Difference between revisions of "Team:Marburg/Model"

Line 2: Line 2:
 
<html>
 
<html>
 
   <style>
 
   <style>
    p {
 
      font-size: 100%;
 
      font-family: Arial;
 
    }
 
 
 
     .imageContainer3x3 {
 
     .imageContainer3x3 {
 
       display: flex;
 
       display: flex;
Line 99: Line 94:
 
       display: inline-block;
 
       display: inline-block;
 
     }
 
     }
 
 
   </style>
 
   </style>
 
   <div>
 
   <div>
Line 114: Line 108:
 
       <!--Add abstract like text here-->
 
       <!--Add abstract like text here-->
 
       <p>
 
       <p>
         The Unreasonable Effectiveness of Mathematics in the Natural Sciences" is the title of a very well-known article published by nobel laureate Eugene Wigner in the 1960s.
+
         The Unreasonable Effectiveness of Mathematics in the Natural Sciences" is the title of a very well-known article
Although this dictum is common reality in fields such as physics, many biologists still neglect the usefulness of these rigorous methods.
+
        published by nobel laureate Eugene Wigner in the 1960s.
This year, our interdisciplinary team has worked hard to change this impression and incorporated many state-of-the-art methods from various scientific fields into the project.
+
        Although this dictum is common reality in fields such as physics, many biologists still neglect the usefulness
We put a high emphasis on standardization which has emerged from a yearning for a meticulous quantitative approach to cyanobacterial research. In particular, our interest laid in determining the optimal growth parameters of our organism S. elongatus as these differed greatly in literature. The development of a state-of-the-art machine learning model allowed us to rapidly speed up this process and guide us towards our ultimate goal. In order to extend our standardization efforts, we additionally implemented a light model to properly predict light intensities for our cultures.
+
        of these rigorous methods.
Furthermore, modelling played a crucial role in both the search/design of suitable genome integration sites as well as the construction of a synthetic terminator library based on an extensive biophysical model. Without these rigorous analytical methods our project would have been unfeasible.
+
        This year, our interdisciplinary team has worked hard to change this impression and incorporated many
 +
        state-of-the-art methods from various scientific fields into the project.
 +
        We put a high emphasis on standardization which has emerged from a yearning for a meticulous quantitative
 +
        approach to cyanobacterial research. In particular, our interest laid in determining the optimal growth
 +
        parameters of our organism S. elongatus as these differed greatly in literature. The development of a
 +
        state-of-the-art machine learning model allowed us to rapidly speed up this process and guide us towards our
 +
        ultimate goal. In order to extend our standardization efforts, we additionally implemented a light model to
 +
        properly predict light intensities for our cultures.
 +
        Furthermore, modelling played a crucial role in both the search/design of suitable genome integration sites as
 +
        well as the construction of a synthetic terminator library based on an extensive biophysical model. Without
 +
        these rigorous analytical methods our project would have been unfeasible.
 
       </p>
 
       </p>
 
     </section>
 
     </section>
Line 124: Line 128:
 
     <section class="section grid">
 
     <section class="section grid">
 
       <div class="sub"
 
       <div class="sub"
         onclick="popup('model1')">
+
         onclick="popup('growth_curve_model')">
 
         <div class="sub-header">
 
         <div class="sub-header">
 
           <h1>
 
           <h1>
Line 135: Line 139:
 
         </div>
 
         </div>
 
       </div>
 
       </div>
       <div id="model1"
+
       <div id="growth_curve_model"
 
         class="popup">
 
         class="popup">
 
         <div class="popup-container">
 
         <div class="popup-container">
Line 143: Line 147:
 
             </h1>
 
             </h1>
 
             <button type="button"
 
             <button type="button"
               onclick="hide('model1')">X</button>
+
               onclick="hide('growth_curve_model')">X</button>
 
           </div>
 
           </div>
 
           <div class="popup-content"
 
           <div class="popup-content"
Line 171: Line 175:
 
                 absorption at 730 nm (<i>Ungerer et.al.</i> 2018) and sometimes at 750 nm (<i>Russo et.al.</i> 2019).
 
                 absorption at 730 nm (<i>Ungerer et.al.</i> 2018) and sometimes at 750 nm (<i>Russo et.al.</i> 2019).
 
                 Since many labs do not have a spectrometer that is able to measure absorption at 750 nm, we decided
 
                 Since many labs do not have a spectrometer that is able to measure absorption at 750 nm, we decided
                 after valuable input from <a href="https://2019.igem.org/Team:Marburg/Human_Practices#james_golden" target="_blank">James
+
                 after valuable input from <a href="https://2019.igem.org/Team:Marburg/Human_Practices#james_golden"
 +
                  target="_blank">James
 
                   Golden</a> to measure OD at 730 nm.
 
                   Golden</a> to measure OD at 730 nm.
 
