Difference between revisions of "Team:OUC-China/Demonstrate"

Line 18: Line 18:
 
      
 
      
 
     body { font-family: Comic Sans, Comic Sans MS, cursive;}
 
     body { font-family: Comic Sans, Comic Sans MS, cursive;}
     .bznnb { font-family:"Trebuchet MS";font-size:24px;}
+
     .zhiqi { font-family:"Trebuchet MS";font-size:24px;}
  
 
      
 
      
Line 44: Line 44:
 
     .sub_menu7{display: none;  }
 
     .sub_menu7{display: none;  }
 
     .sub_menu8{display: none;  }
 
     .sub_menu8{display: none;  }
.text{1px;line-height:36px;text-align: justify;text-justify:inter-ideograph;padding-left:250px;}
+
a:link{text-decoration: none;color: #969696}
 +
a:visited{text-decoration: none;color: #969696}
 +
.text{1px;line-height:30px;text-align: justify;text-justify:inter-ideograph;left:400px;font-size:20px}
 
.nav-sub-item{height:54px;line-height:54px;border: 1px solid #969696}
 
.nav-sub-item{height:54px;line-height:54px;border: 1px solid #969696}
 
.nav-sub-item:hover{background:#dedddd;}
 
.nav-sub-item:hover{background:#dedddd;}
 +
  .sideimg1{display: inline-block;opacity: 0}
 +
  .sideimg2{display: inline-block;opacity: 0}
 +
  .sideimg3{display: inline-block;opacity: 0}
 +
  .sideimg4{display: inline-block;opacity: 0}
 +
  .sideimg5{display: inline-block;opacity: 0}
 +
  .sideimg6{display: inline-block;opacity: 0}
 +
  .sideimg7{display: inline-block;opacity: 0}
 +
.sideimg8{display: inline-block;opacity: 0}
 +
  .sideimg9{display: inline-block;opacity: 0}
 +
  .sideimg10{display: inline-block;opacity: 0}
 +
  .sideimg11{display: inline-block;opacity: 0}
 +
  .sideimg12{display: inline-block;opacity: 0}
 +
  .sideimg13{display: inline-block;opacity: 0}
 +
  .sideimg14{display: inline-block;opacity: 0}
  
 +
    .sidetext{display: inline-block;line-height: 43px;width:310px;text-align:left}
 +
.sidebar1:hover .sidetext{color:white}
 +
.sidebar2:hover .sidetext{color:white}
 +
.sidebar3:hover .sidetext{color:white}
 +
.sidebar4:hover .sidetext{color:white}
 +
.sidebar5:hover .sidetext{color:white}
 +
.sidebar6:hover .sidetext{color:white}
 +
.sidebar7:hover .sidetext{color:white}
 +
.sidebar8:hover .sidetext{color:white}
 +
.sidebar9:hover .sidetext{color:white}
 +
.sidebar10:hover .sidetext{color:white}
 +
.sidebar11:hover .sidetext{color:white}
 +
.sidebar12:hover .sidetext{color:white}
 +
.sidebar13:hover .sidetext{color:white}
 +
.sidebar14:hover .sidetext{color:white}
 +
.sidebar1:hover .sideimg1{opacity: 1;transform: translateX(320px);transition: 1s;}
 +
.sidebar2:hover .sideimg2{opacity: 1;transform: translateX(320px);transition: 1s;}
 +
.sidebar3:hover .sideimg3{opacity: 1;transform: translateX(320px);transition: 1s;}
 +
.sidebar4:hover .sideimg4{opacity: 1;transform: translateX(320px);transition: 1s;}
 +
.sidebar5:hover .sideimg5{opacity: 1;transform: translateX(320px);transition: 1s;}
 +
.sidebar6:hover .sideimg6{opacity: 1;transform: translateX(320px);transition: 1s;}
 +
.sidebar7:hover .sideimg7{opacity: 1;transform: translateX(320px);transition: 1s;}
 +
.sidebar8:hover .sideimg8{opacity: 1;transform: translateX(320px);transition: 1s;}
 +
.sidebar9:hover .sideimg9{opacity: 1;transform: translateX(320px);transition: 1s;}
 +
.sidebar10:hover .sideimg10{opacity: 1;transform: translateX(320px);transition: 1s;}
 +
.sidebar11:hover .sideimg11{opacity: 1;transform: translateX(320px);transition: 1s;}
 +
.sidebar12:hover .sideimg12{opacity: 1;transform: translateX(320px);transition: 1s;}
 +
.sidebar13:hover .sideimg13{opacity: 1;transform: translateX(320px);transition: 1s;}
 +
.sidebar14:hover .sideimg14{opacity: 1;transform: translateX(320px);transition: 1s;}
 +
.side1:hover .side11{display:inline}
  
 +
.side2:hover .side22{display:block}
 +
.side3:hover .side33{display:block}
 +
.side4:hover .side44{display:block}
 +
.side5:hover .side55{display:block}
 +
.side6:hover .side66{display:block}
 +
.side1:hover{background:#d3e3c9}
 +
.side2:hover{background:#d3e3c9}
 +
.side3:hover{background:#d3e3c9}
 +
.side4:hover{background:#d3e3c9}
 +
.side5:hover{background:#d3e3c9}
 +
.side6:hover{background:#d3e3c9}
 +
.side1:hover .side111{color:white}
 +
.side2:hover .side222{color:white}
 +
.side3:hover .side333{color:white}
 +
.side4:hover .side444{color:white}
 +
.side5:hover .side555{color:white}
 +
.side6:hover .side666{color:white}
 
</style>
 
</style>
 
</head>
 
</head>
Line 71: Line 134:
 
             <div style="display:inline;height:45px;color: white;padding:0%;text-decoration:none;position:relative;line-height:33px">PROJECT
 
             <div style="display:inline;height:45px;color: white;padding:0%;text-decoration:none;position:relative;line-height:33px">PROJECT
 
             <div class="sub_menu1"  style="background: white;padding:0px;font-size:17px;position:absolute;left:-24px;top:42px;width:135px">
 
             <div class="sub_menu1"  style="background: white;padding:0px;font-size:17px;position:absolute;left:-24px;top:42px;width:135px">
                 <div class="nav-sub-item"><a href="https://2019.igem.org/Team:OUC-China/Description" style="color: #969696;text-decoration:none;padding:0;left:20px">Description</a></div>
+
                 <div class="nav-sub-item"><a class="kkk" href="https://2019.igem.org/Team:OUC-China/Description" style="text-decoration:none;padding:0;left:20px">Description</a></div>
                 <div class="nav-sub-item"><a href="https://2019.igem.org/Team:OUC-China/Design" style="color: #b1b5b9;text-decoration:none;padding:0;">Design</a></div>
+
                 <div class="nav-sub-item"><a class="kkk" href="https://2019.igem.org/Team:OUC-China/Design" style="text-decoration:none;padding:0;">Design</a></div>
                 <div class="nav-sub-item"><a href="https://2019.igem.org/Team:OUC-China/Results" style="color: #b1b5b9;text-decoration:none;padding:0;">Results</a></div>
+
                 <div class="nav-sub-item"><a class="kkk" href="https://2019.igem.org/Team:OUC-China/Results" style="text-decoration:none;padding:0;">Results</a></div>
                 <div class="nav-sub-item"><a href="https://2019.igem.org/Team:OUC-China/Demonstrate" style="color: #b1b5b9;text-decoration:none;padding:0;">Demonstrate</a></div>
+
                 <div class="nav-sub-item"><a class="kkk" href="https://2019.igem.org/Team:OUC-China/Demonstrate" style="text-decoration:none;padding:0;">Demonstrate</a></div>
 
           </div>
 
           </div>
 
             </div>             
 
             </div>             
 
         </li>
 
         </li>
 
          
 
          
<li class="nav-item2" style="width:120px;height:54px;padding:9px;">
+
<li class="nav-item2" style="width:150px;height:54px;padding:9px;">
 
             <div style="display:inline;height:45px;color: white;padding:0%;text-decoration:none;position:relative">LAB WORK
 
             <div style="display:inline;height:45px;color: white;padding:0%;text-decoration:none;position:relative">LAB WORK
 
             <div class="sub_menu2"  style="background: white;position:absolute;text-decoration:none;font-size:17px;left:-19px;top:42px;width:140px">
 
