Difference between revisions of "Team:Marburg/Design"

Line 592: Line 592:
 
                   <div class="content-inner">
 
                   <div class="content-inner">
 
                     <p>
 
                     <p>
                       <i>a</i>rtificial <i>N</i>eutral integration <i>S</i>ite <i>o</i>ptions (aNSo) for our purpose in <i>Synechococcus
+
                       Artificial neutral integration site options (aNSo) for our purpose in <i>Synechococcus
                         elongatus</i> needed to fulfil three criteria, to be genuinely considered as potential
+
                         elongatus</i> needed to fulfill three criteria, to be genuinely considered as potential
 
                       candidates.<br>
 
                       candidates.<br>
 
                       A highly precise algorithm was implemented in a Python script to find these potential candidates
 
                       A highly precise algorithm was implemented in a Python script to find these potential candidates
                       (see <a href="https://2019.igem.org/Team:Marburg/Model">modeling</a>) by describing the following
+
                       (see <a href="https://2019.igem.org/Team:Marburg/Model#anso" target ="_blank">modeling</a>) by describing the following
 
                       criteria. First, no gene and transcription start site (TSS), i.e. no CDS, was allowed to be
 
                       criteria. First, no gene and transcription start site (TSS), i.e. no CDS, was allowed to be
 
                       disturbed, assuring that no lethal modification was created by integration. Thereby, we searched
 
                       disturbed, assuring that no lethal modification was created by integration. Thereby, we searched
Line 649: Line 649:
 
                         <li>
 
                         <li>
 
                           <b>Step 1:</b> Find your integration site.<br>
 
                           <b>Step 1:</b> Find your integration site.<br>
                           For more on this see <a href="https://2019.igem.org/Team:Marburg/Model">Modeling: integration
+
                           For more on this see <a href="https://2019.igem.org/Team:Marburg/Model#anso">Modeling: integration
 
                             sites</a>
 
                             sites</a>
 
                         </li>
 
                         </li>
Line 672: Line 672:
 
                         </li>
 
                         </li>
 
                         <li>
 
                         <li>
                           <b>Step 6:</b> Digest your LVL 0 Entry vector with BsmBI and purify it over an agarose gel to
+
                           <b>Step 6:</b> Digest your lvl0 Entry vector with BsmBI and purify it over an agarose gel to
 
                           remove the GfP Dropout.
 
                           remove the GfP Dropout.
 
                         </li>
 
                         </li>
 
                         <li>
 
                         <li>
                           <b>Step 7:</b> Ligate your digested PCR sample and LVL 0 Entry vector overnight.
+
                           <b>Step 7:</b> Ligate your digested PCR sample and lvl0 Entry vector overnight.
 
                         </li>
 
                         </li>
 
                         <li>
 
                         <li>
 
                           <b>Step 8:</b> Transform your ligation as usual in an <i>E. coli</i> or <i>V. natriegens</i>
 
                           <b>Step 8:</b> Transform your ligation as usual in an <i>E. coli</i> or <i>V. natriegens</i>
                           strain for cloning. Thanks to the predigested LVL 0 entry vector most colonies should appear
+
                           strain for cloning. Thanks to the predigested lvl0 entry vector most colonies should appear
 
                           white. Pick a few colonies and verify the construct inside by sequencing. Usually at least 1
 
                           white. Pick a few colonies and verify the construct inside by sequencing. Usually at least 1
 
                           in 2 sequencing results yields the correct construct.
 
                           in 2 sequencing results yields the correct construct.
Line 687: Line 687:
 
                     </div>
 
                     </div>
 
                     <p style="margin-top: 1em;">
 
                     <p style="margin-top: 1em;">
                       In a LVL 1 construct, the positions 2-5 representing a full transcription unit (promoter, RBS,
+
                       In a lvl1 construct, the positions 2-5 representing a full transcription unit (promoter, RBS,
 
                       CDS, terminator) would be integrated into the genome, while positions 7-8 (origin of replication,
 
                       CDS, terminator) would be integrated into the genome, while positions 7-8 (origin of replication,
 
                       antibiotic cassette) would be cut off in the recombination event. The issue with this assembly
 
                       antibiotic cassette) would be cut off in the recombination event. The issue with this assembly
Line 699: Line 699:
 
                         alt="Standard vs Integration">
 
                         alt="Standard vs Integration">
 
                       <figcaption style="max-width: 2400px; text-align: center;">
 
                       <figcaption style="max-width: 2400px; text-align: center;">
                         Fig.8 - Standard vs Integration
+
                         Fig.8 - Standard vs Integration cassette.
 