               </p>
 
               </p>
Line 212: Line 217:
 
                         class="left">
 
                         class="left">
 
                       <figcaption style="float: left;"><b>Figure 1:</b> Luminosity function.<a
 
                       <figcaption style="float: left;"><b>Figure 1:</b> Luminosity function.<a
                           href="https://en.wikipedia.org/wiki/Luminosity_function" target="_blank">(Luminosity function)</a>
+
                           href="https://en.wikipedia.org/wiki/Luminosity_function"
 +
                          target="_blank">(Luminosity function)</a>
 
                       </figcaption>
 
                       </figcaption>
 
                     </figure>
 
                     </figure>
Line 233: Line 239:
 
                         class="center">
 
                         class="center">
 
                       <figcaption style="float: right;"><b>Figure 2:</b> Visual representation of Steradian.<a
 
                       <figcaption style="float: right;"><b>Figure 2:</b> Visual representation of Steradian.<a
                           href="https://en.wikipedia.org/wiki/Steradian" target="_blank">(Steradian)</a></figcaption>
+
                           href="https://en.wikipedia.org/wiki/Steradian"
 +
                          target="_blank">(Steradian)</a></figcaption>
 
                     </figure>
 
                     </figure>
 
                     <p>
 
                     <p>
Line 277: Line 284:
 
                 There are empirical conversion tables to convert values measured with the planar sensor to values of the
 
                 There are empirical conversion tables to convert values measured with the planar sensor to values of the
 
                 spherical measurement and vice versa, but they should be used with great caution.
 
                 spherical measurement and vice versa, but they should be used with great caution.
                 Again after the valuable input of <a href="https://2019.igem.org/Team:Marburg/Human_Practices#james_golden" target="_blankt">James
+
                 Again after the valuable input of <a
 +
                  href="https://2019.igem.org/Team:Marburg/Human_Practices#james_golden"
 +
                  target="_blankt">James
 
                   Golden</a> we decided to use the spherical sensor to measure the light intensity at any given
 
                   Golden</a> we decided to use the spherical sensor to measure the light intensity at any given
 
                 position.
 
                 position.
Line 308: Line 317:
 
                 <br>
 
                 <br>
 
                 While some of the parameters such as CO2 were fairly easy to measure, we were particularly concerned
 
                 While some of the parameters such as CO2 were fairly easy to measure, we were particularly concerned
                 about the standardization of <a href="https://2019.igem.org/Team:Marburg/Measurement#light_measurement" target="_blank">light
+
                 about the standardization of <a href="https://2019.igem.org/Team:Marburg/Measurement#light_measurement"
 +
                  target="_blank">light
 
                   measurement</a>.
 
                   measurement</a>.
 
                 <br>
 
                 <br>
Line 471: Line 481:
 
               <p>
 
               <p>
 
                 Then we had to figure out how to keep the culture safe from contamination but at the same way provide
 
                 Then we had to figure out how to keep the culture safe from contamination but at the same way provide
                 enough CO2, so that concentrations in the media could support the rapid growth of <i>S. elongatus</i> UTEX
+
                 enough CO2, so that concentrations in the media could support the rapid growth of <i>S. elongatus</i>
 +
                UTEX
 
                 2973. We took several approaches. Closing the flask opening tightly with gas permeable film under the
 
                 2973. We took several approaches. Closing the flask opening tightly with gas permeable film under the
 
                 sterile work bench seemed to us as the optimal solution. At the same time we tested foam material
 
                 sterile work bench seemed to us as the optimal solution. At the same time we tested foam material
Line 490: Line 501:
 
                     alt="HTML IST SCHEI?E"
 
                     alt="HTML IST SCHEI?E"
 
                     class="center">
 
                     class="center">
                   <figcaption style="float: right;"><b>Figure 5:</b> Growth of <i>S. elongatus</i> UTEX 2973 influenced by
+
                   <figcaption style="float: right;"><b>Figure 5:</b> Growth of <i>S. elongatus</i> UTEX 2973 influenced
 +
                    by
 
                     flask geometry. Different geometries are given as flask capacity and amount of baffles.</a>
 
                     flask geometry. Different geometries are given as flask capacity and amount of baffles.</a>
 
                   </figcaption>
 
                   </figcaption>
Line 524: Line 536:
 
                 Being in contact with the cyano-community, we soon realized that a culture medium in not a culture
 
