Difference between revisions of "Team:Marburg/Description"

Line 25: Line 25:
 
           <div class="sub-header">
 
           <div class="sub-header">
 
             <h1>
 
             <h1>
               SYNECHOCOCCUS <br>
+
               S Y N E C H O C O C C U S<br>
               ELONGATUS
+
               E L O N G A T U S
 
             </h1>
 
             </h1>
 
             <hr>
 
             <hr>
Line 253: Line 253:
 
           <div class="sub-header">
 
           <div class="sub-header">
 
             <h1>
 
             <h1>
               STRAIN <br> ENGINEERING
+
               S T R A I N<br>E N G I N E E R I N G
 
             </h1>
 
             </h1>
 
             <hr>
 
             <hr>
Line 540: Line 540:
 
           <div class="sub-header">
 
           <div class="sub-header">
 
             <h1>
 
             <h1>
               MARBURG <br> COLLECTION 2.0
+
               M A R B U R G<br>C O L L E C T I O N &ensp; 2.0
 
             </h1>
 
             </h1>
 
             <hr>
 
             <hr>
Line 563: Line 563:
 
               style="text-align: justify;">
 
               style="text-align: justify;">
 
               <p>
 
               <p>
                  <b>Golden Gate Cloning and Modular Cloning: A historical review</b>
+
                <b>Golden Gate Cloning and Modular Cloning: A historical review</b>
                </p>
+
              </p>
                <p>Golden Gate assembly is a novel cloning method. It is at the heart of
+
              <p>Golden Gate assembly is a novel cloning method. It is at the heart of
                  Synthetic Biology as it reflects the philosophy behind this area more
+
                Synthetic Biology as it reflects the philosophy behind this area more
                  than anything else. To really understand the mechanics and philosophy
+
                than anything else. To really understand the mechanics and philosophy
                  behind it, one has to look not only at the molecular basics but also at
+
                behind it, one has to look not only at the molecular basics but also at
                  its history. This cloning strategy is based on Type IIS restriction
+
                its history. This cloning strategy is based on Type IIS restriction
                  enzymes. These enzymes have the uncommon property to cut next to their
+
                enzymes. These enzymes have the uncommon property to cut next to their
                  recognition sites, allowing the user to generate short DNA overhangs of
+
                recognition sites, allowing the user to generate short DNA overhangs of
                  their choice. This allows to seamlessly fuse DNA molecules together <a
+
                their choice. This allows to seamlessly fuse DNA molecules together <a
                    href="https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0003647">(Engler <i>et
+
                  href="https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0003647">(Engler <i>et
                      al.</i>, 2008)</a>
+
                    al.</i>, 2008)</a>
                  . Another advantage is that the restriction sites
+
                . Another advantage is that the restriction sites
                  can either remain or be completely cut off after restriction, based on
+
                can either remain or be completely cut off after restriction, based on
                  the way the user decides to integrate a restriction site. This for
+
                the way the user decides to integrate a restriction site. This for
                  example makes it possible to digest a fragment and ligate it in the same
+
                example makes it possible to digest a fragment and ligate it in the same
                  reaction without a chance that the fragment can be cut out again. This
+
                reaction without a chance that the fragment can be cut out again. This
                  simultaneous restriction and ligation process is frequently termed
+
                simultaneous restriction and ligation process is frequently termed
                  „Golden Gate reaction” <a
+
                „Golden Gate reaction” <a
                    href="https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0005553">(Engler <i>et
+
                  href="https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0005553">(Engler <i>et
                      al.</i>, 2009)</a>.</p>
+
                    al.</i>, 2009)</a>.</p>
                <figure style="text-align:center">
+
              <figure style="text-align:center">
                  <img style="height: 500px; "
+
                <img style="height: 500px; "
                    src="https://static.igem.org/mediawiki/2019/9/99/T--Marburg--Toolbox_EcoRIvsBsaI.svg
+
                  src="https://static.igem.org/mediawiki/2019/9/99/T--Marburg--Toolbox_EcoRIvsBsaI.svg
 
                                   "
 