             <div class="sub_menu2"  style="background: white;position:absolute;text-decoration:none;font-size:17px;left:-19px;top:42px;width:140px">
                 <div class="nav-sub-item"><a href="https://2019.igem.org/Team:OUC-China/Experiments" style="color: #b1b5b9;text-decoration:none;padding:0;">Experiment</a></div>
+
                 <div class="nav-sub-item"><a class="kkk" href="https://2019.igem.org/Team:OUC-China/Experiments" style="text-decoration:none;padding:0;">Experiment</a></div>
                 <div class="nav-sub-item"><a href="https://2019.igem.org/Team:OUC-China/Safety" style="color: #b1b5b9;text-decoration:none;padding:0;">Safety</a></div>
+
                 <div class="nav-sub-item"><a class="kkk" href="https://2019.igem.org/Team:OUC-China/Safety" style="text-decoration:none;padding:0;">Safety</a></div>
 
                       </div>
 
                       </div>
 
             </div>             
 
             </div>             
Line 91: Line 154:
 
             <div style="display:inline;height:45px;color: white;padding:0%;white-space:nowrap;text-decoration:none;position:relative">MODEL
 
             <div style="display:inline;height:45px;color: white;padding:0%;white-space:nowrap;text-decoration:none;position:relative">MODEL
 
             <div class="sub_menu3"  style="position:absolute;background: white;padding:0px;text-decoration:none;font-size:17px;left:-96px;top:42px;width:260px">
 
             <div class="sub_menu3"  style="position:absolute;background: white;padding:0px;text-decoration:none;font-size:17px;left:-96px;top:42px;width:260px">
                 <div class="nav-sub-item"><a href="https://2019.igem.org/Team:OUC-China/Model" style="color:#b1b5b9;text-decoration:none;padding:0;">Overview</a></div>
+
                 <div class="nav-sub-item"><a class="kkk" href="https://2019.igem.org/Team:OUC-China/Model" style="text-decoration:none;padding:0;">Overview</a></div>
                 <div class="nav-sub-item"><a href="https://2019.igem.org/Team:OUC-China/Model/Ordinary" style="color:#b1b5b9;text-decoration:none;padding:0;">ODE</a></div>
+
                 <div class="nav-sub-item"><a class="kkk" href="https://2019.igem.org/Team:OUC-China/Model#Ordinary" style="text-decoration:none;padding:0;">ODE</a></div>
                 <div class="nav-sub-item"><a href="https://2019.igem.org/Team:OUC-China/Model/Thermodynamic" style="color: #b1b5b9;text-decoration:none;padding:0;">Thermodynamic model</a></div>
+
                 <div class="nav-sub-item"><a class="kkk" href="https://2019.igem.org/Team:OUC-China/Model#Thermodynamic" style="text-decoration:none;padding:0;">Thermodynamic model</a></div>
                 <div class="nav-sub-item"><a href="https://2019.igem.org/Team:OUC-China/Model/Riboswitch" style="color: #b1b5b9;text-decoration:none;padding:0;">Riboswitch</a></div>
+
                 <div class="nav-sub-item"><a class="kkk" href="https://2019.igem.org/Team:OUC-China/Model#Riboswitch" style="text-decoration:none;padding:0;">Riboswitch</a></div>
                 <div class="nav-sub-item"><a href="https://2019.igem.org/Team:OUC-China/Model/stablizer" style="color: #b1b5b9;text-decoration:none;padding:0;">stablizer</a></div>
+
                 <div class="nav-sub-item"><a class="kkk" href="https://2019.igem.org/Team:OUC-China/Model#stablizer" style="text-decoration:none;padding:0;">Stablizer</a></div>
                 <div class="nav-sub-item"><a href="https://2019.igem.org/Team:OUC-China/Model/Molecular" style="color: #b1b5b9;text-decoration:none;padding:0;">Molecular Dynamics</a></div>
+
             
                 <div class="nav-sub-item"><a href="https://2019.igem.org/Team:OUC-China/Model/asRNA" style="color: #b1b5b9;text-decoration:none;padding:0;">asRNA</a></div>
+
                 <div class="nav-sub-item"><a class="kkk" href="https://2019.igem.org/Team:OUC-China/Model#asRNA" style="text-decoration:none;padding:0;">Antisense RNA</a></div>
 +
                 <div class="nav-sub-item"><a class="kkk" href="https://2019.igem.org/Team:OUC-China/Model#Molecular" style="text-decoration:none;padding:0;">Molecular Dynamics</a></div>
 
</div>
 
</div>
 
</div>
 
</div>
 
</li>
 
</li>
  
<li class="nav-item4" style="width:80px;height:54px;padding:9px;">
+
<li class="nav-item4" style="width:80px;height:54px;padding:9px;padding-right:100px">
 
             <div style="display:inline;height:45px;color: white;padding:0%;white-space:nowrap;text-decoration:none;position:relative;">PARTS
 
             <div style="display:inline;height:45px;color: white;padding:0%;white-space:nowrap;text-decoration:none;position:relative;">PARTS
 
             <div class="sub_menu4"  style="position:absolute;background: white;padding:0px;text-decoration:none;font-size:17px;left:-43px;top:42px;width:145px">
 
             <div class="sub_menu4"  style="position:absolute;background: white;padding:0px;text-decoration:none;font-size:17px;left:-43px;top:42px;width:145px">
                 <div class="nav-sub-item"><a href="https://2019.igem.org/Team:OUC-China/Parts" style="color: #b1b5b9;text-decoration:none;padding:0;">List</a></div>
+
                 <div class="nav-sub-item"><a class="kkk" href="https://2019.igem.org/Team:OUC-China/Parts" style="text-decoration:none;padding:0;">List</a></div>
                 <div class="nav-sub-item"><a href="https://2019.igem.org/Team:OUC-China/Basic_Part" style="color: #b1b5b9;text-decoration:none;padding:0;">Basic Parts</a></div>
+
                 <div class="nav-sub-item"><a class="kkk" href="https://2019.igem.org/Team:OUC-China/Basic_Part" style="text-decoration:none;padding:0;">Basic Part</a></div>
                 <div class="nav-sub-item"><a href="https://2019.igem.org/Team:OUC-China/Composite_Part" style="color: #b1b5b9;text-decoration:none;padding:0;">Composite Part</a></div>
+
                 <div class="nav-sub-item"><a class="kkk" href="https://2019.igem.org/Team:OUC-China/Composite_Part" style="text-decoration:none;padding:0;">Composite Part</a></div>
                <div class="nav-sub-item"><a href="https://2019.igem.org/Team:OUC-China/Part_Collection" style="color: #b1b5b9;text-decoration:none;padding:0;">Part Collection</a></div>
+
           
 
                 </div>       
 
                 </div>       
 
             </div>             
 
             </div>             
 
         </li>
 
         </li>
<li  style="width:80px;height:54px;padding:9px;"><a class="nav-item" id="nav0" style="color: white;padding:0%;text-decoration:none" href="https://2019.igem.org/Team:OUC-China">HOME</a></li>
 
  
<li class="nav-item5" style="width:40px;height:54px;padding:9px;">
+
<li class="nav-item5" style="width:40px;height:54px;padding:9px;padding-left:100px">
 
             <div style="display:inline;height:45px;color: white;padding:0%;color: white;white-space:nowrap;text-decoration:none;position:relative;" >HP
 
             <div style="display:inline;height:45px;color: white;padding:0%;color: white;white-space:nowrap;text-decoration:none;position:relative;" >HP
             <div class="sub_menu5" id="header_nav4" style="position:absolute;background: white;color: white;font-size:17px;left:-75px;top:42px;width:180px">
+
             <div class="sub_menu5" id="header_nav4" style="position:absolute;background: white;font-size:17px;left:-75px;top:42px;width:180px">
                 <div class="nav-sub-item"><a href="https://2019.igem.org/Team:OUC-China/Human_Practices" style="color: #b1b5b9;text-decoration:none;padding:0;">Human Practices</a></div>
+
                 <div class="nav-sub-item"><a class="kkk" href="https://2019.igem.org/Team:OUC-China/Human_Practices" style="text-decoration:none;padding:0;">Human Practices</a></div>
                 <div class="nav-sub-item"><a href="https://2019.igem.org/Team:OUC-China/Public_Engagement" style="color: #b1b5b9;text-decoration:none;padding:0;">Public Engagement</a></div>
+
                 <div class="nav-sub-item"><a class="kkk" href="https://2019.igem.org/Team:OUC-China/Public_Engagement" style="text-decoration:none;padding:0;">Public Engagement</a></div>
 
                 </div>
 
                 </div>
 
             </div>
 
             </div>
Line 126: Line 189:
 
             <div style="display:inline;height:45px;color: white;padding:0%;color: white;text-decoration:none;position:relative" href="#">TEAM
 
