focus increasingly on the utilization of microalgae such as <i>Chlamydomonas reinhardtii</i> as a platform for photosynthetic expression (Jinkerson & Jonikas, 2015; Scaife et al., 2015). Being eukaryotic, this freshwater algae is able to perform post-translational modifications, allowing the expression of more complex proteins, while being easy and cost-efficient to cultivate and to handle (Merchant et al., 2007). A variety of transformation methods, including but not limited to biolistic transformation, glass bead agitation and electroporation are well-established for this model organism (Boynton et al., 1988). Its ability to grow photoautotrophically makes it an ideal chassis to tackle a variety of complex problems in an environmentally-friendly way.
For the iGEM competition 2019 we have developed a toolkit for <i>C. reinhardtii</i> containing a variety of functional parts and multi-use constructs in the MoClo syntax, based on the Golden Gate cloning method. This design aids the work of synthetic biologists, providing a method for an easy one-step, one-pot assembly (Weber et al., 2011) posing vast possible combinations for individual use-cases. <br><br>
+
The aim of our project “Chlamylicious” is two-fold: establishing <i>C. reinhardtii</i> in the iGEM competition as a biosynthetic chassis and proving the usefulness of our toolkit of parts and constructs, while working on the degradation of PET plastic. To satisfy the need for a Do-It-Yourself tool to reproducibly cultivate photoautotrophic organisms at lab-scale under controlled conditions, we built and optimised a bioreactor. Modeling the algal growth during expression of a high-copy plasmid under different conditions was also integrated in our efforts of optimizing cultivation.  
+
 
                         </p>
 
                         </p>
 
                     </div>
 
                     </div>
 
                     <div>
 
                     <div>
                         <img class="is-revealing" src="https://static.igem.org/mediawiki/2019/5/5d/T--Humboldt_Berlin--chlamy_wusel.jpeg" alt="chlamy microscope" />
+
                         <img class="is-revealing" style="width: 60%; margin-left:auto;margin-right:auto" src="https://static.igem.org/mediawiki/2019/5/5d/T--Humboldt_Berlin--chlamy_wusel.jpeg" alt="chlamy microscope" />
 
                     </div>
 
                     </div>
 
                 </div>
 
                 </div>
 +
 +
 +
 +
<div class="width-limit">
 +
 +
                <div class="two-columns">
 +
<div>
 +
              <img class="is-revealing" src="https://static.igem.org/mediawiki/2019/5/52/T--Humboldt_Berlin--chlamy_hub_vision.png" alt="Vision: ChlamyHUB" />
 +
                </br>
 +
            </div>
 +
                   
 +
<div>
 +
                        <h3 class="headline3">We present The ChlamyHUB to you</h3>
 +
                        <p class="block-text medium-sized">
 +
                          For the iGEM competition 2019 we developed the project idea of establishing <i>C. reinhardtii</i> in the iGEM community as a viable chassis for protein synthesis through various approaches, summarized under the ChlamyHUB vision. We have have created a toolkit of genetic parts, the ChlamyHUB Collection, which follow the MoClo syntax in the Golden Gate assembly standard. To satisfy the need to reproducibly cultivate photoautotrophic organisms under controlled conditions, we built and optimized a Do-It-Yourself bioreactor, the OpenPBR. Gaining insights into what factors have an influence on algal growth while cultivating under expression of transgenic proteins was achieved through our modeling projects. Lastly, ChlamyHUB aims to demonstrate the advantage of an eco-friendly organism as a platform to degrade PET plastic as a proof-of-concept.
 +
                        </p>
 +
                    </div>
 +
                </div>
 +
  
 
                 <div class="two-columns">
 
                 <div class="two-columns">
Line 123: Line 139:
 
                 </div>
 
                 </div>
  
               
 
 
                 <div class="two-columns big-border-left">
 
                 <div class="two-columns big-border-left">
 
                     <div class="image-column">
 
                     <div class="image-column">
Line 129: Line 144:
 
                     </div>
 
                     </div>
 
                     <div class="big-text">
 
                     <div class="big-text">
 +
<b>Bacteria</b></br>
 
                         <b class="plus">Fast growth</b><br />
 
                         <b class="plus">Fast growth</b><br />
 
                         <b class="minus">Inclusion bodies</b><br />
 
                         <b class="minus">Inclusion bodies</b><br />
Line 134: Line 150:
 
                     </div>
 
                     </div>
 
                 </div>
 
                 </div>
 
 
                 <div class="two-columns big-border-left">
 
                 <div class="two-columns big-border-left">
 
                     <div class="image-column">
 
                     <div class="image-column">
Line 140: Line 155:
 
                     </div>
 
                     </div>
 
                     <div class="big-text">
 
                     <div class="big-text">
 +
<b>Yeast & Tissue Cells</b></br>
 
                         <b class="plus">Post-translational modification</b><br />
 
                         <b class="plus">Post-translational modification</b><br />
                        <b class="minus">Low protein yields (yeast, cell lines)</b><br />
 
 
                         <b class="minus">Expensive cultivation</b><br />
 
                         <b class="minus">Expensive cultivation</b><br />
                         <b class="minus">Handling problems</b><br />
+
                         <b class="minus">No motility</b><br />
 
                     </div>
 
                     </div>
 
                 </div>
 
                 </div>
Line 152: Line 167:
 
                     </div>
 
                     </div>
 
                     <div class="big-text">
 
                     <div class="big-text">
 +
<b>Microalgae</b></br>
 +
                        <b class="plus">Inexpensive & easy cultivation</b><br />                     
 
                         <b class="plus">Post-translational modification</b><br />
 
                         <b class="plus">Post-translational modification</b><br />
                         <b class="plus">rapid growth rates</b><br />
+
                         <b class="plus">Photosynthesis</b><br />
                         <b class="plus">Inexpensive & easy cultivation</b><br />
+
                         <b class="plus">Enviromental-safe</b><br />
                         <b class="plus">Easy transgene insertion</b><br />
+
                         <b class="plus">Two expression compartments (nucleus & chloroplast)</b><br />
 
                     </div>
 
                     </div>
 
                 </div>
 
                 </div>
Line 161: Line 178:
 
                 <div class="two-columns">
 
                 <div class="two-columns">
 
                     <div>
 
                     <div>
                         <img src="https://static.igem.org/mediawiki/2019/b/b4/T--Humboldt_Berlin--ablauf_sakaiensis.png" alt="process sakaiensis" />
+
                         <img class="is-revealing" src="https://static.igem.org/mediawiki/2019/b/b4/T--Humboldt_Berlin--ablauf_sakaiensis.png" alt="process sakaiensis" />
 