                                   "
                    alt="design build test cycle">
+
                  alt="design build test cycle">
                  <figcaption style="max-width: 2400px; text-align: center">
+
                <figcaption style="max-width: 2400px; text-align: center">
                    <b>Fig.1</b>: Type II vs. Type IIS.
+
                  <b>Fig.1</b>: Type II vs. Type IIS.
 +
                </figcaption>
 +
              </figure>
 +
              <br>
 +
              <p>Pioneers in the field started to use these advancements to introduce a
 +
                syntax into cloning procedures: while researchers were previously bound
 +
                to use a variety of restriction enzymes, they can now break it down to
 +
                two enzymes usually. By standardizing at which state of a cloning
 +
                procedure which specific enzyme in conjunction with a specific entry
 +
                vector is to be used, the process of cloning becomes more streamlined
 +
                and researchers are given more time to focus on the vital questions of
 +
                their endeavor rather than the particularities of cloning. The ability
 +
                to produce overhangs of choice gave rise to the idea to standardize
 +
                these overhangs based on the function of a genetic device. Early on,
 +
                synthetic biologist saw how such a syntax complies with their philosophy
 +
                of understanding genetic components as devices and soon they started
 +
                standardizing overhangs for sequences like promoter, ribosomal binding
 +
                sites and other part “types” <a
 +
                  href="https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0016765 ">(Weber <i>et
 +
                    al.</i>, 2011)</a>. In this way, parts of
 +
                different genes could be fused together effortlessly. It essentially
 +
                allowed the cross compatibility of any genetic device in any organism,
 +
                even across laboratories as international standards started to be become
 +
                popular very soon. Singular devices like promoters were called “Parts”
 +
                in analogy to machine components in engineering, further rooting the
 +
                philosophy of Synthetic Biology in this cloning strategy. This type of
 +
                modular assembly of parts via Golden Gate cloning is nowadays coined as
 +
                “Modular Cloning” <a
 +
                  href="https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0016765 ">(Weber <i>et
 +
                    al.</i>, 2011)</a>.
 +
                Many part collections were published across the years, giving users full
 +
                access to a big amount of parts characterized in their promoter
 +
                strength, isolative capabilities and so on. Applicants were able to
 +
                create vectors from scratch using DNA parts in conjunction with a
 +
                complete data set on the activity of the parts to custom design the
 +
                plasmids they need for their specific application.
 +
                So many great thinkers advanced the progress in Modular Cloning and all
 +
                of their works were vital to carry us to the point at which we stand
 +
                these days. Here we present those that have influenced the design of our
 +
                Part Collection, the Marburg Collection, the most.</p>
 +
              <br>
 +
              <br>
 +
              <p>
 +
                <b>Modular Cloning (MoClo) by <a
 +
                    href="https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0016765 ">Weber <i>et
 +
                      al.</i> (2011)</a></b>
 +
              </p>
 +
              <p>The modular cloning system was the first proposing a standard for Golden
 +
                Gate based assembly. This toolbox offers five types of modules designed
 +
                mainly for eukaryotes. The modules are stored in level 0 acceptor
 +
                plasmids derived from the pUC19 backbone with a spectinomycin resistance
 +
                and a LacZα cassette as dropout for blue/white screening. Custom level 0
 +
                plasmids are assembled by flanking the sequences with BpiI recognition
 +
                sites and setting a single restriction-ligation-reaction with the
 +
                correspondent plasmid. Up to five level 0 modules are assembled in an
 +
                acceptor plasmid with ampicillin resistance and a LacZα-dropout by
 +
                restriction with BsaI to transcription units. Six transcription units can
 +
                be assembled using BpiI into level 2 multigene constructs containing a
 +
                kanamycin resistance and a Cred-dropout. Alternatively Esp3I can be used
 +
                to transfer the constructs to intermediary levels to reach higher levels
 +
                for assembly of bigger constructs. This toolbox is best for constructs
 +
                up to level 2 plasmids. Higher levels can be reached through
 +
                intermediary levels but need two restriction enzymes for the assembly.
 +
                Furthermore, it is important to know in which level the current
 +
                constructs stand to avoid messing up the acceptor plasmids for
 +
                subsequent levels.
 +
 