             <div style="display:inline;height:45px;color: white;padding:0%;color: white;text-decoration:none;position:relative" href="#">TEAM
 
             <div class="sub_menu6" id="header_nav2" style="position:absolute;background: white;font-size:17px;left:-70px;top:42px;width:200px">
 
             <div class="sub_menu6" id="header_nav2" style="position:absolute;background: white;font-size:17px;left:-70px;top:42px;width:200px">
                 <div class="nav-sub-item"><a href="https://2019.igem.org/Team:OUC-China/Team" style="color: #b1b5b9;padding:0;text-decoration:none">Members</a></div>
+
                 <div class="nav-sub-item"><a class="kkk" href="https://2019.igem.org/Team:OUC-China/Team" style="padding:0;text-decoration:none">Members</a></div>
                 <div class="nav-sub-item"><a href="https://2019.igem.org/Team:OUC-China/Attributions" style="color: #b1b5b9;padding:0;text-decoration:none">Attributions</a></div>
+
                 <div class="nav-sub-item"><a class="kkk" href="https://2019.igem.org/Team:OUC-China/Attributions" style="padding:0;text-decoration:none">Attributions</a></div>
                 <div class="nav-sub-item"><a href="https://2019.igem.org/Team:OUC-China/Medal" style="color: #b1b5b9;padding:0;text-decoration:none">Medal requirement</a></div>
+
                 <div class="nav-sub-item"><a class="kkk" href="https://2019.igem.org/Team:OUC-China/Medal" style="padding:0;text-decoration:none">Medal requirement</a></div>
 
             </div>   
 
             </div>   
 
</div>
 
</div>
Line 163: Line 226:
 
<a id="toptop" style="position: absolute; top: -100px;">kkkkk</a>
 
<a id="toptop" style="position: absolute; top: -100px;">kkkkk</a>
 
<div class="bznnb" style="padding:0px;background: #fff;margin:0%;top:72px;">
 
<div class="bznnb" style="padding:0px;background: #fff;margin:0%;top:72px;">
<div style="margin-left: 0px; margin-right: 0px;margin-top:0px;"><img src="https://dummyimage.com/1500x800/000/fff" style="max-width: 100%;max-height:100%"></div>
+
<div style="position:absolute;z-index:98;width:100%;background:white"><img src="https://static.igem.org/mediawiki/2019/b/b4/T--OUC-China--DEMO_TOP.png" style="max-width: 100%;max-height:100%"></div>
</br></br></br></br></br></br></br>
+
<div style="position:fixed;text-align:center;max-width:6%;z-index:100;top:-10px;left:46%;right:53%"><a href="https://2019.igem.org/Team:OUC-China"><img href="https://2019.igem.org/Team:OUC-China" src="https://static.igem.org/mediawiki/2019/9/9a/T--OUC-China--home_logo.png" style="width:108px;"></a></div>
<div style="font-size:60px;margin-left: 24%;font-family: Comic Sans, Comic Sans MS, cursive;line-height:60px;padding-left:20px">Model</div>
+
</br></br></br></br></br></br></br></br></br></br></br></br></br></br></br></br></br></br></br></br></br></br></br></br></br></br></br></br></br></br></br></br></br></br></br></br></br></br></br></br></br></br></br></br></br></br></br></br></br></br>
 +
 
 
</br></br>
 
</br></br>
<div class="sidebar" style="position:sticky;left: 7%;right: 80%;top: 15%;max-width: 15%;text-align: center;color:black;font-size:26px;display:inline-block;vertical-align: top">
+
<div class="sidebar" style="position:fixed;top: 14%;width: 660px;text-align: center;color:black;font-size:18px;display:inline-block;vertical-align: top;font-family: Comic Sans, Comic Sans MS, cursive;font-size:20px;font-weight:bold;left:0px;text-align:left;left:-280px;">
     <div style="line-height:67px;">Home</div>
+
      
 +
<div class="sidebar1" >
 +
    <div class="sideimg1"  style="vertical-align: top;z-index: 1;position: relative"><img src="https://static.igem.org/mediawiki/2019/1/1d/T--OUC-China--sidebar.png" style="width: 340px;height:43px;"></div>
 +
    <div class="sidetext"  style="vertical-align: top;z-index: 2;position: relative">Background</div>
 +
    </div>
 +
 
 +
<div class="sidebar2" >
 +
    <div class="sideimg2"  style="vertical-align: top;z-index: 1;position: relative"><img src="https://static.igem.org/mediawiki/2019/1/1d/T--OUC-China--sidebar.png" style="width: 340px;height:43px;"></div>
 +
    <div class="sidetext"  style="vertical-align: top;z-index: 2;position: relative">Our Space</div>
 +
    </div>
 +
 
 +
<div class="sidebar3" >
 +
    <div class="sideimg3"  style="vertical-align: top;z-index: 1;position: relative"><img src="https://static.igem.org/mediawiki/2019/1/1d/T--OUC-China--sidebar.png" style="width: 340px;height:43px;"></div>
 +
    <div class="sidetext"  style="vertical-align: top;z-index: 2;position: relative;font-size:18px;">Adda Ribolego</div>
 +
    </div>
 +
 
 +
<div class="sidebar4" >
 +
    <div class="sideimg4"  style="vertical-align: top;z-index: 1;position: relative"><img src="https://static.igem.org/mediawiki/2019/1/1d/T--OUC-China--sidebar.png" style="width: 340px;height:43px;"></div>
 +
    <div class="sidetext"  style="vertical-align: top;z-index: 2;position: relative;font-size:18px;font-weight:1;width:280px;padding-left:30px">Tuner</div>
 +
    </div>
 +
<div class="sidebar5" >
 +
    <div class="sideimg5"  style="vertical-align: top;z-index: 1;position: relative"><img src="https://static.igem.org/mediawiki/2019/1/1d/T--OUC-China--sidebar.png" style="width: 340px;height:43px"></div>
 +
    <div class="sidetext"  style="vertical-align: top;z-index: 2;position: relative;font-weight:1;width:280px;padding-left:30px">Stabilizer</div>
 +
    </div>
 +
<div class="sidebar6" >
 +
    <div class="sideimg6"  style="vertical-align: top;z-index: 1;position: relative"><img src="https://static.igem.org/mediawiki/2019/1/1d/T--OUC-China--sidebar.png" style="width: 340px;height:43px"></div>
 +
    <div class="sidetext"  style="vertical-align: top;z-index: 2;position: relative;font-weight:1;width:280px;padding-left:30px">GOI</div>
 +
    </div>
 +
<div class="sidebar7" >
 +
    <div class="sideimg7"  style="vertical-align: top;z-index: 1;position: relative"><img src="https://static.igem.org/mediawiki/2019/1/1d/T--OUC-China--sidebar.png" style="width: 340px;height:43px"></div>
 +
    <div class="sidetext"  style="vertical-align: top;z-index: 2;position: relative;font-weight:1;width:280px;padding-left:30px">Summarize Design Principle</div>
 +
    </div>
 +
<div class="sidebar8" >
 +
    <div class="sideimg8"  style="vertical-align: top;z-index: 1;position: relative"><img src="https://static.igem.org/mediawiki/2019/1/1d/T--OUC-China--sidebar.png" style="width: 340px;height:43px;"></div>
 +
    <div class="sidetext"  style="vertical-align: top;z-index: 2;position: relative">More RiboLego</div>
 +
    </div>
 +
 
 +
<div class="sidebar9" >
 +
    <div class="sideimg9"  style="vertical-align: top;z-index: 1;position: relative"><img src="https://static.igem.org/mediawiki/2019/1/1d/T--OUC-China--sidebar.png" style="width: 340px;height:43px;"></div>
 +
    <div class="sidetext"  style="vertical-align: top;z-index: 2;position: relative;font-weight:1;width:280px;padding-left:30px">Btub Ribolego</div>
 +
    </div>
 +
<div class="sidebar10" >
 +
    <div class="sideimg10"  style="vertical-align: top;z-index: 1;position: relative"><img src="https://static.igem.org/mediawiki/2019/1/1d/T--OUC-China--sidebar.png" style="width: 340px;height:43px;"></div>
 +
    <div class="sidetext"  style="vertical-align: top;z-index: 2;position: relative;font-weight:1;width:280px;padding-left:30px">Improved Cobalamin Riboswitch</div>
 +
    </div>
 +
<div class="sidebar11" >
 +
    <div class="sideimg11"  style="vertical-align: top;z-index: 1;position: relative"><img src="https://static.igem.org/mediawiki/2019/1/1d/T--OUC-China--sidebar.png" style="width: 340px;height:43px;"></div>
 +
    <div class="sidetext"  style="vertical-align: top;z-index: 2;position: relative;font-weight:1;width:280px;padding-left:30px">Ribolego based on Four U</div>
 +
    </div>
 +
<div class="sidebar12" >
 +
    <div class="sideimg12"  style="vertical-align: top;z-index: 1;position: relative"><img src="https://static.igem.org/mediawiki/2019/1/1d/T--OUC-China--sidebar.png" style="width: 340px;height:43px;"></div>
 +
    <div class="sidetext"  style="vertical-align: top;z-index: 2;position: relative">Antisense RNA</div>
 +
    </div>
 +
<div class="sidebar13" >
 +
    <div class="sideimg13"  style="vertical-align: top;z-index: 1;position: relative"><img src="https://static.igem.org/mediawiki/2019/1/1d/T--OUC-China--sidebar.png" style="width: 340px;height:43px;"></div>
 +
    <div class="sidetext"  style="vertical-align: top;z-index: 2;position: relative">Future work</div>
 +
    </div>
 +
 
