Difference between revisions of "Team:Marburg/Design"

Line 94: Line 94:
 
                     <div>
 
                     <div>
 
                       <p>
 
                       <p>
                         As mentioned in our <a href="https://2019.igem.org/Team:Marburg/Description">description</a>,
+
                         As mentioned in our <a href="https://2019.igem.org/Team:Marburg/Description" target="_blank">description</a>,
 
                         <i>Synechococcus elongatus </i>UTEX 2973 is no longer naturally competent, presumably due to a
 
                         <i>Synechococcus elongatus </i>UTEX 2973 is no longer naturally competent, presumably due to a
 
                         point mutation in the pilN gene (
 
                         point mutation in the pilN gene (
                         <a href="https://www.sciencedirect.com/science/article/pii/S1096717618301757?via%3Dihub"> Li et
+
                         <a href="https://www.sciencedirect.com/science/article/pii/S1096717618301757?via%3Dihub">Li <i>et
                           al., 2018</a>), which means that when genetically engineering this organism other ways to
+
                           al.</i>, 2018</a>), which means that when genetically engineering this organism other ways to
 
                         introduce exogenous DNA have to be taken into consideration. This is mainly done through
 
                         introduce exogenous DNA have to be taken into consideration. This is mainly done through
 
                         electroporation or conjugation - especially triparental conjugation
 
                         electroporation or conjugation - especially triparental conjugation
                         <a href="https://www.nature.com/articles/srep08132">(Yu et al., 2015)</a>. Triparental
+
                         <a href="https://www.nature.com/articles/srep08132">(Yu <i>et al.</i>, 2015)</a>. Triparental
 
                         conjugation into the UTEX 2973 strain is typically performed with two <i>E. coli</i> HB101
 
                         conjugation into the UTEX 2973 strain is typically performed with two <i>E. coli</i> HB101
                         strains, one harboring the pRL443 and one harboring the pRL623 plasmid. The latter strain is
+
                         strains, one harboring the pRL443 plasmid and one harboring the pRL623 plasmid. The latter strain is
 
                         then again transformed with the plasmid of interest, the prior is used as the conjugal strain -
 
                         then again transformed with the plasmid of interest, the prior is used as the conjugal strain -
 
                         both have to be incubated together with the cyanobacteria for the conjugation to take place
 
                         both have to be incubated together with the cyanobacteria for the conjugation to take place
 
                         <a href="https://microbialcellfactories.biomedcentral.com/articles/10.1186/s12934-016-0514-7">(
 
                         <a href="https://microbialcellfactories.biomedcentral.com/articles/10.1186/s12934-016-0514-7">(
                          Wendt et al., 2016)</a>.<br>
+
                        Wendt <i>et al.</i>, 2016)</a>.<br>
 
                         To overcome this time-consuming process, we planned to reintroduce natural competence into our
 
                         To overcome this time-consuming process, we planned to reintroduce natural competence into our
                         strain. It was already shown, that this can be done by integrating an intact copy of the
+
                         strain. It was already shown that this can be done by integrating an intact copy of the
 
                         <i>pilN</i> gene into one of the neutral sites
 
                         <i>pilN</i> gene into one of the neutral sites
                         <a href="https://www.sciencedirect.com/science/article/pii/S1096717618301757?via%3Dihub"> (Li et
+
                         <a href="https://www.sciencedirect.com/science/article/pii/S1096717618301757?via%3Dihub"> (Li <i>et
                           al., 2018)</a>, though this technique is not ideal: you have to add an antibiotic cassette in
+
                           al.</i>, 2018)</a>, though this technique is not ideal: you have to add an antibiotic cassette in
                         order to keep selective pressure on the bacteria, so that they integrate the new gene into all
+
                         order to keep selective pressure on the bacteria, so that they integrate the new gene into every chromosome copy. This antibiotic resistance will persist in the strain, meaning that when
                        the chromosome copies. This antibiotic resistance will persist in the strain, meaning that when
+
 
                         further engineering the organism later on, this one resistance can not be used e.g. in vectors
 
                         further engineering the organism later on, this one resistance can not be used e.g. in vectors
 
                         for transient expression - a huge downside. Furthermore, one of the neutral sites has to be
 
                         for transient expression - a huge downside. Furthermore, one of the neutral sites has to be
Line 125: Line 124:
 
                           alt="NS bild">
 
                           alt="NS bild">
 
                         <figcaption>
 
                         <figcaption>
                           Fig.1: Approach for reintroducing the natural competence of Li et al. The pilN-Gene gets
+
                           Fig.1: Approach for reintroducing the natural competence of Li <i>et al.</i>, 2018. The pilN-Gene gets
                           integrated via homologous recombination into the neutral side two, together with an
+
                           integrated via homologous recombination into the neutral site II(NS II), together with a
                           Chloramphenicol-resistance-cassette.
+
                           Chloramphenicol-resistance-cassette (cm Res).
 
                         </figcaption>
 
                         </figcaption>
 
                       </figure>
 
                       </figure>

Revision as of 15:36, 8 December 2019

D E S I G N



"Always plan ahead. It wasn’t raining when Noah build the ark." - Richard Cushing


What does expanding the Golden Gate based Marburg Collection, automating time consuming lab work and establishing the CRISPR/Cas12a system in Synechococcus elongatus UTEX 2973 have in common?
To achieve these objectives, it is always necessary to have a comprehensive theoretical preparation. It all starts with literature research, summarizing the current state of the art and based on this developing own ideas. To have the theoretical background settled, before the lab work starts, is a key point of every project and consumes many hours.
Because in the near future phototrophic organisms will be more and more relevant for biotechnological applications, we want to establish the use of Synechococcus elongatus as a phototrophic organism for Synthetic Biology. Following the principles of Synthetic Biology to simplify the process of engineering of biological systems, we set it our goal to establish Synechococcus elongatus UTEX 2973 as the fastest and most accessible phototrophic chassis to date, providing it as a wind tunnel for phototrophic organisms with user friendly and standardized workflows.
In order to achieve these goals, a lot of effort has been put into designing, building, testing, evaluating and learning. Further, these steps had to be iterated over and over again to elaborate our standardized designs. By providing you our theoretical background we want to give you an insight in our decision-making.


S T R A I N
E N G I N E E R I N G


We modified Synechococcus elongatus UTEX 2973 to establish the CRISPR/Cas12a system in our organism.

T O O L B O X


We expanded last years Marburg Collection and made the parts suitable for Synechococcus elongatus UTEX 2973.