                     </div>
 
                     </div>
 
                     <div>
 
                     <div>
Line 169: Line 186:
 
                         <h3 class="headline3">Our Inspiration</h3>
 
                         <h3 class="headline3">Our Inspiration</h3>
 
                         <p class="medium-sized block-text">
 
                         <p class="medium-sized block-text">
                             The unicellular and genetically modifiable green alga <i>C. reinhardtii</i> has an impressive history. It is used since the 1950s as a model organism to not only elucidate basic plant cellular processes, such as photosynthesis and light perception, but also in research regarding phototaxis, circadian rhythmicity, cell cycle and mating mechanisms (E.H. Harris, 2009; Elizabeth H Harris, Stern, & Witman, 1989). The now best characterized microalga has since then not only been used for fundamental research but also industrial biotechnology, as the algal species has become an expression platform to synthesize recombinant proteins. <i>C. reinhardtii</i> has been engineered to produce biofuels such as the biodiesel-precursor bisabolene (Wichmann, Baier, Wentnagel, Lauersen, & Kruse, 2018). <i>Chlamydomonas</i> has also been used in therapeutic applications, having been modified to express an HIV antigen (Barahimipour, Neupert, & Bock, 2016).<br><br>
+
                             The unicellular green alga <i>C. reinhardtii</i> has an impressive history. It is used since the 1950s as a model organism to not only elucidate the structure of flagellar and basic plant cellular processes, such as photosynthesis and light perception, but also in research regarding phototaxis, circadian rhythmicity, cell cycle and mating mechanisms (Harris et al., 1989; Harris, 2009). However, <i>C. reinhardtii</i> has not only been used for fundamental research but is also a model for microalgal biotechnology and has become a photosynthetic expression platform to synthesize recombinant proteins. <i>C. reinhardtii</i> has been engineered to produce biomass for biofuels such as the biodiesel-precursor bisabolene (Wichmann et al., 2018). <i>Chlamydomonas</i> has also been used in therapeutic applications, having been modified to express an HIV antigen (Barahimipour et al., 2016).<br><br> In 2016, the bacterium <i>Ideonella sakaiensis</i> which is able to use polyethylene terephthalate (PET) as a primary carbon and energy source was discovered (Yoshida et al., 2016). This bacterium secretes two different hydrolases that perform the first two steps in PET degradation (Yoshida et al., 2016). The first hydrolase, PETase, breaks down PET to mono(2-hydroxyethyl) terephtalic acid (MHET). The second hydrolase, the MHETase, then digests MHET to terephthalic acid (TPA) and ethylene glycole (EG). In 2018, the PETase was characterized and engineered to improve its performance (Austin et al., 2018). Astonished by the possibility to degrade one of the most commonly used plastics, we were inspired to try to integrate the PETase and MHETase enzymes into <i>C. reinhardtii</i> in order to illustrate the capabilities of our favorite algae using a toolkit of various genetic parts.<br><br> One of the issues of the gravest impact on our generation is the environmental pollution. Especially the production of synthetic polymers, like plastic, has increased considerably since the 20th century (Andrady, 2011). Plastic is the most frequent material collected in studies on the surface of the Oceans (Law et al., 2010) and is also observed on the seafloor (Galgani et al., 2000). Even though the exact implication of microplastic to organisms is still unknown, the appearance of microplastic inside a wide variety of marine organisms is significant (Murray & Cowie, 2011).
 
+
In 2016, the bacterium Ideonella sakaiensis that is able to use polyethylene terephthalate (PET) as a primary carbon and energy source was discovered (Yoshida et al., 2016). This bacterium secretes two different hydrolases that perform the first two PET degradation steps (Yoshida et al., 2016). The first hydrolase, PETase, breaks down PET to mono(2-hydroxyethyl) terephtalic acid (MHET). The second hydrolase, the MHETase, then digests MHET to terephthalic acid (TPA) and ethylene glycole (EG). The bacterium itself grows optimally within a pH range of 7-7,5 and a temperature of 30-37°C (Tanasupawat, Takehana, Yoshida, Hiraga, & Oda, 2016). It was also demonstrated that it cannot grow anaerobically and that it has a GC-rich genome (70,4%) (Tanasupawat et al., 2016; Yoshida et al., 2016). In 2018, the PETase was characterized and engineered to improve its performance (Austin et al., 2018).
+
Astonished by the possibility to degrade one of the most commonly used plastics, we were inspired to try to integrate the PETase and MHETase Enzymes into <i>C. reinhardtii</i> in order to illustrate the capabilities of our favorite algae using a toolkit of varied genetic parts.<br><br>
+
 
+
One of the issues of the gravest impact on our generation is the environmental pollution. Especially the production of synthetic polymers, like plastic, has increased considerably since the 20thcentury (Andrady, 2011). Plastic is the most frequent material collected in studies on the surface of the Ocean (Law et al., 2010) and is also observed on the seafloor (Galgani et al., 2000). Even though the exact implication of microplastic to organisms is still unknown, the appearance of microplastic inside a wide variety of marine organisms is significant (Murray & Cowie, 2011).
+
 
+
 
                         </p>
 
                         </p>
 
                     </div>
 
                     </div>
 
                 </div>
 
                 </div>
  
               
 
 
                 <blockquote class="quote image-left">
 
                 <blockquote class="quote image-left">
 
                     <div class="quote-image-container">
 
                     <div class="quote-image-container">
Line 190: Line 200:
 
                         <!----------------------------------------------------------------------->
 
                         <!----------------------------------------------------------------------->
 
                         <p><b>
 
                         <p><b>
                            We know that we are not after something
+
                          We know that we are not after something
                             completely new. But we want to do this
+
                             completely new, but we want to do this
                             right. So we chose a different organism
+
                             right. So we chose a chassis, which is commonly found in freshwater and environmentally-safe and tried to tackle obstacles other teams
                            and tried to tackle obstacles other teams
+
 
                             failed to solve.
 
                             failed to solve.
 