 +
 
 +
   
  
    <div id="side1" style="line-height:67px;"> <div id="demo" style="padding: 3px;display:inline"></div><a href="#ymynb" style="text-decoration:none;color:black;" onmouseover="displayDate()" onmouseout="hh()">Overview</a></div>
 
    <div class="side2" style="line-height:67px;text-decoration:none;color:black;"  href="#kly">Experiment</div>
 
    <div class="side3" style="line-height:67px;"><a class="side333" href="#tiangou" style="text-decoration:none;color:black;">Model</a></div>
 
    <div class="side4" style="line-height:67px;"><a class="side444" href="#makabaka" style="text-decoration:none;color:black;">Parts</a></div>
 
    <div class="side5" style="line-height:67px;"><a class="side555" href="#littlefuck" style="text-decoration:none;color:black;">Human</a></div>
 
    <div class="side6" style="line-height:67px;"><a class="side666" href="#giao" style="text-decoration:none;color:black;">Team</a></div>
 
 
</div>
 
</div>
<div style="display:inline-block;width:70%;vertical-align: top">
+
</div>
<div class='text'>1. Introduction</div></br>
+
<div class="zhiqi" style="display:inline-block;width:60%;vertical-align: top;padding-left:400px">
<div class='text'>Our project this year focuses on a standardized design principle to be used for modular and tunable riboswitch, which can easily be appied by future teams. We looked at the exsiting riboswitch, where current negative issues like context dependent performance, limited response curve and hard to toggle the on-off state in real time would be addressed as well as solved within our project. The solution to these fundamental but complex issues was introducing stabilizer, tuner and asRNA to construct and regulate modular riboswitch, also named RiboLego.</div></br>
+
<div class='text'>1. Background </div></br>
<div class='text'>The modular riboswitch we defined consists of the original riboswitch, Stabilizer and Tuner. Stabilizer can protect the structure of riboswitch from damage while Tuner can reduce the expression probability of fusion protein and make improvement of riboswitch function. We test our design principle in different riboswitches including three kinetic switches: Adda riboswitch, Btub riboswitch, cobalamin biosensor, and one thermodynamic switch: FourU riboswitch. What's more, three different kinds of GOI is used including sfGFP, YFP, and mRFP1. The good results show the high universality of our design principles. We believe that we have fulfilled this medal requirement because we can show our system working under real world conditions.</div></br>
+
<div class='text'>Riboswitches have been discovered and characterized across numerous prokaryotes and eukaryotes. They are RNAs that bind small molecules to regulate metabolism and gene regulation. Riboswitches contain aptamer domain sites, comprising highly specific pockets in the 5’ untranslated region (UTR) of the mRNAs that bind small molecules or ligands. Once a ligand selectively binds an aptamer site, a conformational change in the RNA structure leads to a change in gene expression. </div></br>
 +
<div class='text'>To be truly useful for synthetic biology, riboswitches should be modular “plug and play” devices. However, the riboswitch’s specific RNA secondary structure is influenced not only by its own sequence, but also by the surrounding genetic context including the proximal open reading frame (ORF) under the control of the riboswitch. Thus, substituting the original ORF with a new one can nullify the desired riboswitch response to a given ligand, so GOI can’t express at all, which strongly liits its applicatios scope. To overcome this lack of modularity, many studies have created fusions comprised of a riboswitch, the first few hundred base pairs of its working ORF, which we name “Stabilizer”, and a gene of interest. By introducing Stabilizer, the riboswitch can respond to the ligand and GOI can express as fusion protein. However, this approach fails in many circumstances as it may alter the gene’s structure and functionality, leading to unpredictable results.</div></br>
 +
<div class='text'></div></br>
 +
<div class='text'></div></br>
 +
<div class='text'>2. OUR PACE</div></br>
 
<div class='text'></div></br>
 
<div class='text'></div></br>
<div class='text'>2. Normally express the gene </div></br>
 
<div class='text'>First, we successfully demonstrated that Stabilizer restored the normal function of riboswitch while Tuner tackled this problem of inclusion body generated by Stabilizer. By fluorescence microscopy, we can clearly observe that Tuner is capable of making GOI express normally. </div></br>
 
<div class='text'>Strain-Adda-sfGFP  Strain-Adda-Sta(b)-sfGFP  Strain-Adda-Sta(b)-Tuner A-sfGFP</div></br>
 
<div class='text'>0μM 2-AP</div></br>
 
<div class='text'>0μM 2-AP</div></br>
 
<div class='text'>Figure 1: The fluorescence images represent situation when fluorescence excitation by confocal microscopy. From left to right, the images shows the expression of sfGFP by strain-Adda-sfGFP, strain-Adda-Sta(b)-sfGFP and strain-Adda-Sta(b)-Tuner A-sfGFP in sequence. The images on the top shows E.coli without 2-aminopurine while those on the bottom shows E.coli with 2-aminopurine. </div></br>
 
<div class='text'>Strain-Btub-sfGFP  Strain-Btub-Sta(b)-sfGFP  Strain-Btub-Sta(b)-Tuner A-sfGFP</div></br>
 
<div class='text'>0μM 2-VB12</div></br>
 
<div class='text'>0μM 2-VB12</div></br>
 
<div class='text'>Figure 2: The fluorescence images represent situation when fluorescence excitation by confocal microscopy. From left to right, the images shows the expression of sfGFP by strain-Btub-sfGFP, strain-Btub-Sta(b)-sfGFP and strain-Btub-Sta(b)-Tuner A-sfGFP in sequence. The images on the top shows E.coli without VB12 while those on the bottom shows E.coli with VB12. </div></br>
 
 
<div class='text'> </div></br>
 
<div class='text'> </div></br>
 +
<div class='text'> </div></br>
 +
<div class='text'>①Natural riboswitches are found with the highest frequency in the 5’-UTR of bacterial mRNAs, where they regulate the expression of downstream genes through structural changes undergone in response to the binding of a specific target molecule.</div></br>
 +
<div class='text'>②When GOI located downstream of the riboswitch changes, the structure of the riboswitch will be destroyed. Then it can’t respond to the ligand. So the GOI can’t express at all. </div></br>
 +
<div class='text'>③By introducing stabilizer, the riboswitch can respond to the ligand but the redundant sequences may influence the structure and function of GOI. </div></br>
 +
<div class='text'>④Using tuner, we can tackle this problem. The tuner can reduce the expression probability of fusion protein and allow for predictable tuning. More tuners are designed to make diverse expression level. </div></br>
 +
<div class='text'>⑤We explore the resource and length of stabilizer to propose the design principle of stabilizer.</div></br>
 +
<div class='text'>⑥We choose different riboswitches to express all kinds of GOI. By doing this, we can verify the  design principle of modular riboswitch is universal.</div></br>
 +
<div class='text'>⑦Because ligands are difficult to degrade, the on-off state of riboswitch is not quickly regulated at present. We design asRNA to solve this problem.</div></br>
 
