Difference between revisions of "Team:Marburg/Design"

Line 18: Line 18:
 
       <p>
 
       <p>
 
         What does expanding the golden gate based Marburg Collection, automating time consuming lab work and
 
         What does expanding the golden gate based Marburg Collection, automating time consuming lab work and
         establishing the CRISPR/Cpf1 system in <i>Synechococcus elongatus</i> UTEX 2973 have in common?<br>
+
         establishing the CRISPR/Cas12a system in <i>Synechococcus elongatus</i> UTEX 2973 have in common?<br>
 
         To achieve these objectives, it is always necessary to have a comprehensive theoretical preparation. It all
 
         To achieve these objectives, it is always necessary to have a comprehensive theoretical preparation. It all
 
         starts with literature research, summarizing the current state of the art and based on this developing own
 
         starts with literature research, summarizing the current state of the art and based on this developing own
Line 47: Line 47:
 
         <div class="sub-content">
 
         <div class="sub-content">
 
           <div>
 
           <div>
             We modified <i>Synechococcus elongatus</i> UTEX 2973 to establish the CRISPR/Cpf1
+
             We modified <i>Synechococcus elongatus</i> UTEX 2973 to establish the CRISPR/Cas12a
 
             system in our organism.
 
             system in our organism.
 
           </div>
 
           </div>
Line 143: Line 143:
 
                         <figcaption>
 
                         <figcaption>
 
                           Fig.2: Approach for reintroducing the natural competence via repairing the natural pilN-gene
 
                           Fig.2: Approach for reintroducing the natural competence via repairing the natural pilN-gene
                           with Cas12a (Cpf1).
+
                           with Cas12a.
 
                         </figcaption>
 
                         </figcaption>
 
                       </figure>
 
                       </figure>

Revision as of 14:52, 8 December 2019

D E S I G N



"Always plan ahead. It wasn’t raining when Noah build the ark."
- Richard Cushing

What does expanding the golden gate based Marburg Collection, automating time consuming lab work and establishing the CRISPR/Cas12a system in Synechococcus elongatus UTEX 2973 have in common?
To achieve these objectives, it is always necessary to have a comprehensive theoretical preparation. It all starts with literature research, summarizing the current state of the art and based on this developing own ideas. To have the theoretical background settled before the lab work starts is a key point of every project and consumes many hours.
Because in the near future phototrophic organisms will get more and more relevance for biotechnological applications, we want to establish the use of Synechococcus elongatus as a phototrophic organism for synthetic biology. Following the principles of synthetic biology to simplify the process of engineering of biological systems, we set it our goal to establish Synechococcus elongatus UTEX 2973 as the fastest and most accessible phototrophic chassis to date, providing it as a wind tunnel for phototrophic organisms with user friendly and standardized workflows.
In order to achieve these goals, a lot of effort has been put into designing, building, testing, evaluating and learning. Further, these steps had to be iterated over and over again to elaborate our standardized designs. By providing you our theoretical background we want to give you an insight in our decision-making.


S T R A I N
E N G I N E E R I N G


We modified Synechococcus elongatus UTEX 2973 to establish the CRISPR/Cas12a system in our organism.

T O O L B O X


We expanded last years Marburg Collection and made the parts suitable for Synechococcus elongatus UTEX 2973.