                         </b></p>
 
                         </b></p>
Line 206: Line 215:
 
                         <h3 class="headline3">The iGEM projects that inspired us</h3>
 
                         <h3 class="headline3">The iGEM projects that inspired us</h3>
 
                         <p class="medium-sized block-text">
 
                         <p class="medium-sized block-text">
                             Degrading microplastic is not a new idea when it comes to iGEM projects. Similarly inspired by the works of Yoshida and his colleagues (Yoshida et al., 2016) a multitude of different teams have worked on comparable topics. We know that we are not after something completely new. But we wanted to do this right. So we chose a different organism and tried to tackle obstacles other teams failed to solve. <br><br>
+
                             Degrading microplastic is not a new idea when it comes to iGEM projects. Similarly inspired by the works of Yoshida and his colleagues (Yoshida et al., 2016) a multitude of different teams have worked on comparable topics. We know that we are not after something completely new. But we wanted to do this right. So we chose a different organism and tried to tackle obstacles other teams failed to solve. <br><br> Our work was inspired by the team <a href="https://2016.igem.org/Team:TJUSLS_China/Description" target="blank" rel="noopener">TJUSLS project</a> on PETase (1), who improved the activity levels of the PETase through direct mutagenesis. It was through their project that we started looking into improved versions of the PETase first discovered by Yoshida et al. We were intrigued by the effort Harvard BioDesign 2016 put into their project <a href="https://2016.igem.org/Team:Harvard_BioDesign" target="blank" rel="noopener">“Plastiback” </a>(2), pushing us towards the direction of degrading microplastic in an aquatic environment secreting PETase into the enclosed system of a bioreactor. We also integrated the separation of both PET degradation products TPA and EG, useful precursors in the synthesis of new PET, in our bioreactor. The project of <a href="https://2016.igem.org/Team:ASIJ_Tokyo/Results" target="blank" rel="noopener">ASIJ Tokyo</a> in 2016 (3) inspired our module design greatly. Their characterization of the expression strength of PETase using different promoters and the secretion tests conducted under different secretion signals struck us as good practices to optimize the expression of complex constructs. Therefore, while designing our transcriptional units and choosing possible parts we aimed for a high variety of interchangeable modules to compare their functions. The team from <a href="https://2016.igem.org/Team:Tianjin/Description" target="blank" rel="noopener">Tianjin </a> in the year 2016 (4) combined photosynthetically active organisms and the degradation of PET, lending their reactor the capacity of fixating carbon dioxide using the energy from sunlight. The approaches by the team of <a href="https://2017.igem.org/Team:ITB_Indonesia/Description" target="blank" rel="noopener">ITB</a> 2017 (5) aided us in our project design as well, inspiring us with their use of biofilms on plastics. Looking for microorganisms with the abillity of binding to the surface of PET, we came across flagellar adhesion of <i>C. reinhardtii</i> to surfaces, which is even light-switchable (Kreis et al., 2018). <a href="https://2018.igem.org/Team:Yale" target="blank" rel="noopener">iGEM Team Yale´s</a> (6) focus on improving functionality of the enzymes also greatly impacted our work.
 
+
Our work was inspired by TJUSLS project on PETase 2016 (1), who improved the activity levels of the PETase through direct mutagenesis. It was through their project that we started looking into improved versions of the PETase first discovered by Yoshida et al.  
+
We were intrigued by the effort Harvard BioDesign 2016 put into their project “Plastikback” (2), pushing us towards the direction of degrading microplastic in an aquatic environment secreting PETase into the enclosed system of a bioreactor. We also integrated the separation of both PET degradation products TPA and EG, useful precursors in the synthesis of new PET, in our bioreactor. The project of ASIJ Tokyo in 2016 (3) inspired our module design greatly. Their characterization of the expression strength of PETase using different promoters and the secretion tests conducted under different secretion signals struck us as good practices to optimize the expression of complex constructs. Therefore, while designing our transcriptional units and choosing possible parts we aimed for a high variety of interchangeable modules to compare their functions. The team from Tianjin in the year 2016 (4) combined photosynthetically active organisms and the degradation of PET, lending their reactor the capacity of fixating carbon dioxide using the energy from sunlight.
+
The approaches by the team of ITB 2017 (5) aided us in our project design as well, inspiring us with their use of biofilms on plastics. Looking for microorganisms with the abillity of binding to the surface of PET, we came across flagellar adhesion of C. reinhardtii to surfaces, which is even light-switchable (Kreis et al., 2018). iGEM Team Yale´s (6) focus on improving functionality of the enzymes also greatly impacted our work.
+
 
                         </p>
 
                         </p>
 
                     </div>
 
                     </div>
Line 228: Line 233:
 
                         <h3 class="headline3">Chlamydomonas as a model organism</h3>
 
                         <h3 class="headline3">Chlamydomonas as a model organism</h3>
 
                         <p class="medium-sized block-text">
 
                         <p class="medium-sized block-text">
                          We propose that by combining a photosynthetically active organism with at least the optimized PETase and the MHETase we can create a new way of recycling PET or even degrading PET completely to CO₂ and H₂O. The organism could then able to use the CO₂ obtained from the plastic as its carbon source. We immediately thought of <i>Chlamydomonas reinhardtii</i> as a chassis, as it proliferates quickly under energy-efficient conditions. Being not only able to conduct photosynthesis, fixing carbon dioxide and using it as its carbon source with the power of light, <i>C. reinhardtii</i> can also live off acetate as its carbon source.  
+
                            We propose that by combining a photosynthetically active organism with at least the optimized PETase and the MHETase we can create a new way of recycling PET or even degrading PET completely to CO₂ and H₂O. The organism could then able to use the CO₂ obtained from the plastic as its carbon source. We immediately thought of <i>Chlamydomonas reinhardtii</i> as a chassis, as it proliferates quickly under energy-efficient conditions. Being not only able to conduct photosynthesis, fixing carbon dioxide and using it as its carbon source with the power of light, <i>C. reinhardtii</i> can also live off acetate as its carbon source.
 