<div class='text'></div></br>
 
<div class='text'></div></br>
<div class='text'>3. Amplify the riboswitch function</div></br>
+
<div class='text'> The goal of our work was to propose a standardized design principle named “RiboLego”, making construction of modular riboswitch faster, easier, more stable and achieve more diverse regulation. Modular riboswitch we defined contains three functional elements, including the original riboswitch, Stabilizer and Tuner from 5’ to 3’. </div></br>
<div class='text'>Before starting the wet lab work, the core idea of Tuner was successfully modeled by a thermodynamic approach. Using a series of Tuner constructs, we then expand the response curve of modular riboswitch. Seven different Tuners were introduced downstream of the activating Adda riboswitch and Stabilizer. Tuners were able to shift the system’s induction response to 2-aminopurine in a manner that correlated with the strength of Tuner.</div></br>
+
<div class='text'>图</div></br>
 +
<div class='text'>Stabilizer can protect the structure of riboswitch from damage. Two factors need to be considered when designing Stabilizer, the source and length. There are many sources for users to choose, such as high-throughput screening methods, acquisition from the original genome and the working gene in the past study. As for its length, dry group members help us determine it by docking matrix and RNAfold.</div></br>
 +
<div class='text'> </div></br>
 +
<div class='text'>Tuner can reduce the expression probability of fusion protein and make improvement of riboswitch function. We provided a series of Tuners to regulate the response curve of riboswitch, achieving multiple output. </div></br>
 
<div class='text'></div></br>
 
<div class='text'></div></br>
<div class='text'>Figure 3: Histograms show the relative fluorescence expression of sfGFP by microplate reader. Response of each modular Adda riboswitch to 0, 8, 32 and 250 μM 2-aminopurine as compared to the fusion construct(Adda-STA-sfGFP). The seven test groups present different fluorescence intensities from high to low, which proves that Tuners have different capabilities. Error bars represent standard deviation of three biological replicates. </div></br>
+
<div class='text'>To this end, we designed an innovative software named RiboLego which will provide a modular riboswitch in the later stages based on the user's target sequence and expected expression level.</div></br>
 
<div class='text'></div></br>
 
<div class='text'></div></br>
<div class='text'>We collaborated with four teams which helped us prove the results of Tuner A by experiments in their labs. </div></br>
+
<div class='text'>In order to reach our ambitious goal, we employed Adda riboswitch to demonstrate the usability of design principle. Based on this, more riboswitches are changed into RiboLego to indicate the universal of our guideline. </div></br>
<div class='text'>Figure 4: The results from other four teams which proved our conclusions. Histograms show the relative fluorescence expression of sfGFP by microplate reader. Response of modular Adda riboswitch including Tuner A to 0, 8, 32 and 250 μM 2-aminopurine. Error bars represent standard deviation of three biological replicates. </div></br>
+
<div class='text'></div></br>
 +
<div class='text'></div></br>
 +
<div class='text'>3. RiboLego based on Adda</div></br>
 +
<div class='text'>3.1 Tuner</div></br>
 +
<div class='text'>3.1.1 The structure of Tuner</div></br>
 +
<div class='text'>Adda riboswitch from Vibrio vulnificus is an activating riboswitch responsive to 2-aminopurine. When 2-aminopurine exists, it can bind the aptamer domain of riboswitch, causing a structural rearrangement which can open up RBS, so GOI can translate.</div></br>
 +
<div class='text'>In Vibrio vulnificus, the gene which locates downstream of the Adda riboswitch is adenosine deaminase. To protect the structure of Adda riboswitch from destorying by GOI, we truncated the first 150bp of this gene as Stabilizer of modular Adda riboswitch. Because our docking matrix suggested that a normal riboswitch structure would be observed when using this length of Stabilizer. If you interested in how to design the Stabilizer, you can click here. Then Tuner was created and utilized to deal with the fusion protein phenomenon.</div></br>
 +
<div class='text'></div></br>
 +
<div class='text'>We defined a Tuner element to include a repressing region, a RBS region and a coupled junction region. The repressing region is the reverse complement of a subsequence of the RBS region so that Tuner can form a hairpin with appropriate ?G. The stop and start codon fused in the junction region. Ribosomes recruited by the upstream riboswitch can open up the hairpin of Tuner before dissociation at the stop codon in the junction region. Additional ribosomes can then assemble at the Tuner RBS and initiate translation at the first start codon of the introduced gene of interest. Therefore, Tuner can help GOI express normally and facilitate tuning of a riboswitch’s response .</div></br>
 +
<div class='text'></div></br>
 +
<div class='text'>The superfolder green fluorescent protein (sfGFP) is the reporter gene to verify our modular Adda riboswitches, which is under control of the tetracycline promoter.The result indicate that the expression probability of fusion protein reduce obviously. You can get more information in result.</div></br>
 +
<div class='text'>3.1.2 More Tuners</div></br>
 +
<div class='text'>In many practical applications,the riboswitch response curve is restricted by application category and associated system. Depending on these restrictions, proper tuning of riboswitches acting as autonomous control systems may require minimization of basal levels, operation across higher expression levels, or maximization of the change in expression levels. Obviously, the original riboswitch function is single and it cannot achieve multi-level regulation. </div></br>
 +
<div class='text'>Talking with Professor Zhang in the 5th Synthetic Biology Young Scholar Forum, we found it was necessary to make the function curve of riboswitch diverse. For example, in different environments, the same riboswitch is required to have different response ranges. The yellow high level response curve may be more appropriate for the regulation of enzymes with low catalytic activity, the blue medium one may be more appropriate for regulatory networks that require a large change in protein levels and the red low one may be more appropriate for the regulation of cytotoxic genes.</div></br>
 +
<div class='text'>  </div></br>
 +
<div class='text'>In order to meet this requirements, modeling help us to create more Tuners. Five Tuners were selected as a part collection. According to the expression strength, we named Tuner A to E.</div></br>
 +
<div class='text'></div></br>
 +
<div class='text'>To demonstrate whether Tuners can shift and optimize the response curve of riboswitch, we created five modular Adda riboswitches by combining the original Adda riboswitch, Stabilizer and five Tuners respectively! </div></br>
 +
<div class='text'>Wet experiments show that our system can work well! Click result for more details!</div></br>
 +
<div class='text'>结果图(5个tuner单浓度结果图)</div></br>
 +
<div class='text'></div></br>
 +
<div class='text'>3.2 Stabilizer</div></br>
 +
<div class='text'>3.2.1 Source of Stabilizer</div></br>
 +
<div class='text'>Stabilizer can protect the structure of riboswitch from damage. Two factors need to be considered when designing Stabilizer, the source and length. There are many sources for users to choose, such as high-throughput screening methods, acquisition from the original genome and the working gene in the past study. As for its length, dry group members help us determine it by docking matrix and RNAfold.</div></br>
 
<div class='text'> </div></br>
 
<div class='text'> </div></br>
<div class='text'>To demonstrate the universal applicability of our design principle, the repressing Btub riboswitch was emploied that binds adenosylcobalamin. In order to reduce the metabolic burden of cells,we created Tuner H consisting of ssrA degradation tag, which could degrade Stabilizer. Using Tuner A  B and H, we were successfully able to show that we could in fact change the function of riboswitch.</div></br>
 
 
<div class='text'></div></br>
 
<div class='text'></div></br>
<div class='text'>Figure 5: The fluorescence intensity of sfGFP by microplate reader during the entire cultivation period. By using three different Tuners, we could change the response curve of Btub riboswitch. Error bars represent standard deviation of four biological replicates.   </div></br>
+
<div class='text'>To stabilize the structure of riboswitch, many studies create and insert a sequence in front of the GOI, which we named “stabilizer”. There are many ways to select the source of Stabilizer, such as high-throughput screening methods, acquisition from the original genome and the working gene from paper. When testing Tuners, we utilized blast to catch the nature gene downstream of Adda riboswitch as Stabilizer. Furthermore, in order to verify the its source is changable, we also chose GFP as Stabilizer of Adda riboswitch because Adda riboswitch can express GFP directly in the past study.  </div></br>
 +
<div class='text'>By expriments, we can verify that the source of Stabilizer is diverse. </div></br>
 
<div class='text'></div></br>
 
<div class='text'></div></br>
<div class='text'>We also tested our system working by replacing sfGFP with YFP which were introduced downstream of the activating Adda riboswitch, Stabilizer and Tuner A.</div></br>
+
<div class='text'>3.2.2 Length of stabilizer</div></br>
<div class='text'>Figure 6:  The fluorescence intensity of YFP by microplate reader during the entire cultivation period. Data is shown for each construct until steady state is reached.</div></br>
+
<div class='text'>Stabilizer should be long enough to maintain the secondary structure of most riboswitches but short enough to minimise the overall size of the system.So we explored the length of Stabilizer. </div></br>
 +
<div class='text'>According to using docking matrix, we can get Stabilizer of appropriate length. Detailed methods can be referred to modeling and software.</div></br>
 +
<div class='text'>In order to verify our software, we chose two good Stabilizers which are able to prevent the structure from destroying and two bad Stabilizers whose length were too short to maintain the structure.</div></br>
 +
<div class='text'>The results show that our software was useful and reliable!</div></br>
 