 +
 
 +
                One of the (in our opinion) best executions of a Modular Cloning system
 +
                is the yeast toolkit, also known as the Dueber toolbox <a
 +
                  href="https://www.ncbi.nlm.nih.gov/pubmed/25871405 ">(Lee <i>et al.</i>
 +
                  2015)</a>. It offers a Golden Gate based system adapted for yeast. The basic
 +
                level 0 parts are classified in eight types with optional subtypes. New
 +
                basic parts are assembled into entry plasmids by restriction with BsmBI.
 +
                For building level 1 cassettes at least eight parts are assembled by a
 +
                restriction-ligation step using BsaI. The innovation of this toolkit
 +
                compared to the previous is the use of connector sequences for level 1
 +
                and higher assembly steps. This way plasmids for yeast can be build de
 +
                novo without the need of a defined backbone. Furthermore, they integrated
 +
                a method for simple chromosomal integration by linearization of the
 +
                plasmids with NotI. On top of this the connectors can be used as
 +
                homology sequences e.g. for ligation-independent cloning, Gibson
 +
                assembly, ligase cycling reaction or yeast in vivo assembly.</p>
 +
              <br>
 +
              <br>
 +
              <p>
 +
                <b>The PhytoBrick standard: The Syntax of Syntex</b>
 +
              </p>
 +
              <p>Another significant milestone is the PhytoBrick <a
 +
                  href="https://www.ncbi.nlm.nih.gov/pubmed/26171760">(Patron <i>et al.</i>, 2015)</a>
 +
                standardization. It offers a wide standard compatible with popular
 +
                systems like MoClo aiming to create a standard focused primary on plant
 +
                engineering efforts. The iGEM competition already accepted it as an
 +
                standard and offers support for building parts designed for plants,
 +
                yeast and bacteria. This system proposes twelve defined fusion sites
 +
                applicable for the different genetic modules. The fusion sites are
 +
                divided into three major classes for promoter parts, transcribed regions
 +
                and terminator parts. These classes are divided into subclasses giving
 +
                the flexibility to use optional modules like tags, promoter, regulators
 +
                and enhancer regions. The system also proposes two types of universal
 +
                acceptor plasmids (UAPs) derived from the pSB1C3 plasmid where level 0
 +
                modules can be inserted by a single restriction-ligation step with BpiI
 +
                or BsmBI respectively. </p>
 +
              <br>
 +
              <br>
 +
              <p>
 +
                <b> Marburg Collection 2.0: The green expansion</b>
 +
              </p>
 +
              <p> We expanded on the Marburg Collection, a toolbox established by iGEM
 +
                Marburg in 2018. Thanks to its broad host range design inspired by the
 +
                “Dueber toolbox” from <a href="https://www.ncbi.nlm.nih.gov/pubmed/25871405 ">Lee <i>et al.</i>
 +
                  2015</a> we were able to apply it to our
 +
                new chassis <i>Synechococcus elongatus</i> UTEX2973. The design is extremely
 +
                simple: LVL 0 parts are the basic foundation, they contain one promoter,
 +
                ribosomal binding site or terminator etc. Up to eight LVL 0 parts are used
 +
                to create a LVL1 plasmid with a single transcription unit. The Marburg
 +
                Collection 2.0 presents a set of new parts adding several new functions,
 +
                expanding the range of hosts to use our parts on over the genera of
 +
                cyanobacteria as well as supporting new design options such as
 +
                Placeholder assemblies and vectors for genomic integrations.</p>
 +
              <br>
 +
              <br>
 +
              <p>
 +
                <b>Enabling high throughput assembly with flexible placeholder parts</b>
 +
              </p>
 +
              <p>Some applications require the construction of an array of higher LVL
 +
                parts that only differ in one part. We ourselves encountered this when
 +
                we screened the promoters of the Marburg Collection in our new chassis:
 +
                These plasmids all were the same except for a different promoter.
 +
                A “placeholder” is a part that gets assembled in a LVL1 construct just
 +
                like any other part. Internal cutting sites however make it possible to
 +
                cut this part out in a second cloning cycle in order to replace it with a
 +
                non-placeholder part of the same type. The advantages of using
 +
                placeholder in high throughput assemblies are clear: A seven part
 +
                assembly usually requires to screen multiple colonies before you find
 +
                the right one, meaning that a lot of test digesting or sequencing is
 +
                involved. This is feasible if you want to construct only a few parts.
 +
                For high throughput assemblies, however, the cost and time does not
 +
                scale well enough. A two part assembly however has an extremely high
 +
                success rate, meaning that in most cases it is sufficient to just pick
 +
                one colony to get correct sequencing results. </p>
 +
              <center>
 +
                <figure>
 +
                  <img style="height: 600px;"
 +
                    src="https://static.igem.org/mediawiki/2019/4/4e/T--Marburg--Toolbox_Promotorlibrary.svg"
 +
                    alt="Placeholder image">
 +
                  <figcaption>
 +
                    <b>Fig. 2</b> Schematic workflow for creating the promoter library.
 