                         </p>
 
                         </p>
 
                     </div>
 
                     </div>
Line 239: Line 244:
 
                         <!----------------------------------------------------------------------->
 
                         <!----------------------------------------------------------------------->
 
                         <p>
 
                         <p>
                             <img class="check-icon" src="https://static.igem.org/mediawiki/2019/b/b8/T--Humboldt_Berlin--chlamy_check_bullet.png"/>
+
                             <img class="check-icon" src="https://static.igem.org/mediawiki/2019/b/b8/T--Humboldt_Berlin--chlamy_check_bullet.png" /> easy to cultivate & phototrophic
                            easy to cultivate & phototrophic
+
 
                         </p>
 
                         </p>
 
                         <p>
 
                         <p>
                             <img class="check-icon" src="https://static.igem.org/mediawiki/2019/b/b8/T--Humboldt_Berlin--chlamy_check_bullet.png"/>
+
                             <img class="check-icon" src="https://static.igem.org/mediawiki/2019/b/b8/T--Humboldt_Berlin--chlamy_check_bullet.png" /> one organism = single cell
                            one organism = single cell
+
 
                         </p>
 
                         </p>
 
                         <p>
 
                         <p>
                             <img class="check-icon" src="https://static.igem.org/mediawiki/2019/b/b8/T--Humboldt_Berlin--chlamy_check_bullet.png"/>
+
                             <img class="check-icon" src="https://static.igem.org/mediawiki/2019/b/b8/T--Humboldt_Berlin--chlamy_check_bullet.png" /> well established as model organism
                            well established as model organism
+
 
                         </p>
 
                         </p>
 
                     </div>
 
                     </div>
Line 256: Line 258:
 
         </section>
 
         </section>
  
                <!----------------------------------------------------------------------->
+
        <!----------------------------------------------------------------------->
                <!------------------------------- LEARN MORE ---------------------------->
+
        <!------------------------------- LEARN MORE ---------------------------->
                <!----------------------------------------------------------------------->
+
        <!----------------------------------------------------------------------->
  
                <section class="learn-more">
+
        <section class="learn-more">
                    <h3>Learn more...</h3>
+
            <h3>Learn more...</h3>
                    <div class="learn-more-links">
+
            <div class="learn-more-links">
                        <a href="/Team:Humboldt_Berlin/Design">
+
                <a href="/Team:Humboldt_Berlin/Design">
                            <img src="https://static.igem.org/mediawiki/2019/4/43/T--Humboldt_Berlin--design.jpg" alt="design preview"/>
+
                    <img src="https://static.igem.org/mediawiki/2019/6/6d/T--Humboldt_Berlin--Header_design.jpeg" alt="design preview" />
                            <h4>Design</h4>
+
                    <h4>Design</h4>
                            <p class="block-text">
+
                    <p class="block-text">
                                The <b>MoClo</b> syntax is based on the Golden Gate cloning standard,
+
                        The <b>MoClo</b> syntax is based on the Golden Gate cloning standard, that uses Type IIS restriction sites. The <i>Chlamydomonas</i> MoClo kit is standardized to fit the syntax of the plant synthetic biology community.
                                that uses Type IIS restriction sites.The Chlamydomonas MoClo kit is standardized to fit the syntax of the plant synthetic biology community.
+
                    </p>
                            </p>
+
                </a>
                        </a>
+
                <a href="/Team:Humboldt_Berlin/Experiments" class="white-text">
                        <a href="/Team:Humboldt_Berlin/Experiments" class="white-text">
+
                    <img src="https://static.igem.org/mediawiki/2019/4/43/T--Humboldt_Berlin--design.jpg" alt="experiments preview" />
                            <img src="https://static.igem.org/mediawiki/2019/f/f3/T--Humboldt_Berlin--experiments.jpg" alt="experiments preview"/>
+
                    <h4>Experiments</h4>
                            <h4>Experiments</h4>
+
                    <p class="block-text">
                            <p class="block-text">
+
                        If you are interested in our day-to-day lab protocols or standard workflows - our Experiments page lists all resources you might need.
                                If you are interested in our day-to-day lab protocols or standard workflows - our Experiments page lists all resources you might need.  
+
                    </p>
                            </p>
+
                </a>
                        </a>
+
            </div>
                    </div>
+
        </section>
                </section>
+
  
 +
<div class="greyblue-devider">
  
        <div class="greyblue-devider"></div>
+
<!--------------------------------------- TO TOP LINK ----------------------------------------------->
 +
                <a href="#" class="to-top-link">
 +
                    <img src="https://static.igem.org/mediawiki/2019/3/3e/T--Humboldt_Berlin--ArrowDown.jpg" /> Go to top
 +
                </a>
 +
                <!--------------------------------------- TO TOP LINK END ------------------------------------------->
 +
 
 +
</div>
  
 
         <section class="width-limit">
 
         <section class="width-limit">
Line 290: Line 298:
 