<div class='text'></div></br>
 
<div class='text'></div></br>
 +
<div class='text'>3.3 GOI</div></br>
 +
<div class='text'>To ensure that our modular riboswitch will work with a variety of different proteins, we substituted sfGFP with EYFP. Using the new interest gene, we tested the effect of modular Adda riboswitch consisting the original Adda riboswitch, STA150 and Tuner A. The result verified that the target gene is indeed replaceable, the modular riboswitch secondary structure is not affected!</div></br>
 
<div class='text'></div></br>
 
<div class='text'></div></br>
<div class='text'>4. Select the appropriate length of Stabilizer</div></br>
+
<div class='text'>3.4 The design principle of modular riboswitch</div></br>
<div class='text'>Guided by math modeling, we determined that the Stablilizer length of Adda and Btub was 150bp.Furthermore, we would prove the effectiveness of our software. So we selected 9bp and 21bp as bad Stabilizers but 81bp and 129bp as good Stabilizers for Adda. The results showed that the length of Stabilizer was changable.</div></br>
+
<div class='text'>Fortunately! So far, we have been able to summarize a complete set of modular riboswitch design principles: modular riboswitch consisting of original riboswitch, stabilizer, and tuner from 5' to 3'. </div></br>
<div class='text'>Figure 7: The fluorescence intensity of sfGFP by microplate reader during the entire cultivation period. By using four different Stabilizers, we could prove that our software was effective. 9bp and 21bp was too short that can stabilize the structure of Adda riboswitch, leading that the failure of responsive to ligand. </div></br>
+
<div class='text'>We have applied this design principle to Adda riboswitch. The experience verified that GOI is replaceable and the modular riboswitch can regulate the expression of GOI. Further, we will use this design principle to create more RiboLego!</div></br>
 
<div class='text'></div></br>
 
<div class='text'></div></br>
<div class='text'>5. Improvement</div></br>
+
<div class='text'>4. More RiboLego</div></br>
<div class='text'>Using our design principle of modular riboswtch, we were successfully able to improve the  cobalamin biosensor created by Paris_Bettencourt team in 2015.By introducing Stabilizer and Tuner A, the riboswitch can restore his function and express mRFP1 normally. </div></br>
+
<div class='text'>4.1 RiboLego based on Btub</div></br>
<div class='text'>Figure 8: The fluorescence intensity of mRFP1 by microplate reader during the entire cultivation period. (A) We measured part BBa_K1678007 designed by Paris_Bettencourt in 2015. They used a riboswitch whose ligand is vitamin B12 to express mRFP1 without its start codon and inserted the first 30bp of the natural gene between them. However, we do observe an unexpected peak in RFP expression. Hence, we would improve this part. (B) We chose the first 81bp of ccib as Stabilizer. As shown that, by introducing Tuner A, the cobalamin biosensor was capable of expressing mRFP1 normally in response to different concentrations of VB12. </div></br>
+
<div class='text'>After introducing an activating riboswitch, a repressing riboswitch is expected to employ to valiate our design principle. In absence of ligand, the repressing riboswitch can expose RBS, making GOI can express. When ligand exists, GOI can’t express at all. Taking it into consideration, we employed Btub riboswitch responsive to VB12 from E.coli. By our program, the first 150bp of BtuB, the original target gene of the Btub riboswitch was used to serve as Stabilizer. We selected Tuner A and E to design two modular Btub riboswitches and used sfGFP as the reporter gene to test whether the expressions of these two systems are as expected. </div></br>
 +
<div class='text'>Although introducing the stabilizer can protect the structure of the riboswitch from destroying, we worried that its accumulation can lead to increased metabolic pressure on cells, affecting cell function and the expression of target genes. Therefore we decided to design a Tuner S containing ssrA protein degradation tag to degrade Stabilizer. </div></br>
 +
<div class='text'>The results show that Stabilizer and Tuner constructed on Btub riboswitch can work well!</div></br>
 
<div class='text'></div></br>
 
<div class='text'></div></br>
 +
<div class='text'>4.2 IMPROVE: RiboLego based on cobalamin Riboswitch</div></br>
 +
<div class='text'>  By referencing the previous iGEM project, we found that Paris_Bettencourt has created a cobalamin biosensor to measure vitamin B12. The cobalamin biosensor is based on a riboswitch taken from a transcribed fragment upstream of a cobalamin biosynthesis gene, cbiB, which is found in Propionibacterium shermanii and has been demonstrated to be sensitive to B12. At first, they used EGFP as their reporter gene, however, even in the absence of cobalamin, they had no GFP expression at all. Then they substituted EGFP with mRFP1 and inserted the first 24 bases of cbiB between them, the result was bad, too..</div></br>
 +
<div class='text'>  In order to verify the universality of our modular riboswitch, we improved part号. Using our software, we selected the first 81bp of cbiB as the stabilizer and used tuner A to control the expression of mRFP. The results proved that we successfully designed the modular cobalamin biosensor by our design principle!</div></br>
 
<div class='text'></div></br>
 
<div class='text'></div></br>
<div class='text'>6. The thermodynamic switch</div></br>
+
<div class='text'>4.3 IMPROVE: RiboLego based on Four U</div></br>
<div class='text'>Riboswitches can furthermore be classifified into thermodynamic and kinetic switches. We then  explored whether our design principles apply to thermodynamic riboswitches. Using Four U, whose temperature threshold is 37℃, we can successfully express sfGFP in 37℃ and 42℃. In this circuit, the first 81bp of mRFP1 was selected as Stabilizer because Four U can control the expression of mRFP1 normally and Tuner A was used. The result shows Tuner can apply to the thermodynamic riboswitches perfectly!</div></br>
+
<div class='text'>Riboswitches can furthermore be classifified into thermodynamic and kinetic switches. Different from kinetic switches, thermodynamic switches can reversibly and repeatedly toggle between on- and off-states, depending on temperature. Thermodynamic switches are temperature-sensing RNA sequences in 5’UTR of their mRNAs. At low temperature, they can fold into the structure, blocking access of ribosome; at high temperature, it open conformation, increasing the efficiency of translation initiation. </div></br>
<div class='text'>Figure 9: We inoculated strains that introduced our modular Four U riboswitch on different plates at three preset temperatures. After 48 hours, as we can see in the photo: the fluorescence intensity of sfGFP from high to low is 42℃, 37℃ and 28℃ in sequence.The strain in 28℃ almost express no sfGFP.</div></br>
+
<div class='text'>After successfully creating modular riboswitch with our method on kinetic switches and demonstrate that Tuner can control the expression of a range of functional outputs, we started to build modular thermodynamic riboswitch, and here we made part BBa_K115002( Four U)  improvement based on TUDelft team in 2008. </div></br>
<div class='text'>7. Control the on-off state in real time </div></br>
+
<div class='text'>Four U is an RNA thermometer that can be used for temperature sensitive post-transcriptional regulation that initiates translation at 37°C. Fortunately, we found that OUC-China team had used Four U to successfully express RFP in 2005, which provided us with great convenience! So we selected the first 132bp of RFP as Stabilizer of Four U. Then we used Tuner A to change the exprssion level. The superfolder green fluorescent protein (sfGFP) is the reporter gene to verify our modular Adda riboswitches.</div></br>
<div class='text'>By above results, we have demonstrated that Tuners are able to overcome many of the issues preventing widespread use of riboswitches. After constructing modular riboswitches, we have successfully designed antisense RNA to achieve our goals of controling the on-off state in real time. The good results demonstrated our effective approach.</div></br>
+
<div class='text'>Experimental results show that we have successfully constructed a modular thermodynamic riboswitch and changed its response curve. </div></br>
<div class='text'>Figure 10: The heat map generated from microplate reader data reflecting the change of fluorescence intensities with and without IPTG. Using our IPTG inducible antisense RNA, we could control the on-off state of Adda and Btub riboswitch in a half hour. The images on the top shows E.coli without IPTG in 8h while those on the bottom shows E.coli with IPTG after a half hour. </div></br>
+
 