                       </figcaption>
 
                       </figcaption>
 
                     </figure>
 
                     </figure>
 
                     <p style="margin-top: 1em;">
 
                     <p style="margin-top: 1em;">
 
                       All terminators of the Marburg Collection were rebuild as "5a" parts similar to C-terminal tags.
 
                       All terminators of the Marburg Collection were rebuild as "5a" parts similar to C-terminal tags.
                       This allowed to insert an antibiotic cassette at the position "5b". For this position 4 different
+
                       This allowed to insert an antibiotic cassette at the position "5b". For this position four different
 
                       antibiotic cassettes were designed.<br>
 
                       antibiotic cassettes were designed.<br>
 
                       Our integration sites were also designed as connectors, so it is possible to build a gene cascade
 
                       Our integration sites were also designed as connectors, so it is possible to build a gene cascade
                       with up to 5 genes that can be inserted into a single neutral site. All integration sites function
+
                       with up to five genes that can be inserted into a single neutral site. All integration sites function
 
                       as 5'Con1 and 3'Con5 connectors, meaning they are always at the beginning of the first and the end
 
                       as 5'Con1 and 3'Con5 connectors, meaning they are always at the beginning of the first and the end
                       of the last gene in a LVL2 construct.<br>
+
                       of the last gene in a lvl2 construct.<br>
 
                       It is important to note for the user that when designing the vector for integration, the origin
 
                       It is important to note for the user that when designing the vector for integration, the origin
 
                       should not be compatible with the organism. This way, it enters the organism and then integrates
 
                       should not be compatible with the organism. This way, it enters the organism and then integrates
Line 715: Line 715:
 
                       will be maintained in the transformed organism and it will be rather complicated to remove it. If
 
                       will be maintained in the transformed organism and it will be rather complicated to remove it. If
 
                       there is no compatible origin available. We designed our toolbox so that it can always be
 
                       there is no compatible origin available. We designed our toolbox so that it can always be
                       digested with NotI to linearize the integration cassette and extracted it over a gel. In a lot of
+
                       digested with NotI to linearize the integration cassette and extracted over a gel. In a lot of
                       cases transformations and homologous recombinations with linear DNA are a lot more efficient. (see
+
                       cases transformations and homologous recombinations with linear DNA are a lot more efficient.<br>
                      <a href="https://2019.igem.org/Team:Marburg/Results">results of strain engineering</a>).<br>
+
                       Our system offers the integration of up to five genes with four different selection markers at five
                       Our system offers the integration of up to 5 genes with 4 different selection markers at 5
+
                       different integration sites. Therefore, the integration of up to twenty genes into the UTEX wild type
                       different integration sites. Therefore, the integration of up to 20 genes into the UTEX wild type
+
 
                       genome is possible.
 
                       genome is possible.
 
                     </p>
 
                     </p>
Line 739: Line 738:
 
                       When working in Synthetic Biology, reporter genes such as fluorescence proteins are indispensable
 
                       When working in Synthetic Biology, reporter genes such as fluorescence proteins are indispensable
 
                       elements to characterize BioBricks. For a good characterization a suitable reporter is required.
 
                       elements to characterize BioBricks. For a good characterization a suitable reporter is required.
                       But reporters can be more than just merely a detection tool for transcriptional activity but they
+
                       But reporters can be more than just merely a detection tool for transcriptional activity but             can also give a deeper insight into cellular conditions beyond the genetic context. We provide a
                      can also give a deeper insight into cellular conditions beyond the genetic context. We provide a
+
 
                       diverse set of reporters not only for the purpose of describing genetic tools but also for the
 
                       diverse set of reporters not only for the purpose of describing genetic tools but also for the
 
                       sensing of a variety of parameters which are crucial for cyanobacteria.
 
                       sensing of a variety of parameters which are crucial for cyanobacteria.
Line 789: Line 787:
 
                       <i>Source: FP Base (EYFP)</i>
 
                       <i>Source: FP Base (EYFP)</i>
 
                       <p style="margin-top: 1em;">
 
                       <p style="margin-top: 1em;">
                         eYFP is the mutant of green fluorescent protein naturally occuring in Aequorea victoria. It is a
+
                         eYFP is the mutant of green fluorescent protein naturally occuring in <i>Aequorea victoria</i>. It is a
 
                         preferred reporter for cyanobacteria as it bypasses the wavelength at which absorption
 
                         preferred reporter for cyanobacteria as it bypasses the wavelength at which absorption
 
                         photoactive pigments occurs, resulting in stronger signal overall
 
                         photoactive pigments occurs, resulting in stronger signal overall
Line 909: Line 907:
 
                         virtually no bleed-through of signal, making it suitable for dual fluorescent protein
 
                         virtually no bleed-through of signal, making it suitable for dual fluorescent protein
 
                         applications like terminator characterization (see
 
                         applications like terminator characterization (see
                         <a href="https://2019.igem.org/Team:Marburg/Composite_Part">here</a>).
+
                         <a href="https://2019.igem.org/Team:Marburg/Composite_Part" target="_blank">here</a>).
 