                 <!----------------------------------------------------------------------->
 
                 <!----------------------------------------------------------------------->
 
                 <div>
 
                 <div>
                     <p>Austin, H. P., Allen, M. D., Donohoe, B. S., Rorrer, N. A., Kearns, F. L., Silveira, R. L., . . . Beckham, G. T. (2018). Characterization and engineering of a plastic-degrading aromatic polyesterase. Proceedings of the National Academy of Sciences, 115(19), E4350. Retrieved from http://www.pnas.org/content/115/19/E4350.abstract. doi:10.1073/pnas.1718804115</p>
+
                     <p> Austin, H. P., Allen, M. D., Donohoe, B. S., Rorrer, N. A., Kearns, F. L., Silveira, R. L., . . . Beckham, G. T. (2018). Characterization and engineering of a plastic-degrading aromatic polyesterase. Proceedings of the National Academy of Sciences, 115(19), E4350. Retrieved from http://www.pnas.org/content/115/19/E4350.abstract. doi:10.1073/pnas.1718804115</p>
                     <p>Crozet, P., Navarro, F. J., Willmund, F., Mehrshahi, P., Bakowski, K., Lauersen, K. J., . . . Lemaire, S. D. (2018). Birth of a Photosynthetic Chassis: A MoClo Toolkit Enabling Synthetic Biology in the Microalga Chlamydomonas reinhardtii. ACS Synthetic Biology, 7(9), 2074-2086. Retrieved from https://doi.org/10.1021/acssynbio.8b00251. doi:10.1021/acssynbio.8b00251</p>
+
                     <p> Andrady, A. L. (2011). Microplastics in the marine environment. Marine Pollution Bulletin, 62(8), 1596-1605. Retrieved from http://www.sciencedirect.com/science/article/pii/S0025326X11003055. doi:https://doi.org/10.1016/j.marpolbul.2011.05.030</p>
                     <p>Engler, C., Kandzia, R., & Marillonnet, S. (2008). A one pot, one step, precision cloning method with high throughput capability. PLOS ONE, 3(11), e3647. doi:10.1371/journal.pone.0003647</p>
+
                    <p> Barahimipour, R., Neupert, J., & Bock, R. (2016). Efficient expression of nuclear transgenes in the green alga Chlamydomonas: synthesis of an HIV antigen and development of a new selectable marker. Plant Molecular Biology, 90(4), 403-418. Retrieved from https://doi.org/10.1007/s11103-015-0425-8. doi:10.1007/s11103-015-0425-8</p>
                     <p>Patron, N. J., Orzaez, D., Marillonnet, S., Warzecha, H., Matthewman, C., Youles, M., . . . Haseloff, J. (2015). Standards for plant synthetic biology: a common syntax for exchange of DNA parts. New Phytologist, 208(1), 13-19. Retrieved from https://nph.onlinelibrary.wiley.com/doi/abs/10.1111/nph.13532. doi:10.1111/nph.13532</p>
+
                     <p> Boynton, J. E., Gillham, N. W., Harris, E. H., Hosler, J. P., Johnson, A. M., Jones, A. R., . . . et al. (1988). Chloroplast transformation in Chlamydomonas with high velocity microprojectiles. Science, 240(4858), 1534-1538.</p>
                     <p>Purton, S., Szaub, J., Wannathong, T., Young, R., & Economou, C. (2013). Genetic engineering of algal chloroplasts: progress and prospects. Russian Journal of Plant Physiology, 60(4), 491-499.</p>
+
                     <p> Galgani, F., Leaute, J. P., Moguedet, P., Souplet, A., Verin, Y., Carpentier, A., . . . Nerisson, P. (2000). Litter on the Sea Floor Along European Coasts. Marine Pollution Bulletin, 40(6), 516-527. Retrieved from http://www.sciencedirect.com/science/article/pii/S0025326X99002349. doi:https://doi.org/10.1016/S0025-326X(99)00234-9</p>
 +
                    <p> Harris, E. H. (2009). The Chlamydomonas Sourcebook: Introduction to Chlamydomonas and Its Laboratory Use: Elsevier Science.</p>
 +
                    <p> Harris, E. H., Stern, D. B., & Witman, G. B. (1989). The chlamydomonas sourcebook (Vol. 2): Academic Press San Diego.</p>
 +
                    <p> Jinkerson, R. E., & Jonikas, M. C. (2015). Molecular techniques to interrogate and edit the Chlamydomonas nuclear genome. Plant J, 82(3), 393-412. doi:10.1111/tpj.12801</p>
 +
                     <p> Kreis, C. T., Le Blay, M., Linne, C., Makowski, M. M., & Bäumchen, O. (2018). Adhesion of Chlamydomonas microalgae to surfaces is switchable by light. Nature Physics, 14(1), 45–49. https://doi.org/10.1038/nphys4258</p>
 
                 </div>
 
                 </div>
 
                 <div>
 
                 <div>
                     <p>Tanasupawat, S., Takehana, T., Yoshida, S., Hiraga, K., & Oda, K. (2016). Ideonella sakaiensis sp. nov., isolated from a microbial consortium that degrades poly(ethylene terephthalate). Int J Syst Evol Microbiol, 66(8), 2813-2818. doi:10.1099/ijsem.0.001058</p>
+
                    <p> Law, K. L., Morét-Ferguson, S., Maximenko, N. A., Proskurowski, G., Peacock, E. E., Hafner, J., & Reddy, C. M. (2010). Plastic Accumulation in the North Atlantic Subtropical Gyre. Science, 329(5996), 1185. Retrieved from http://science.sciencemag.org/content/329/5996/1185.abstract. doi:10.1126/science.1192321</p>
                     <p>Weber, E., Engler, C., Gruetzner, R., Werner, S., & Marillonnet, S. (2011). A Modular Cloning System for Standardized Assembly of Multigene Constructs. PLOS ONE, 6(2), e16765. Retrieved from https://doi.org/10.1371/journal.pone.0016765. doi:10.1371/journal.pone.0016765</p>
+
                    <p> Merchant, S. S., Prochnik, S. E., Vallon, O., Harris, E. H., Karpowicz, S. J., Witman, G. B., . . . Grossman, A. R. (2007). The Chlamydomonas genome reveals the evolution of key animal and plant functions. Science, 318(5848), 245-250. doi:10.1126/science.1143609</p>
                     <p>Yoshida, S., Hiraga, K., Takehana, T., Taniguchi, I., Yamaji, H., Maeda, Y., . . . Oda, K. (2016). A bacterium that degrades and assimilates poly(ethylene terephthalate). Science, 351(6278), 1196-1199. doi:10.1126/science.aad6359</p>
+
                    <p> Murray, F., & Cowie, P. R. (2011). Plastic contamination in the decapod crustacean Nephrops norvegicus (Linnaeus, 1758). Marine Pollution Bulletin, 62(6), 1207-1217. Retrieved from http://www.sciencedirect.com/science/article/pii/S0025326X11001755. doi:https://doi.org/10.1016/j.marpolbul.2011.03.032</p>
 +
                    <p> Scaife, M. A., Nguyen, G. T., Rico, J., Lambert, D., Helliwell, K. E., & Smith, A. G. (2015). Establishing Chlamydomonas reinhardtii as an industrial biotechnology host. Plant J, 82(3), 532-546. doi:10.1111/tpj.12781</p>
 +
                     <p> Tanasupawat, S., Takehana, T., Yoshida, S., Hiraga, K., & Oda, K. (2016). Ideonella sakaiensis sp. nov., isolated from a microbial consortium that degrades poly(ethylene terephthalate). Int J Syst Evol Microbiol, 66(8), 2813-2818. doi:10.1099/ijsem.0.001058</p>
 +
                     <p> Weber, E., Engler, C., Gruetzner, R., Werner, S., & Marillonnet, S. (2011). A Modular Cloning System for Standardized Assembly of Multigene Constructs. PLOS ONE, 6(2), e16765. Retrieved from https://doi.org/10.1371/journal.pone.0016765. doi:10.1371/journal.pone.0016765</p>
 +
                    <p> Wichmann, J., Baier, T., Wentnagel, E., Lauersen, K. J., & Kruse, O. (2018). Tailored carbon partitioning for phototrophic production of (E)-alpha-bisabolene from the green microalga Chlamydomonas reinhardtii. Metab Eng, 45, 211-222. doi:10.1016/j.ymben.2017.12.010</p>
 +
                     <p> Yoshida, S., Hiraga, K., Takehana, T., Taniguchi, I., Yamaji, H., Maeda, Y., . . . Oda, K. (2016). A bacterium that degrades and assimilates poly(ethylene terephthalate). Science, 351(6278), 1196-1199. doi:10.1126/science.aad6359</p>
 