<div class='text'></div></br>
 
<div class='text'></div></br>
<div class='text'>8. Summary</div></br>
+
<div class='text'>5. AsRNA</div></br>
<div class='text'>We believe that we have fulfilled this medal requirement because we have successfully demonstrated that our design principle could expand riboswitch function. Our system could  work under realistic conditions. Please see our other pages for more inspiration and results. Additionally, see our medal requirements for information on how we fufilled our medal requirements.</div></br>
+
<div class='text'>Thermodynamic switches are found in energetic equilibrium between their on- and off-state. If switching is triggered, the equilibrium distribution</div></br>
 +
<div class='text'>shifts towards the new energetically best conformation. This implies that thermodynamic switches can reversibly and repeatedly toggle between on- and off-states. In contrast, kinetic switches are trapped in one state, depending on whether the ligand was present at the time of folding. Because ligands are hard to degrade, the state of the dynamic riboswitch is difficult to change. </div></br>
 +
<div class='text'> With the help of Professor Li, we finally untilized antisense RNA to tackle this problem. Antisense RNA is endogenous in E. coli that do not require heterologous proteins to function. Owing to its simple design principles, small size, and highly orthogonal behavior, the engineered genetic parts has been incorporated into genetic circuits. Antisense RNA can be thought to consist of two regions: a target binding region (TBR) containing a sequence that is complementary to the target gene, and an Hfq binding site which allows for binding of the Hfq protein. Hfq is a native chaperone protein that mediates RNA?RNA interactions by binding to a particular RNA binding site on the asRNA molecule. In our work, the engineered MicF binding site (MicF M7.4) was used as Hfq binding site because it performed well with low off-target effect in previous studies. </div></br>
 +
<div class='text'>By using model to change TBR, we hope to utilize asRNA to change the on-off state of riboswitch.</div></br>
 +
<div class='text'>When targeting RBS of Adda riboswitch, asRNA can close modular Adda riboswitch even in presence of 2-AP. At the same time, when targeting RBS of Tuner E, asRNA is able to open modular Btub riboswitch even in presence of VB12.</div></br>
 +
<div class='text'>The result show that we've been able to regulate the on-off state of riboswitch!</div></br>
 +
<div class='text'></div></br>
 +
<div class='text'>6. In the future</div></br>
 +
<div class='text'>This year, OUC-China proposed the design principle of modular riboswitch consisting of original riboswitch, Stabilizer, and Tuner from 5' to 3', and used it to create “RiboLego”. Besides, we introduce asRNA so that gene expression in engineered systems can be more easily regulated. </div></br>
 +
<div class='text'>In the future, there are some works to improve our project. Firstly, we want to create more Tuners based on this design principle to achieve more level regulation in different environments. Secondly,We expect our software can help future iGEM teams to easily use riboswitches to express anticipated GOI and get the ideal level of expression. Finally, we hope to use the cell-free system to optimize RiboLego from the perspective of the department of engineering, and use vesicles to wrap asRNA so that it can carry out accurate real-time regulation of riboswitch state for many times.</div></br>
 
<div class='text'></div></br>
 
<div class='text'></div></br>
  
</div>
+
 
<div style="background:#ccc;height:100px"><div>
+
 
</div>
 
</div>
  
  
<div  class="ppigem"  style="position: fixed;left: 93%;right: 2%;bottom: 15%;max-width: 10%;border-left-color: brown;border: 3px;text-align: center;padding:0px;display: none">
+
<div  class="ppigem"  style="position: fixed;right: 2%;bottom: 3%;max-width: 10%;text-align: right;padding:0px;z-index:999">
     <div  style="padding: 0px;"><a href="#toptop"><img src="https://static.igem.org/mediawiki/2019/2/2e/T--OUC-China--emoji.jpeg" style="max-width: 100%"></a></div>
+
     <div  style="padding: 0px;"><a href="#toptop"><img src="https://static.igem.org/mediawiki/2019/5/5b/T--OUC-China--top.png" style="max-width: 80%;z-index:99"></a></div>
   
+
</div>
   
+
    </div>
+
  
  
Line 262: Line 422:
 
       </script>
 
       </script>
 
<script>
 
<script>
function displayDate(){
 
document.getElementById("demo").innerHTML="k";
 
}
 
function hh(){
 
document.getElementById("demo").innerHTML="g";
 
}
 
  
 +
$(".kkk").style.color="black"
  
  

Revision as of 13:07, 20 October 2019

kkkkk




















































1. Background

Riboswitches have been discovered and characterized across numerous prokaryotes and eukaryotes. They are RNAs that bind small molecules to regulate metabolism and gene regulation. Riboswitches contain aptamer domain sites, comprising highly specific pockets in the 5’ untranslated region (UTR) of the mRNAs that bind small molecules or ligands. Once a ligand selectively binds an aptamer site, a conformational change in the RNA structure leads to a change in gene expression.

To be truly useful for synthetic biology, riboswitches should be modular “plug and play” devices. However, the riboswitch’s specific RNA secondary structure is influenced not only by its own sequence, but also by the surrounding genetic context including the proximal open reading frame (ORF) under the control of the riboswitch. Thus, substituting the original ORF with a new one can nullify the desired riboswitch response to a given ligand, so GOI can’t express at all, which strongly liits its applicatios scope. To overcome this lack of modularity, many studies have created fusions comprised of a riboswitch, the first few hundred base pairs of its working ORF, which we name “Stabilizer”, and a gene of interest. By introducing Stabilizer, the riboswitch can respond to the ligand and GOI can express as fusion protein. However, this approach fails in many circumstances as it may alter the gene’s structure and functionality, leading to unpredictable results.



2. OUR PACE




①Natural riboswitches are found with the highest frequency in the 5’-UTR of bacterial mRNAs, where they regulate the expression of downstream genes through structural changes undergone in response to the binding of a specific target molecule.

②When GOI located downstream of the riboswitch changes, the structure of the riboswitch will be destroyed. Then it can’t respond to the ligand. So the GOI can’t express at all.

③By introducing stabilizer, the riboswitch can respond to the ligand but the redundant sequences may influence the structure and function of GOI.

④Using tuner, we can tackle this problem. The tuner can reduce the expression probability of fusion protein and allow for predictable tuning. More tuners are designed to make diverse expression level.

⑤We explore the resource and length of stabilizer to propose the design principle of stabilizer.

⑥We choose different riboswitches to express all kinds of GOI. By doing this, we can verify the design principle of modular riboswitch is universal.

⑦Because ligands are difficult to degrade, the on-off state of riboswitch is not quickly regulated at present. We design asRNA to solve this problem.


The goal of our work was to propose a standardized design principle named “RiboLego”, making construction of modular riboswitch faster, easier, more stable and achieve more diverse regulation. Modular riboswitch we defined contains three functional elements, including the original riboswitch, Stabilizer and Tuner from 5’ to 3’.


Stabilizer can protect the structure of riboswitch from damage. Two factors need to be considered when designing Stabilizer, the source and length. There are many sources for users to choose, such as high-throughput screening methods, acquisition from the original genome and the working gene in the past study. As for its length, dry group members help us determine it by docking matrix and RNAfold.


Tuner can reduce the expression probability of fusion protein and make improvement of riboswitch function. We provided a series of Tuners to regulate the response curve of riboswitch, achieving multiple output.


To this end, we designed an innovative software named RiboLego which will provide a modular riboswitch in the later stages based on the user's target sequence and expected expression level.


In order to reach our ambitious goal, we employed Adda riboswitch to demonstrate the usability of design principle. Based on this, more riboswitches are changed into RiboLego to indicate the universal of our guideline.



3. RiboLego based on Adda

3.1 Tuner

3.1.1 The structure of Tuner

Adda riboswitch from Vibrio vulnificus is an activating riboswitch responsive to 2-aminopurine. When 2-aminopurine exists, it can bind the aptamer domain of riboswitch, causing a structural rearrangement which can open up RBS, so GOI can translate.

In Vibrio vulnificus, the gene which locates downstream of the Adda riboswitch is adenosine deaminase. To protect the structure of Adda riboswitch from destorying by GOI, we truncated the first 150bp of this gene as Stabilizer of modular Adda riboswitch. Because our docking matrix suggested that a normal riboswitch structure would be observed when using this length of Stabilizer. If you interested in how to design the Stabilizer, you can click here. Then Tuner was created and utilized to deal with the fusion protein phenomenon.


We defined a Tuner element to include a repressing region, a RBS region and a coupled junction region. The repressing region is the reverse complement of a subsequence of the RBS region so that Tuner can form a hairpin with appropriate ?G. The stop and start codon fused in the junction region. Ribosomes recruited by the upstream riboswitch can open up the hairpin of Tuner before dissociation at the stop codon in the junction region. Additional ribosomes can then assemble at the Tuner RBS and initiate translation at the first start codon of the introduced gene of interest. Therefore, Tuner can help GOI express normally and facilitate tuning of a riboswitch’s response .


The superfolder green fluorescent protein (sfGFP) is the reporter gene to verify our modular Adda riboswitches, which is under control of the tetracycline promoter.The result indicate that the expression probability of fusion protein reduce obviously. You can get more information in result.