                       </p>
 
                       </p>
 
                     </div>
 
                     </div>
Line 917: Line 915:
 
                     <p>
 
                     <p>
 
                       NanoLuc is a small luminescent reporter with just a molecular weight of 19,5 kDA. This reporter
 
                       NanoLuc is a small luminescent reporter with just a molecular weight of 19,5 kDA. This reporter
                       stands out with a signal strength that is orders of magnitude higher than compared traditional
+
                       stands out with a signal strength that is orders of magnitude higher compared to traditional
 
                       luminescent reporters. It is a very small protein and unlike the lux operon it is only a single
 
                       luminescent reporters. It is a very small protein and unlike the lux operon it is only a single
                       gene, reducing the metabolic burden onto the host to a bare minimum. Additionally it is not using
+
                       gene, reducing the metabolic burden to the host to a bare minimum. Additionally it is not using
 
                       ATP as a substrate which is a valuable energy resource in cells. This way it does not affect the
 
                       ATP as a substrate which is a valuable energy resource in cells. This way it does not affect the
 
                       cellular context and acts as a truly orthogonal reporter.
 
                       cellular context and acts as a truly orthogonal reporter.
Line 927: Line 925:
 
                     </p>
 
                     </p>
 
                     <p>
 
                     <p>
                       TeLuc is a triple mutant of NanoLuc. Thanks to a modified substrate binding pocket it is able to
+
                       teLuc is a triple mutant of NanoLuc. Thanks to a modified substrate binding pocket it is able to
 
                       use DTZ as a substrate, resulting in a (42 nm) red-shift (from 460 nm to 502 nm peak) of
 
                       use DTZ as a substrate, resulting in a (42 nm) red-shift (from 460 nm to 502 nm peak) of
 
                       emission. This bypasses the absorption of Chlorophyll A, making it the more suitable reporter for
 
                       emission. This bypasses the absorption of Chlorophyll A, making it the more suitable reporter for
Line 936: Line 934:
 
                     </p>
 
                     </p>
 
                     <p>
 
                     <p>
                       Antares2 is a coupled bioluminescence protein consisting of TeLuc and two flanking CyOFP
+
                       Antares2 is a coupled bioluminescence protein consisting of teLuc and two flanking CyOFP
 
                       fluorescence reporters. It abuses the Bioluminescence Resonance Energy Transfer (BRET) to excite
 
                       fluorescence reporters. It abuses the Bioluminescence Resonance Energy Transfer (BRET) to excite
 
                       CyOFP with the luminescence of TeLuc. This results in a further red-shift, making it suitable for
 
                       CyOFP with the luminescence of TeLuc. This results in a further red-shift, making it suitable for
Line 945: Line 943:
 
                       detection of cellular conditions only fluorescent reporters are established yet. We present
 
                       detection of cellular conditions only fluorescent reporters are established yet. We present
 
                       reporters for the two most important chemical parameters in cyanobacteria: pH and redox status. We
 
                       reporters for the two most important chemical parameters in cyanobacteria: pH and redox status. We
                       saw that the pH of the media has a significant impact on the growth of the culture (see
+
                       saw that the pH of the media has a significant impact on the growth of the culture, which is
                      <a href="https://2019.igem.org/Team:Marburg/Results"></a>results: growth rates</a>), which is
+
 
                       previously described <a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC216614/">(Kallas,
 
                       previously described <a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC216614/">(Kallas,
                         Castenholz et al.)</a>. Cyanobacteria are not equipped to regulate their internal pH very well,
+
                         Castenholz <i>et al.</i>, 1982)</a>. Cyanobacteria are not equipped to regulate their internal pH very well,
 
                       yet they still depend on a stable proton gradient to keep up their photosynthetic machinery
 
                       yet they still depend on a stable proton gradient to keep up their photosynthetic machinery
                       <a href="https://jb.asm.org/content/190/19/6318">(Billini et al.)</a>. We present phlurion2, a
+
                       <a href="https://jb.asm.org/content/190/19/6318">(Billini <i>et al.</i>, 2008)</a>. We present pHluorin2, a
 
                       reporter that is modulated in its excitation peak by varying ph values.
 
                       reporter that is modulated in its excitation peak by varying ph values.
 