                   </figcaption>
 
                   </figcaption>
 
                 </figure>
 
                 </figure>
                <br>
+
              </center>
                <p>Pioneers in the field started to use these advancements to introduce a
+
              <br>
                  syntax into cloning procedures: while researchers were previously bound
+
              <p> This two step assembly heavily cuts down the invested workload and the
                  to use a variety of restriction enzymes, they can now break it down to
+
                cost per sample. We designed these placeholders so they could aid us in
                  two enzymes usually. By standardizing at which state of a cloning
+
                our assemblies. By removing limiting cost and time factors with a smart
                  procedure which specific enzyme in conjunction with a specific entry
+
                design option we managed to close a big bottle neck on the way to
                  vector is to be used, the process of cloning becomes more streamlined
+
                upscaling Modular cloning.
                  and researchers are given more time to focus on the vital questions of
+
                Aside from a use in screening, these parts can also be utilized to find
                  their endeavor rather than the particularities of cloning. The ability
+
                new sequences with a function: A set of mixed together defined
                  to produce overhangs of choice gave rise to the idea to standardize
+
                oligonucleotides with randomized bases can be
                  these overhangs based on the function of a genetic device. Early on,
+
                inserted into a test vector containing a placeholder. This library of
                  synthetic biologist saw how such a syntax complies with their philosophy
+
                test vectors is introduced into a host to test the biological
                  of understanding genetic components as devices and soon they started
+
                characteristics of that sequence. A fluorescence reporter on the vector
                  standardizing overhangs for sequences like promoter, ribosomal binding
+
                can be used to sort out cells with the intended characteristic, for
                  sites and other part “types” <a
+
                example in an adequate high throughput screening method like FACS. This
                    href="https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0016765 ">(Weber <i>et
+
                massively accelerates the search for parts with a desired quality. Such
                      al.</i>, 2011)</a>. In this way, parts of
+
                 brute force approaches are becoming very popular in recent Synthetic
                  different genes could be fused together effortlessly. It essentially
+
                 Biology <a href="https://www.ncbi.nlm.nih.gov/pubmed/25419741 ">(Smanski et al., 2014)</a>.</p>
                  allowed the cross compatibility of any genetic device in any organism,
+
              <br><br>
                  even across laboratories as international standards started to be become
+
                  popular very soon. Singular devices like promoters were called “Parts”
+
                  in analogy to machine components in engineering, further rooting the
+
                  philosophy of Synthetic Biology in this cloning strategy. This type of
+
                  modular assembly of parts via Golden Gate cloning is nowadays coined as
+
                  “Modular Cloning” <a
+
                    href="https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0016765 ">(Weber <i>et
+
                      al.</i>, 2011)</a>.
+
                  Many part collections were published across the years, giving users full
+
                  access to a big amount of parts characterized in their promoter
+
                  strength, isolative capabilities and so on. Applicants were able to
+
                  create vectors from scratch using DNA parts in conjunction with a
+
                  complete data set on the activity of the parts to custom design the
+
                  plasmids they need for their specific application.
+
                  So many great thinkers advanced the progress in Modular Cloning and all
+
                  of their works were vital to carry us to the point at which we stand
+
                  these days. Here we present those that have influenced the design of our
+
                  Part Collection, the Marburg Collection, the most.</p>
+
                 <br>
+
                 <br>
+
                <p>
+
                  <b>Modular Cloning (MoClo) by <a
+
                      href="https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0016765 ">Weber <i>et
+
                        al.</i> (2011)</a></b>
+
                </p>
+
                <p>The modular cloning system was the first proposing a standard for Golden
+
                  Gate based assembly. This toolbox offers five types of modules designed
+
                  mainly for eukaryotes. The modules are stored in level 0 acceptor
+
                  plasmids derived from the pUC19 backbone with a spectinomycin resistance
+
                  and a LacZα cassette as dropout for blue/white screening. Custom level 0
+
                  plasmids are assembled by flanking the sequences with BpiI recognition
+
                  sites and setting a single restriction-ligation-reaction with the
+
                  correspondent plasmid. Up to five level 0 modules are assembled in an
+
                  acceptor plasmid with ampicillin resistance and a LacZα-dropout by
+
                  restriction with BsaI to transcription units. Six transcription units can
+
                  be assembled using BpiI into level 2 multigene constructs containing a
+
                  kanamycin resistance and a Cred-dropout. Alternatively Esp3I can be used
+
                  to transfer the constructs to intermediary levels to reach higher levels
+
                  for assembly of bigger constructs. This toolbox is best for constructs
+
                  up to level 2 plasmids. Higher levels can be reached through
+
                  intermediary levels but need two restriction enzymes for the assembly.
+
                  Furthermore, it is important to know in which level the current
+
                  constructs stand to avoid messing up the acceptor plasmids for
+
                  subsequent levels.
+
  
 +
              <p>
 +
                <b>A small part in our Collection, a big application for the future</b>
 +
              </p>
  