3.1.2 More Tuners

In many practical applications,the riboswitch response curve is restricted by application category and associated system. Depending on these restrictions, proper tuning of riboswitches acting as autonomous control systems may require minimization of basal levels, operation across higher expression levels, or maximization of the change in expression levels. Obviously, the original riboswitch function is single and it cannot achieve multi-level regulation.

Talking with Professor Zhang in the 5th Synthetic Biology Young Scholar Forum, we found it was necessary to make the function curve of riboswitch diverse. For example, in different environments, the same riboswitch is required to have different response ranges. The yellow high level response curve may be more appropriate for the regulation of enzymes with low catalytic activity, the blue medium one may be more appropriate for regulatory networks that require a large change in protein levels and the red low one may be more appropriate for the regulation of cytotoxic genes.


In order to meet this requirements, modeling help us to create more Tuners. Five Tuners were selected as a part collection. According to the expression strength, we named Tuner A to E.


To demonstrate whether Tuners can shift and optimize the response curve of riboswitch, we created five modular Adda riboswitches by combining the original Adda riboswitch, Stabilizer and five Tuners respectively!

Wet experiments show that our system can work well! Click result for more details!

结果图(5个tuner单浓度结果图)


3.2 Stabilizer

3.2.1 Source of Stabilizer

Stabilizer can protect the structure of riboswitch from damage. Two factors need to be considered when designing Stabilizer, the source and length. There are many sources for users to choose, such as high-throughput screening methods, acquisition from the original genome and the working gene in the past study. As for its length, dry group members help us determine it by docking matrix and RNAfold.



To stabilize the structure of riboswitch, many studies create and insert a sequence in front of the GOI, which we named “stabilizer”. There are many ways to select the source of Stabilizer, such as high-throughput screening methods, acquisition from the original genome and the working gene from paper. When testing Tuners, we utilized blast to catch the nature gene downstream of Adda riboswitch as Stabilizer. Furthermore, in order to verify the its source is changable, we also chose GFP as Stabilizer of Adda riboswitch because Adda riboswitch can express GFP directly in the past study.

By expriments, we can verify that the source of Stabilizer is diverse.


3.2.2 Length of stabilizer

Stabilizer should be long enough to maintain the secondary structure of most riboswitches but short enough to minimise the overall size of the system.So we explored the length of Stabilizer.

According to using docking matrix, we can get Stabilizer of appropriate length. Detailed methods can be referred to modeling and software.

In order to verify our software, we chose two good Stabilizers which are able to prevent the structure from destroying and two bad Stabilizers whose length were too short to maintain the structure.

The results show that our software was useful and reliable!


3.3 GOI

To ensure that our modular riboswitch will work with a variety of different proteins, we substituted sfGFP with EYFP. Using the new interest gene, we tested the effect of modular Adda riboswitch consisting the original Adda riboswitch, STA150 and Tuner A. The result verified that the target gene is indeed replaceable, the modular riboswitch secondary structure is not affected!


3.4 The design principle of modular riboswitch

Fortunately! So far, we have been able to summarize a complete set of modular riboswitch design principles: modular riboswitch consisting of original riboswitch, stabilizer, and tuner from 5' to 3'.

We have applied this design principle to Adda riboswitch. The experience verified that GOI is replaceable and the modular riboswitch can regulate the expression of GOI. Further, we will use this design principle to create more RiboLego!


4. More RiboLego

4.1 RiboLego based on Btub

After introducing an activating riboswitch, a repressing riboswitch is expected to employ to valiate our design principle. In absence of ligand, the repressing riboswitch can expose RBS, making GOI can express. When ligand exists, GOI can’t express at all. Taking it into consideration, we employed Btub riboswitch responsive to VB12 from E.coli. By our program, the first 150bp of BtuB, the original target gene of the Btub riboswitch was used to serve as Stabilizer. We selected Tuner A and E to design two modular Btub riboswitches and used sfGFP as the reporter gene to test whether the expressions of these two systems are as expected.

Although introducing the stabilizer can protect the structure of the riboswitch from destroying, we worried that its accumulation can lead to increased metabolic pressure on cells, affecting cell function and the expression of target genes. Therefore we decided to design a Tuner S containing ssrA protein degradation tag to degrade Stabilizer.

The results show that Stabilizer and Tuner constructed on Btub riboswitch can work well!


4.2 IMPROVE: RiboLego based on cobalamin Riboswitch

By referencing the previous iGEM project, we found that Paris_Bettencourt has created a cobalamin biosensor to measure vitamin B12. The cobalamin biosensor is based on a riboswitch taken from a transcribed fragment upstream of a cobalamin biosynthesis gene, cbiB, which is found in Propionibacterium shermanii and has been demonstrated to be sensitive to B12. At first, they used EGFP as their reporter gene, however, even in the absence of cobalamin, they had no GFP expression at all. Then they substituted EGFP with mRFP1 and inserted the first 24 bases of cbiB between them, the result was bad, too..

In order to verify the universality of our modular riboswitch, we improved part号. Using our software, we selected the first 81bp of cbiB as the stabilizer and used tuner A to control the expression of mRFP. The results proved that we successfully designed the modular cobalamin biosensor by our design principle!


4.3 IMPROVE: RiboLego based on Four U

Riboswitches can furthermore be classifified into thermodynamic and kinetic switches. Different from kinetic switches, thermodynamic switches can reversibly and repeatedly toggle between on- and off-states, depending on temperature. Thermodynamic switches are temperature-sensing RNA sequences in 5’UTR of their mRNAs. At low temperature, they can fold into the structure, blocking access of ribosome; at high temperature, it open conformation, increasing the efficiency of translation initiation.

After successfully creating modular riboswitch with our method on kinetic switches and demonstrate that Tuner can control the expression of a range of functional outputs, we started to build modular thermodynamic riboswitch, and here we made part BBa_K115002( Four U) improvement based on TUDelft team in 2008.

Four U is an RNA thermometer that can be used for temperature sensitive post-transcriptional regulation that initiates translation at 37°C. Fortunately, we found that OUC-China team had used Four U to successfully express RFP in 2005, which provided us with great convenience! So we selected the first 132bp of RFP as Stabilizer of Four U. Then we used Tuner A to change the exprssion level. The superfolder green fluorescent protein (sfGFP) is the reporter gene to verify our modular Adda riboswitches.

Experimental results show that we have successfully constructed a modular thermodynamic riboswitch and changed its response curve.


5. AsRNA

Thermodynamic switches are found in energetic equilibrium between their on- and off-state. If switching is triggered, the equilibrium distribution

shifts towards the new energetically best conformation. This implies that thermodynamic switches can reversibly and repeatedly toggle between on- and off-states. In contrast, kinetic switches are trapped in one state, depending on whether the ligand was present at the time of folding. Because ligands are hard to degrade, the state of the dynamic riboswitch is difficult to change.

With the help of Professor Li, we finally untilized antisense RNA to tackle this problem. Antisense RNA is endogenous in E. coli that do not require heterologous proteins to function. Owing to its simple design principles, small size, and highly orthogonal behavior, the engineered genetic parts has been incorporated into genetic circuits. Antisense RNA can be thought to consist of two regions: a target binding region (TBR) containing a sequence that is complementary to the target gene, and an Hfq binding site which allows for binding of the Hfq protein. Hfq is a native chaperone protein that mediates RNA?RNA interactions by binding to a particular RNA binding site on the asRNA molecule. In our work, the engineered MicF binding site (MicF M7.4) was used as Hfq binding site because it performed well with low off-target effect in previous studies.

By using model to change TBR, we hope to utilize asRNA to change the on-off state of riboswitch.

When targeting RBS of Adda riboswitch, asRNA can close modular Adda riboswitch even in presence of 2-AP. At the same time, when targeting RBS of Tuner E, asRNA is able to open modular Btub riboswitch even in presence of VB12.

The result show that we've been able to regulate the on-off state of riboswitch!


6. In the future

This year, OUC-China proposed the design principle of modular riboswitch consisting of original riboswitch, Stabilizer, and Tuner from 5' to 3', and used it to create “RiboLego”. Besides, we introduce asRNA so that gene expression in engineered systems can be more easily regulated.

In the future, there are some works to improve our project. Firstly, we want to create more Tuners based on this design principle to achieve more level regulation in different environments. Secondly,We expect our software can help future iGEM teams to easily use riboswitches to express anticipated GOI and get the ideal level of expression. Finally, we hope to use the cell-free system to optimize RiboLego from the perspective of the department of engineering, and use vesicles to wrap asRNA so that it can carry out accurate real-time regulation of riboswitch state for many times.