                     <br />
 
                     <br />
 
                     <p>
 
                     <p>
                         Weblinks: <br />
+
 
                        1   <a href="https://2016.igem.org/Team:TJUSLS_China/Description" target="blank" rel="noopener">
+
                         Weblinks: <br /> 1 <a href="https://2016.igem.org/Team:TJUSLS_China/Description" target="blank" rel="noopener">
 
                                 https://2016.igem.org/Team:TJUSLS_China/Description
 
                                 https://2016.igem.org/Team:TJUSLS_China/Description
                             </a> <br />
+
                             </a> <br /> 2 <a href="https://2016.igem.org/Team:Harvard_BioDesign" target="blank" rel="noopener">
                        2   <a href="https://2016.igem.org/Team:Harvard_BioDesign" target="blank" rel="noopener">
+
 
                                 https://2016.igem.org/Team:Harvard_BioDesign
 
                                 https://2016.igem.org/Team:Harvard_BioDesign
                             </a> <br />
+
                             </a> <br /> 3 <a href="https://2016.igem.org/Team:ASIJ_Tokyo/Results" target="blank" rel="noopener">
                        3   <a href="https://2016.igem.org/Team:ASIJ_Tokyo/Results" target="blank" rel="noopener">
+
 
                                 https://2016.igem.org/Team:ASIJ_Tokyo/Results
 
                                 https://2016.igem.org/Team:ASIJ_Tokyo/Results
                             </a> <br />
+
                             </a> <br /> 4 <a href="https://2016.igem.org/Team:Tianjin/Description" target="blank" rel="noopener">
                        4   <a href="https://2016.igem.org/Team:Tianjin/Description" target="blank" rel="noopener">
+
 
                                 https://2016.igem.org/Team:Tianjin/Description
 
                                 https://2016.igem.org/Team:Tianjin/Description
                             </a> <br />
+
                             </a> <br /> 5 <a href="https://2017.igem.org/Team:ITB_Indonesia/Description" target="blank" rel="noopener">
                        5   <a href="https://2017.igem.org/Team:ITB_Indonesia/Description" target="blank" rel="noopener">
+
 
                                 https://2017.igem.org/Team:ITB_Indonesia/Description
 
                                 https://2017.igem.org/Team:ITB_Indonesia/Description
 +
                            </a> <br /> 6 <a href="https://2018.igem.org/Team:Yale" target="blank" rel="noopener">
 +
                              https://2018.igem.org/Team:Yale
 
                             </a> <br />
 
                             </a> <br />
 +
 
                     </p>
 
                     </p>
 
                 </div>
 
                 </div>
 
             </div>
 
             </div>
 
         </section>
 
         </section>
    </main>
 
  
    <div class="footer-container">
+
        <div class="footer-container">
        <footer class="width-limit">
+
            <footer class="width-limit">
            <img src="https://static.igem.org/mediawiki/2019/e/ee/T--Humboldt_Berlin--logo_black.png" class="footer-logo" alt="Chlamylicious Logo Black" />
+
                <img src="https://static.igem.org/mediawiki/2019/e/ee/T--Humboldt_Berlin--logo_black.png" class="footer-logo" alt="Chlamylicious Logo Black" />
            <div class="footer-right">
+
                <div class="footer-right">
                <ul>
+
                    <ul>
                    <li>
+
                        <li>
                        <a href="/Team:Humboldt_Berlin">
+
                            <a href="/Team:Humboldt_Berlin">
                            Home
+
                                Home
                        </a>
+
                            </a>
                    </li>
+
                        </li>
                    <li>
+
                        <li>
                        <a href="/Team:Humboldt_Berlin/Team">
+
                            <a href="/Team:Humboldt_Berlin/Team">
                            Team
+
                                Team
                        </a>
+
                            </a>
                    </li>
+
                        </li>
                    <li>
+
                        <li>
                        <a href="/Team:Humboldt_Berlin/Description">
+
                            <a href="/Team:Humboldt_Berlin/Description">
                            Project
+
                                Project
                        </a>
+
                            </a>
                    </li>
+
                        </li>
                </ul>
+
                    </ul>
                <ul>
+
                    <ul>
                    <li>
+
                        <li>
                        <a href="/Team:Humboldt_Berlin/Parts">
+
                            <a href="/Team:Humboldt_Berlin/Parts">
                            Parts
+
                                Parts
                        </a>
+
                            </a>
                    </li>
+
                        </li>
                    <li>
+
                        <li>
                        <a href="/Team:Humboldt_Berlin/Safety">
+
                            <a href="/Team:Humboldt_Berlin/Safety">
                            Safety
+
                                Safety
                        </a>
+
                            </a>
                    </li>
+
                        </li>
                    <li>
+
                        <li>
                        <a href="/Team:Humboldt_Berlin/Human_Practices">
+
                            <a href="/Team:Humboldt_Berlin/Human_Practices">
                            Human Practices
+
                                Human Practices
                        </a>
+
                            </a>
                    </li>
+
                        </li>
                    <li>
+
                        <li>
                        <a href="https://igem.org/2019_Judging_Form?team=Humboldt_Berlin">
+
                            <a href="https://igem.org/2019_Judging_Form?team=Humboldt_Berlin">
                            For Judges
+
                                For Judges
                        </a>
+
                            </a>
                    </li>
+
                        </li>
                </ul>
+
                    </ul>
            </div>
+
                </div>
        </footer>
+
            </footer>
 +
        </div>
 
     </div>
 
     </div>
  
<script>
+
    <script>
(function () {
+
        (function () {
  document.querySelector('.no-js').classList.add('js')
+
          document.querySelector('.no-js').classList.add('js')
  document.querySelector('.no-js').classList.remove('no-js')
+
          document.querySelector('.no-js').classList.remove('no-js')
}())
+
        }())
 
+
       
window.addEventListener("scroll", function () {
+
        window.addEventListener("scroll", function () {
  const elements = document.querySelectorAll('.is-revealing');
+
          const elements = document.querySelectorAll('.is-revealing');
 
+
       
  [].forEach.call(elements, function(el) {
+
          [].forEach.call(elements, function(el) {
    if (isElementVisible(el)) {
+
            if (isElementVisible(el)) {
      el.classList.add('is-revealing-visible')
+
              el.classList.add('is-revealing-visible')
    }
+
            }
  });
+
          });
});
+
        });
 
+
       
function isElementVisible(el) {
+
        function isElementVisible(el) {
  var top = el.offsetTop;
+
          var top = el.offsetTop;
  var height = el.offsetHeight;
+
          var height = el.offsetHeight;
 
+
       
  while(el.offsetParent) {
+
          while(el.offsetParent) {
    el = el.offsetParent;
+
            el = el.offsetParent;
    top += el.offsetTop;
+
            top += el.offsetTop;
  }
+
          }
 
+
       
  return (
+
          return (
    (top + height) <= (window.pageYOffset + window.innerHeight) + 100
+
            (top + height) <= (window.pageYOffset + window.innerHeight) + 100
  );
+
          );
}
+
        }
</script>
+
    </script>
  
 
</html>
 
</html>

Latest revision as of 11:21, 12 December 2019

notebook

Description

How & why

Chlamy who?