                  One of the (in our opinion) best executions of a Modular Cloning system
+
              <p> Just until recently Synthetic Biology was lacking a genetic platform for
                  is the yeast toolkit, also known as the Dueber toolbox <a
+
                 cyanobacterial hosts: The introduction of the panS based
                    href="https://www.ncbi.nlm.nih.gov/pubmed/25871405 ">(Lee <i>et al.</i>
+
                 self-replicating shuttle vector marks the first useable plasmid <a
                    2015)</a>. It offers a Golden Gate based system adapted for yeast. The basic
+
                  href="https://www.ncbi.nlm.nih.gov/pubmed/27902432 ">(Chen
                  level 0 parts are classified in eight types with optional subtypes. New
+
                  <i>et al.</i>, 2016)</a>, however it is not MoClo compatible. Therefore <a
                  basic parts are assembled into entry plasmids by restriction with BsmBI.
+
                   href="http://parts.igem.org/Part:BBa_K3228069">BBa_K3228069</a>
                  For building level 1 cassettes at least eight parts are assembled by a
+
                is in our eyes the most important addition to our Marburg
                  restriction-ligation step using BsaI. The innovation of this toolkit
+
                Collection 2.0. This part contains the minimal replication region of
                  compared to the previous is the use of connector sequences for level 1
+
                panS for cyanobacteria and a spectinomycin cassette; additionally the
                  and higher assembly steps. This way plasmids for yeast can be build de
+
                 ColE1 origin of replication can be used for cloning in <i>E. coli</i> and <i>V.
                  novo without the need of a defined backbone. Furthermore, they integrated
+
                   natriegens</i>. A second version with different flanks and a kanamycin
                  a method for simple chromosomal integration by linearization of the
+
                 resistance enables the construction of LVL 2 plasmids that can contain
                  plasmids with NotI. On top of this the connectors can be used as
+
                up to seven genes. We utilized the broad host-range flexibility of the
                  homology sequences e.g. for ligation-independent cloning, Gibson
+
                Marburg Collection to add a full set of organisms to its list of
                  assembly, ligase cycling reaction or yeast in vivo assembly.</p>
+
                applicable hosts.
                 <br>
+
                These parts are the heart piece of the green expansion as they describe
                <br>
+
                the world's first MoClo compatible shuttle vector for cyanobacteria.
                <p>
+
                  <b>The PhytoBrick standard: The Syntax of Syntex</b>
+
                 </p>
+
                <p>Another significant milestone is the PhytoBrick <a
+
                    href="https://www.ncbi.nlm.nih.gov/pubmed/26171760">(Patron <i>et al.</i>, 2015)</a>
+
                  standardization. It offers a wide standard compatible with popular
+
                  systems like MoClo aiming to create a standard focused primary on plant
+
                  engineering efforts. The iGEM competition already accepted it as an
+
                  standard and offers support for building parts designed for plants,
+
                  yeast and bacteria. This system proposes twelve defined fusion sites
+
                  applicable for the different genetic modules. The fusion sites are
+
                  divided into three major classes for promoter parts, transcribed regions
+
                  and terminator parts. These classes are divided into subclasses giving
+
                  the flexibility to use optional modules like tags, promoter, regulators
+
                  and enhancer regions. The system also proposes two types of universal
+
                  acceptor plasmids (UAPs) derived from the pSB1C3 plasmid where level 0
+
                  modules can be inserted by a single restriction-ligation step with BpiI
+
                  or BsmBI respectively. </p>
+
                <br>
+
                <br>
+
                <p>
+
                  <b> Marburg Collection 2.0: The green expansion</b>
+
                </p>
+
                <p> We expanded on the Marburg Collection, a toolbox established by iGEM
+
                   Marburg in 2018. Thanks to its broad host range design inspired by the
+
                  “Dueber toolbox” from <a href="https://www.ncbi.nlm.nih.gov/pubmed/25871405 ">Lee <i>et al.</i>
+
                    2015</a> we were able to apply it to our
+
                  new chassis <i>Synechococcus elongatus</i> UTEX2973. The design is extremely
+
                  simple: LVL 0 parts are the basic foundation, they contain one promoter,
+
                  ribosomal binding site or terminator etc. Up to eight LVL 0 parts are used
+
                  to create a LVL1 plasmid with a single transcription unit. The Marburg
+
                  Collection 2.0 presents a set of new parts adding several new functions,
+
                  expanding the range of hosts to use our parts on over the genera of
+
                  cyanobacteria as well as supporting new design options such as
+
                  Placeholder assemblies and vectors for genomic integrations.</p>
+
                 <br>
+
                <br>
+
                <p>
+
                   <b>Enabling high throughput assembly with flexible placeholder parts</b>
+
                 </p>
+
                <p>Some applications require the construction of an array of higher LVL
+
                  parts that only differ in one part. We ourselves encountered this when
+
                  we screened the promoters of the Marburg Collection in our new chassis:
+
                  These plasmids all were the same except for a different promoter.
+
                  A “placeholder” is a part that gets assembled in a LVL1 construct just
+
                  like any other part. Internal cutting sites however make it possible to
+
                  cut this part out in a second cloning cycle in order to replace it with a
+
                  non-placeholder part of the same type. The advantages of using
+
                  placeholder in high throughput assemblies are clear: A seven part
+
                  assembly usually requires to screen multiple colonies before you find
+
                  the right one, meaning that a lot of test digesting or sequencing is
+
                  involved. This is feasible if you want to construct only a few parts.
+
                  For high throughput assemblies, however, the cost and time does not
+
                  scale well enough. A two part assembly however has an extremely high
+
                  success rate, meaning that in most cases it is sufficient to just pick
+
                  one colony to get correct sequencing results. </p>
+
<center>
+
          <figure>
+
            <img style="height: 600px;" src="https://static.igem.org/mediawiki/2019/4/4e/T--Marburg--Toolbox_Promotorlibrary.svg"
+
              alt="Placeholder image">
+
            <figcaption>
+
            <b>Fig. 2</b> Schematic workflow for creating the promoter library.
+
            </figcaption>
+
          </figure>
+
</center>
+
                    <br>
+
                  <p> This two step assembly heavily cuts down the invested workload and the
+
                  cost per sample. We designed these placeholders so they could aid us in
+
                  our assemblies. By removing limiting cost and time factors with a smart
+
                  design option we managed to close a big bottle neck on the way to
+
                  upscaling Modular cloning.
+
                  Aside from a use in screening, these parts can also be utilized to find
+
                  new sequences with a function: A set of mixed together defined
+
                  oligonucleotides with randomized bases can be
+
                  inserted into a test vector containing a placeholder. This library of
+
                  test vectors is introduced into a host to test the biological
+
                  characteristics of that sequence. A fluorescence reporter on the vector
+
                  can be used to sort out cells with the intended characteristic, for
+
                  example in an adequate high throughput screening method like FACS. This
+
                  massively accelerates the search for parts with a desired quality. Such
+
                  brute force approaches are becoming very popular in recent Synthetic
+
                  Biology <a href="https://www.ncbi.nlm.nih.gov/pubmed/25419741 ">(Smanski et al., 2014)</a>.</p>
+
                <br><br>
+
  