                     </p>
 
                     </p>
 
                     <div style="margin-top: 1em;">
 
                     <div style="margin-top: 1em;">
 
                       <p>
 
                       <p>
                         <b>pHlurion2 (S.e.)</b>
+
                         <b>pHlourin2 (S.e.)</b>
 
                       </p>
 
                       </p>
 
                       <table>
 
                       <table>
Line 974: Line 971:
 
                         </tr>
 
                         </tr>
 
                       </table>
 
                       </table>
                       <i>Source: FP Base (pHlurion2)</i>
+
                       <i>Source: FP Base (pHluorin2)</i>
 
                       <p style="margin-top: 1em;">
 
                       <p style="margin-top: 1em;">
                         pHlurion2 is a mutant of GFP2. Its excitation maximum depends on the surrounding pH value.
+
                         pHluorin2 is a mutant of GFP2. Its excitation maximum depends on the surrounding pH value.
 
                         Therefore it can be used to detect changes in the cellular pH. As described above a biosensor
 
                         Therefore it can be used to detect changes in the cellular pH. As described above a biosensor
 
                         for this parameter could be of great use, especially in cyanobacteria.
 
                         for this parameter could be of great use, especially in cyanobacteria.
                         <a href="">(Mahon, 2011)</a><br>
+
                         <a href="https://file.scirp.org/pdf/ABB20110300005_52257288.pdf" target="_blank">(Mahon, 2011)</a><br>
 
                         Another important cellular factor is the internal redox status. During photosynthesis reactive
 
                         Another important cellular factor is the internal redox status. During photosynthesis reactive
 
                         oxygen species (ROS) are constantly produced as a byproduct. A critical mass of reactive oxygen
 
                         oxygen species (ROS) are constantly produced as a byproduct. A critical mass of reactive oxygen
Line 987: Line 984:
 
                         For example, the overexpression of orthogonal thioredoxin peroxidase leads to the degradation
 
                         For example, the overexpression of orthogonal thioredoxin peroxidase leads to the degradation
 
                         of ROS resulting in enhanced growth of PCC7942,
 
                         of ROS resulting in enhanced growth of PCC7942,
                         <a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6297720/">(Kim et al.)</a> We present
+
                         <a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6297720/">(Kim <i>et al.</i>, 2018)</a> We present
 
                         rxYFP, a redox-sensitive reporter for cyanobacteria.
 
                         rxYFP, a redox-sensitive reporter for cyanobacteria.
 
                       </p>
 
                       </p>
Line 1,037: Line 1,034:
 
                       <i>Source: FP Base (sYFP)</i>
 
                       <i>Source: FP Base (sYFP)</i>
 
                       <p style="margin-top: 1em;">
 
                       <p style="margin-top: 1em;">
                         rxYFP is a redox-sensitive yellow fluorescent protein deriving from Aequorea victoria GFP. This
+
                         rxYFP is a redox-sensitive yellow fluorescent protein deriving from <i>Aequorea victoria</i> GFP. This
 
                         reporter contains a pair of redox-active Cys residues (Cys149 and Cys202), which are connected
 
                         reporter contains a pair of redox-active Cys residues (Cys149 and Cys202), which are connected
 
                         through a disulphide bond under oxidative conditions, resulting in a 2.2-fold reduction of the
 
                         through a disulphide bond under oxidative conditions, resulting in a 2.2-fold reduction of the

Revision as of 17:01, 8 December 2019

D E S I G N



"Always plan ahead. It wasn’t raining when Noah build the ark." - Richard Cushing


What does expanding the Golden Gate based Marburg Collection, automating time consuming lab work and establishing the CRISPR/Cas12a system in Synechococcus elongatus UTEX 2973 have in common?
To achieve these objectives, it is always necessary to have a comprehensive theoretical preparation. It all starts with literature research, summarizing the current state of the art and based on this developing own ideas. To have the theoretical background settled, before the lab work starts, is a key point of every project and consumes many hours.
Because in the near future phototrophic organisms will be more and more relevant for biotechnological applications, we want to establish the use of Synechococcus elongatus as a phototrophic organism for Synthetic Biology. Following the principles of Synthetic Biology to simplify the process of engineering of biological systems, we set it our goal to establish Synechococcus elongatus UTEX 2973 as the fastest and most accessible phototrophic chassis to date, providing it as a wind tunnel for phototrophic organisms with user friendly and standardized workflows.
In order to achieve these goals, a lot of effort has been put into designing, building, testing, evaluating and learning. Further, these steps had to be iterated over and over again to elaborate our standardized designs. By providing you our theoretical background we want to give you an insight in our decision-making.


S T R A I N
E N G I N E E R I N G


We modified Synechococcus elongatus UTEX 2973 to establish the CRISPR/Cas12a system in our organism.

T O O L B O X


We expanded last years Marburg Collection and made the parts suitable for Synechococcus elongatus UTEX 2973.