Most projects at iGEM and in synthetic biology in general choose to work with bacterial chassis. However, a growing community of plant synthetic biologists have laid the focus increasingly on the utilization of microalgae such as Chlamydomonas reinhardtii as a platform for photosynthetic expression (Jinkerson & Jonikas, 2015; Scaife et al., 2015). Being eukaryotic, this freshwater algae is able to perform post-translational modifications, allowing the expression of more complex proteins, while being easy and cost-efficient to cultivate and to handle (Merchant et al., 2007). A variety of transformation methods, including but not limited to biolistic transformation, glass bead agitation and electroporation are well-established for this model organism (Boynton et al., 1988). Its ability to grow photoautotrophically makes it an ideal chassis to tackle a variety of complex problems in an environmentally-friendly way.

chlamy microscope
Vision: ChlamyHUB

We present The ChlamyHUB to you

For the iGEM competition 2019 we developed the project idea of establishing C. reinhardtii in the iGEM community as a viable chassis for protein synthesis through various approaches, summarized under the ChlamyHUB vision. We have have created a toolkit of genetic parts, the ChlamyHUB Collection, which follow the MoClo syntax in the Golden Gate assembly standard. To satisfy the need to reproducibly cultivate photoautotrophic organisms under controlled conditions, we built and optimized a Do-It-Yourself bioreactor, the OpenPBR. Gaining insights into what factors have an influence on algal growth while cultivating under expression of transgenic proteins was achieved through our modeling projects. Lastly, ChlamyHUB aims to demonstrate the advantage of an eco-friendly organism as a platform to degrade PET plastic as a proof-of-concept.

chlamydomonas schaubild
Chlamydomonas
e-coli illustration
Bacteria
Fast growth
Inclusion bodies
lack of eucaryotic posttranslational modification
eucaryotic cells illustration
Yeast & Tissue Cells
Post-translational modification
Expensive cultivation
No motility
chlamy illustration
Microalgae
Inexpensive & easy cultivation
Post-translational modification
Photosynthesis
Enviromental-safe
Two expression compartments (nucleus & chloroplast)
process sakaiensis

Our Inspiration

The unicellular green alga C. reinhardtii has an impressive history. It is used since the 1950s as a model organism to not only elucidate the structure of flagellar and basic plant cellular processes, such as photosynthesis and light perception, but also in research regarding phototaxis, circadian rhythmicity, cell cycle and mating mechanisms (Harris et al., 1989; Harris, 2009). However, C. reinhardtii has not only been used for fundamental research but is also a model for microalgal biotechnology and has become a photosynthetic expression platform to synthesize recombinant proteins. C. reinhardtii has been engineered to produce biomass for biofuels such as the biodiesel-precursor bisabolene (Wichmann et al., 2018). Chlamydomonas has also been used in therapeutic applications, having been modified to express an HIV antigen (Barahimipour et al., 2016).

In 2016, the bacterium Ideonella sakaiensis which is able to use polyethylene terephthalate (PET) as a primary carbon and energy source was discovered (Yoshida et al., 2016). This bacterium secretes two different hydrolases that perform the first two steps in PET degradation (Yoshida et al., 2016). The first hydrolase, PETase, breaks down PET to mono(2-hydroxyethyl) terephtalic acid (MHET). The second hydrolase, the MHETase, then digests MHET to terephthalic acid (TPA) and ethylene glycole (EG). In 2018, the PETase was characterized and engineered to improve its performance (Austin et al., 2018). Astonished by the possibility to degrade one of the most commonly used plastics, we were inspired to try to integrate the PETase and MHETase enzymes into C. reinhardtii in order to illustrate the capabilities of our favorite algae using a toolkit of various genetic parts.

One of the issues of the gravest impact on our generation is the environmental pollution. Especially the production of synthetic polymers, like plastic, has increased considerably since the 20th century (Andrady, 2011). Plastic is the most frequent material collected in studies on the surface of the Oceans (Law et al., 2010) and is also observed on the seafloor (Galgani et al., 2000). Even though the exact implication of microplastic to organisms is still unknown, the appearance of microplastic inside a wide variety of marine organisms is significant (Murray & Cowie, 2011).

plastic bottle illustration

We know that we are not after something completely new, but we want to do this right. So we chose a chassis, which is commonly found in freshwater and environmentally-safe and tried to tackle obstacles other teams failed to solve.

The iGEM projects that inspired us

Degrading microplastic is not a new idea when it comes to iGEM projects. Similarly inspired by the works of Yoshida and his colleagues (Yoshida et al., 2016) a multitude of different teams have worked on comparable topics. We know that we are not after something completely new. But we wanted to do this right. So we chose a different organism and tried to tackle obstacles other teams failed to solve.

Our work was inspired by the team TJUSLS project on PETase (1), who improved the activity levels of the PETase through direct mutagenesis. It was through their project that we started looking into improved versions of the PETase first discovered by Yoshida et al. We were intrigued by the effort Harvard BioDesign 2016 put into their project “Plastiback” (2), pushing us towards the direction of degrading microplastic in an aquatic environment secreting PETase into the enclosed system of a bioreactor. We also integrated the separation of both PET degradation products TPA and EG, useful precursors in the synthesis of new PET, in our bioreactor. The project of ASIJ Tokyo in 2016 (3) inspired our module design greatly. Their characterization of the expression strength of PETase using different promoters and the secretion tests conducted under different secretion signals struck us as good practices to optimize the expression of complex constructs. Therefore, while designing our transcriptional units and choosing possible parts we aimed for a high variety of interchangeable modules to compare their functions. The team from Tianjin in the year 2016 (4) combined photosynthetically active organisms and the degradation of PET, lending their reactor the capacity of fixating carbon dioxide using the energy from sunlight. The approaches by the team of ITB 2017 (5) aided us in our project design as well, inspiring us with their use of biofilms on plastics. Looking for microorganisms with the abillity of binding to the surface of PET, we came across flagellar adhesion of C. reinhardtii to surfaces, which is even light-switchable (Kreis et al., 2018). iGEM Team Yale´s (6) focus on improving functionality of the enzymes also greatly impacted our work.

microplastic icon
chlamy organism

Chlamydomonas as a model organism

We propose that by combining a photosynthetically active organism with at least the optimized PETase and the MHETase we can create a new way of recycling PET or even degrading PET completely to CO₂ and H₂O. The organism could then able to use the CO₂ obtained from the plastic as its carbon source. We immediately thought of Chlamydomonas reinhardtii as a chassis, as it proliferates quickly under energy-efficient conditions. Being not only able to conduct photosynthesis, fixing carbon dioxide and using it as its carbon source with the power of light, C. reinhardtii can also live off acetate as its carbon source.

easy to cultivate & phototrophic

one organism = single cell

well established as model organism

chlamy

Learn more...