                <p>
 
                  <b>A small part in our Collection, a big application for the future</b>
 
                </p>
 
 
                <p> Just until recently Synthetic Biology was lacking a genetic platform for
 
                  cyanobacterial hosts: The introduction of the panS based
 
                  self-replicating shuttle vector marks the first useable plasmid <a
 
                    href="https://www.ncbi.nlm.nih.gov/pubmed/27902432 ">(Chen
 
                    <i>et al.</i>, 2016)</a>, however it is not MoClo compatible. Therefore <a
 
                    href="http://parts.igem.org/Part:BBa_K3228069">BBa_K3228069</a>
 
                  is in our eyes the most important addition to our Marburg
 
                  Collection 2.0. This part contains the minimal replication region of
 
                  panS for cyanobacteria and a spectinomycin cassette; additionally the
 
                  ColE1 origin of replication can be used for cloning in <i>E. coli</i> and <i>V.
 
                    natriegens</i>. A second version with different flanks and a kanamycin
 
                  resistance enables the construction of LVL 2 plasmids that can contain
 
                  up to seven genes. We utilized the broad host-range flexibility of the
 
                  Marburg Collection to add a full set of organisms to its list of
 
                  applicable hosts.
 
                  These parts are the heart piece of the green expansion as they describe
 
                  the world's first MoClo compatible shuttle vector for cyanobacteria.
 
 
                  <figure style="text-align:center">
 
                    <img style="height: 500px;"
 
                      src="https://static.igem.org/mediawiki/2019/d/d3/T--Marburg--Toolbox_Shuttle_Lvl1.svg
 
                                  "
 
                      alt="design build test cycle">
 
                    <figcaption style="max-width: 2400px; text-align: center">
 
                      <b> Fig.3</b>: MoClo compatible shuttle vector for cyanobacteria.
 
                    </figcaption>
 
                  </figure>
 
                </p>
 
                <br><br>
 
                <p>
 
                  <b>Characterizing parts for our new chassis</b>
 
                </p>
 
                <p> To make sure that scientists are able to use our toolbox as convenient
 
                  as they do now with <i>Vibrio natriegens</i>, it is necessary to characterize
 
                  our part collection for our new chassis.
 
                  We established a workflow suited to cyanobacteria to characterize all
 
                  our parts in a consistent way. We realized that with a phototrophic
 
                  chassis we needed to rethink some common procedures to respect species
 
                  specific requirements.
 
                  Before the actual measurements many pretests such as establishing growth
 
                  conditions in well plates had to be done. We evaluated many
 
                  possibilities regarding growth of precultures and measuring procedures
 
                  and present you the best way to measure activities in UTEX 2973.</p>
 
                <br>
 
                <br>
 
                <p>
 
                  <b>Modular Engineering of Genome Areas (M.E.G.A.)</b>
 
                </p>
 
 
                <p>While a plasmid based introduction of genes is the most common way to
 
                  introduce genes into a species, genomic integrations are also a highly
 
                  demanded application. Often genes develop a very different phenotype in
 
                  genomic contexts due to a lower copy number and interactions with
 
                  neighbouring regions. The knockout of a gene by inserting a sequence in
 
                  its position is also a well approved way to study genetic interactions
 
                  in an organism.
 
                  Our M.E.G.A. expansion enables the user to design vectors that can
 
                  insert one or more genes into an integration site on the target genome.
 
                  Next to three conventional integration sites for cyanobacteria (NSI to
 
                  NSIII) that are used worldwide <a href="https://www.ncbi.nlm.nih.gov/pubmed/16303742">(Holtman <i>et
 
                      al.</i>, 2005)</a> we used a rational
 
                  design approach to create two new ones (artificial neutral integration
 
                  site options, aNSo I and aNSo II) that, according to RNA-sequencing data
 
                  <a href="https://2019.igem.org/Team:Marburg/Model#anso">(See: design of integration sites in
 
                    modelling)</a>, don’t show any
 
                  transcriptional activity from neighboring genes. Therefore they are
 
                  perfect candidates for a stable expression independent from cellular
 
                  contexts.</p>
 
 
                 <figure style="text-align:center">
 
                 <figure style="text-align:center">
                   <img style="height: 400px;"
+
                   <img style="height: 500px;"
                     src="https://static.igem.org/mediawiki/2019/d/d4/T--Marburg--Toolbox_GenomintegrationANSO.svg
+
                     src="https://static.igem.org/mediawiki/2019/d/d3/T--Marburg--Toolbox_Shuttle_Lvl1.svg
 
                                   "
 
                                   "
 
                     alt="design build test cycle">
 
                     alt="design build test cycle">
 
                   <figcaption style="max-width: 2400px; text-align: center">
 
                   <figcaption style="max-width: 2400px; text-align: center">
                     <b>Fig.4</b>: Integration into the genome.
+
                     <b> Fig.3</b>: MoClo compatible shuttle vector for cyanobacteria.
 
                   </figcaption>
 
                   </figcaption>
 
                 </figure>
 
                 </figure>
                 <br>
+
              </p>
                 <p>Using
+
              <br><br>
                   the input from our bioinformatical analysis we can now provide the
+
              <p>
                  tools to engineer the genome of many cyanobacterial strains in a
+
                 <b>Characterizing parts for our new chassis</b>
                  modulated fashion. Thanks to this expansion nothing stands in the way of
+
              </p>
                  tailoring custom strains to specific demands, be it of academical
+
              <p> To make sure that scientists are able to use our toolbox as convenient
                  nature for Synthetic Biology and foundational research on photosynthesis
+
                as they do now with <i>Vibrio natriegens</i>, it is necessary to characterize
                  or for industrial applications such as the design of producer strains
+
                our part collection for our new chassis.
                  for biotechnological processes.
+
                We established a workflow suited to cyanobacteria to characterize all
                </p>
+
                our parts in a consistent way. We realized that with a phototrophic
                <br>
+
                chassis we needed to rethink some common procedures to respect species
                <br>
+
                specific requirements.
                <p>
+
                Before the actual measurements many pretests such as establishing growth
                  <b> Presenting a broad range arsenal of reporters for the green expansion </b>
+
                conditions in well plates had to be done. We evaluated many
                </p>
+
                possibilities regarding growth of precultures and measuring procedures
                <p>Reporters are an essential basic tool of Synthetic Biology. We present a
+
                and present you the best way to measure activities in UTEX 2973.</p>
                  set of reporters for a broad range of applications:
+
              <br>
                  From cyanobacteria specific well established reporters like sYFP to
+
              <br>
                  mTurqoise, an alternative than be used in conjunction with YFP for a
+
              <p>
                  dual fluorescent reporter system <a href="https://2019.igem.org/Team:Marburg/Composite_Part">(best
+
                 <b>Modular Engineering of Genome Areas (M.E.G.A.)</b>
                    composite part)</a> we offer a variety of fluorescence based
+
              </p>
                  reporters for part characterizations.
+
 