Austin, H. P., Allen, M. D., Donohoe, B. S., Rorrer, N. A., Kearns, F. L., Silveira, R. L., . . . Beckham, G. T. (2018). Characterization and engineering of a plastic-degrading aromatic polyesterase. Proceedings of the National Academy of Sciences, 115(19), E4350. Retrieved from http://www.pnas.org/content/115/19/E4350.abstract. doi:10.1073/pnas.1718804115

Andrady, A. L. (2011). Microplastics in the marine environment. Marine Pollution Bulletin, 62(8), 1596-1605. Retrieved from http://www.sciencedirect.com/science/article/pii/S0025326X11003055. doi:https://doi.org/10.1016/j.marpolbul.2011.05.030

Barahimipour, R., Neupert, J., & Bock, R. (2016). Efficient expression of nuclear transgenes in the green alga Chlamydomonas: synthesis of an HIV antigen and development of a new selectable marker. Plant Molecular Biology, 90(4), 403-418. Retrieved from https://doi.org/10.1007/s11103-015-0425-8. doi:10.1007/s11103-015-0425-8

Boynton, J. E., Gillham, N. W., Harris, E. H., Hosler, J. P., Johnson, A. M., Jones, A. R., . . . et al. (1988). Chloroplast transformation in Chlamydomonas with high velocity microprojectiles. Science, 240(4858), 1534-1538.

Galgani, F., Leaute, J. P., Moguedet, P., Souplet, A., Verin, Y., Carpentier, A., . . . Nerisson, P. (2000). Litter on the Sea Floor Along European Coasts. Marine Pollution Bulletin, 40(6), 516-527. Retrieved from http://www.sciencedirect.com/science/article/pii/S0025326X99002349. doi:https://doi.org/10.1016/S0025-326X(99)00234-9

Harris, E. H. (2009). The Chlamydomonas Sourcebook: Introduction to Chlamydomonas and Its Laboratory Use: Elsevier Science.

Harris, E. H., Stern, D. B., & Witman, G. B. (1989). The chlamydomonas sourcebook (Vol. 2): Academic Press San Diego.

Jinkerson, R. E., & Jonikas, M. C. (2015). Molecular techniques to interrogate and edit the Chlamydomonas nuclear genome. Plant J, 82(3), 393-412. doi:10.1111/tpj.12801

Kreis, C. T., Le Blay, M., Linne, C., Makowski, M. M., & Bäumchen, O. (2018). Adhesion of Chlamydomonas microalgae to surfaces is switchable by light. Nature Physics, 14(1), 45–49. https://doi.org/10.1038/nphys4258

Law, K. L., Morét-Ferguson, S., Maximenko, N. A., Proskurowski, G., Peacock, E. E., Hafner, J., & Reddy, C. M. (2010). Plastic Accumulation in the North Atlantic Subtropical Gyre. Science, 329(5996), 1185. Retrieved from http://science.sciencemag.org/content/329/5996/1185.abstract. doi:10.1126/science.1192321

Merchant, S. S., Prochnik, S. E., Vallon, O., Harris, E. H., Karpowicz, S. J., Witman, G. B., . . . Grossman, A. R. (2007). The Chlamydomonas genome reveals the evolution of key animal and plant functions. Science, 318(5848), 245-250. doi:10.1126/science.1143609

Murray, F., & Cowie, P. R. (2011). Plastic contamination in the decapod crustacean Nephrops norvegicus (Linnaeus, 1758). Marine Pollution Bulletin, 62(6), 1207-1217. Retrieved from http://www.sciencedirect.com/science/article/pii/S0025326X11001755. doi:https://doi.org/10.1016/j.marpolbul.2011.03.032

Scaife, M. A., Nguyen, G. T., Rico, J., Lambert, D., Helliwell, K. E., & Smith, A. G. (2015). Establishing Chlamydomonas reinhardtii as an industrial biotechnology host. Plant J, 82(3), 532-546. doi:10.1111/tpj.12781

Tanasupawat, S., Takehana, T., Yoshida, S., Hiraga, K., & Oda, K. (2016). Ideonella sakaiensis sp. nov., isolated from a microbial consortium that degrades poly(ethylene terephthalate). Int J Syst Evol Microbiol, 66(8), 2813-2818. doi:10.1099/ijsem.0.001058

Weber, E., Engler, C., Gruetzner, R., Werner, S., & Marillonnet, S. (2011). A Modular Cloning System for Standardized Assembly of Multigene Constructs. PLOS ONE, 6(2), e16765. Retrieved from https://doi.org/10.1371/journal.pone.0016765. doi:10.1371/journal.pone.0016765

Wichmann, J., Baier, T., Wentnagel, E., Lauersen, K. J., & Kruse, O. (2018). Tailored carbon partitioning for phototrophic production of (E)-alpha-bisabolene from the green microalga Chlamydomonas reinhardtii. Metab Eng, 45, 211-222. doi:10.1016/j.ymben.2017.12.010

Yoshida, S., Hiraga, K., Takehana, T., Taniguchi, I., Yamaji, H., Maeda, Y., . . . Oda, K. (2016). A bacterium that degrades and assimilates poly(ethylene terephthalate). Science, 351(6278), 1196-1199. doi:10.1126/science.aad6359


Weblinks:
1 https://2016.igem.org/Team:TJUSLS_China/Description
2 https://2016.igem.org/Team:Harvard_BioDesign
3 https://2016.igem.org/Team:ASIJ_Tokyo/Results
4 https://2016.igem.org/Team:Tianjin/Description
5 https://2017.igem.org/Team:ITB_Indonesia/Description
6 https://2018.igem.org/Team:Yale