                  To harness the incredible potential of novel findings in luminescence,
+
              <p>While a plasmid based introduction of genes is the most common way to
                  we also provide a set of luminescence reporters based on NanoLuc, that
+
                introduce genes into a species, genomic integrations are also a highly
                  strike out as completely cell independent, orthogonal reporters: The
+
                demanded application. Often genes develop a very different phenotype in
                  mutated version teLuc is especially well suited for cyanobacteria as it
+
                genomic contexts due to a lower copy number and interactions with
                  bypasses the natural absorption of cyanobacterial photopigments and
+
                neighbouring regions. The knockout of a gene by inserting a sequence in
                  Antares2 uses a FRET system that makes it possible to combine it with
+
                its position is also a well approved way to study genetic interactions
                  NanoLuc as a dual luminescence reporter system.
+
                in an organism.
                  Additionally we provide two reporters that have the ability to sense two
+
                Our M.E.G.A. expansion enables the user to design vectors that can
                  very crucial cellular parameters in cyanobacteria: Phluorin2 for the
+
                insert one or more genes into an integration site on the target genome.
                  detection of intracellular pH values that are crucial for rapid growth
+
                Next to three conventional integration sites for cyanobacteria (NSI to
                  and rxYFP for the detection of the redox status, that can have crippling
+
                NSIII) that are used worldwide <a href="https://www.ncbi.nlm.nih.gov/pubmed/16303742">(Holtman <i>et
                  effects on cellular effects by damaging DNA, lipids and proteins
+
                    al.</i>, 2005)</a> we used a rational
                  through reactive oxygen species (ROS).
+
                design approach to create two new ones (artificial neutral integration
                </p>
+
                site options, aNSo I and aNSo II) that, according to RNA-sequencing data
 +
                <a href="https://2019.igem.org/Team:Marburg/Model#anso">(See: design of integration sites in
 +
                   modelling)</a>, don’t show any
 +
                transcriptional activity from neighboring genes. Therefore they are
 +
                perfect candidates for a stable expression independent from cellular
 +
                contexts.</p>
 +
              <figure style="text-align:center">
 +
                <img style="height: 400px;"
 +
                  src="https://static.igem.org/mediawiki/2019/d/d4/T--Marburg--Toolbox_GenomintegrationANSO.svg
 +
                                  "
 +
                  alt="design build test cycle">
 +
                <figcaption style="max-width: 2400px; text-align: center">
 +
                  <b>Fig.4</b>: Integration into the genome.
 +
                </figcaption>
 +
              </figure>
 +
              <br>
 +
              <p>Using
 +
                the input from our bioinformatical analysis we can now provide the
 +
                tools to engineer the genome of many cyanobacterial strains in a
 +
                modulated fashion. Thanks to this expansion nothing stands in the way of
 +
                tailoring custom strains to specific demands, be it of academical
 +
                nature for Synthetic Biology and foundational research on photosynthesis
 +
                or for industrial applications such as the design of producer strains
 +
                for biotechnological processes.
 +
              </p>
 +
              <br>
 +
              <br>
 +
              <p>
 +
                <b> Presenting a broad range arsenal of reporters for the green expansion </b>
 +
              </p>
 +
              <p>Reporters are an essential basic tool of Synthetic Biology. We present a
 +
                set of reporters for a broad range of applications:
 +
                From cyanobacteria specific well established reporters like sYFP to
 +
                mTurqoise, an alternative than be used in conjunction with YFP for a
 +
                dual fluorescent reporter system <a href="https://2019.igem.org/Team:Marburg/Composite_Part">(best
 +
                  composite part)</a> we offer a variety of fluorescence based
 +
                reporters for part characterizations.
 +
                To harness the incredible potential of novel findings in luminescence,
 +
                we also provide a set of luminescence reporters based on NanoLuc, that
 +
                strike out as completely cell independent, orthogonal reporters: The
 +
                mutated version teLuc is especially well suited for cyanobacteria as it
 +
                bypasses the natural absorption of cyanobacterial photopigments and
 +
                Antares2 uses a FRET system that makes it possible to combine it with
 +
                NanoLuc as a dual luminescence reporter system.
 +
                Additionally we provide two reporters that have the ability to sense two
 +
                very crucial cellular parameters in cyanobacteria: Phluorin2 for the
 +
                detection of intracellular pH values that are crucial for rapid growth
 +
                and rxYFP for the detection of the redox status, that can have crippling
 +
                effects on cellular effects by damaging DNA, lipids and proteins
 +
                through reactive oxygen species (ROS).
 +
              </p>
 
               </p>
 
               </p>
 
             </div>
 
             </div>

Revision as of 21:26, 8 December 2019

D E S C R I P T I O N


We proudly present our project SYNTEX. We are establishing the new chassis Synechocococcus elongatus UTEX 2973 for phototrophic Synthetic Biology.


S Y N E C H O C O C C U S
E L O N G A T U S


An extensive review on the history of our chassis, recent findings and its potential future.

S T R A I N
E N G I N E E R I N G


Here we show the results of our Strain Engineering project to tame our "wolf".

M A R B U R G
C O L L E C T I O N   2.0


We present to you the Marburg Collection 2.0, an extensive addition to the previosly established part collection that focuses around cyanobacteria.

P R O J E C T
I N S P I R A T I O N


The inspiration for our project.

R E F E R E N C E S


Here we list up our references.