                 Being in contact with the cyano-community, we soon realized that a culture medium in not a culture
 
                 medium, even though one is speaking from the same medium. This is owed to the fact that <a
 
                 medium, even though one is speaking from the same medium. This is owed to the fact that <a
                   href="https://2019.igem.org/Team:Marburg/Human_Practices#standardization" target="_blank">different
+
                   href="https://2019.igem.org/Team:Marburg/Human_Practices#standardization"
                laboratories use different protocols</a> when preparing them. After gathering
+
                  target="_blank">different
                 <a href="https://2019.igem.org/Team:Marburg/Experiments#protocols" target="_blank">protocols</a>, we decided on four promising ones and tested them we (Figure 7). Off those four media, the
+
                  laboratories use different protocols</a> when preparing them. After gathering
 +
                 <a href="https://2019.igem.org/Team:Marburg/Experiments#protocols"
 +
                  target="_blank">protocols</a>, we decided on four promising ones and tested them we (Figure 7). Off
 +
                those four media, the
 
                 one supporting rapid growth the best was BGM, which was adopted as the main growth medium and replaced
 
                 one supporting rapid growth the best was BGM, which was adopted as the main growth medium and replaced
 
                 BG11. BGM conferred
 
                 BG11. BGM conferred
Line 542: Line 557:
 
                     alt="HTML IST SCHEI?E"
 
                     alt="HTML IST SCHEI?E"
 
                     class="center">
 
                     class="center">
                   <figcaption style="float: right;"><b>Figure 7:</b> Influence of different media to the growth of <i>S. elongatus</i> UDAR 2973. See <a href="https://2019.igem.org/Team:Marburg/Experiments">protocols</a>
+
                   <figcaption style="float: right;"><b>Figure 7:</b> Influence of different media to the growth of <i>S.
 +
                      elongatus</i> UDAR 2973. See <a
 +
                      href="https://2019.igem.org/Team:Marburg/Experiments">protocols</a>
 
                     for contents and preparation methods. </a></figcaption>
 
                     for contents and preparation methods. </a></figcaption>
 
                 </figure>
 
                 </figure>
Line 948: Line 965:
 
                 instead of a more data demanding approach like k nearest neighbors, support vector machines or neural
 
                 instead of a more data demanding approach like k nearest neighbors, support vector machines or neural
 
                 networks.
 
                 networks.
                 This regressional model was built using <a href="https://scikit-learn.org/stable/" target="_blank">scikit learn</a>
+
                 This regressional model was built using <a href="https://scikit-learn.org/stable/"
 +
                  target="_blank">scikit learn</a>
 
                 (<i>Pedregose et.al.</i> 2011).
 
                 (<i>Pedregose et.al.</i> 2011).
 
                 Even with this approach, the amount of data we have at our disposal is not enough to deliver a model
 
                 Even with this approach, the amount of data we have at our disposal is not enough to deliver a model
Line 1,115: Line 1,133:
 
                 <br>
 
                 <br>
  
                 During this investigation into how to grow UTEX 2973 in the optimal way we stumbled upon many things that
+
                 During this investigation into how to grow UTEX 2973 in the optimal way we stumbled upon many things
 +
                that
 
                 we thought to be insufficiently documented or standardized.
 
                 we thought to be insufficiently documented or standardized.
 
                 We investigated how to optimally measure light intensity and thought critically about the state of the
 
                 We investigated how to optimally measure light intensity and thought critically about the state of the
Line 1,218: Line 1,237:
 
       </div>
 
       </div>
 
       <div class="sub"
 
       <div class="sub"
         onclick="popup('model2')">
+
         onclick="popup('anso')">
 
         <div class="sub-header">
 
         <div class="sub-header">
 
           <h1>
 
           <h1>
Line 1,232: Line 1,251:
 
         </div>
 
         </div>
 
       </div>
 
       </div>
       <div id="model2"
+
       <div id="anso"
 
         class="popup">
 
         class="popup">
 
         <div class="popup-container">
 
         <div class="popup-container">
Line 1,240: Line 1,259:
 
             </h1>
 
             </h1>
 
             <button type="button"
 
             <button type="button"
               onclick="hide('model2')">X</button>
+
               onclick="hide('anso')">X</button>
 
           </div>
 
           </div>
 
           <div class="popup-content"
 
           <div class="popup-content"
Line 1,248: Line 1,267:
 
               <p>
 
               <p>
 
                 As conventional neutral integration sites for cyanobacteria affect cellular fitness by knocking out
 
                 As conventional neutral integration sites for cyanobacteria affect cellular fitness by knocking out
                 existing genes (<a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3551649/">Dempwolff, et al. 2012</a>), we sought
+
                 existing genes (<a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3551649/">Dempwolff, et al.
 +
                  2012</a>), we sought
 
                 to find new integration sites that are truly independent of the genomic and cellular context. The
 
                 to find new integration sites that are truly independent of the genomic and cellular context. The
 
                 identification of potential artificial Neutral integration Site options (aNSo) in the genome of
 
                 identification of potential artificial Neutral integration Site options (aNSo) in the genome of
Line 1,268: Line 1,288:
 
                 <br>
 
                 <br>
 
                 We achieved this by processing the GenBank file (gbk) containing all of the annotated genes and
 
                 We achieved this by processing the GenBank file (gbk) containing all of the annotated genes and
                 transcription start sites (TSS) of the <i>S. elongatus</i> UTEX 2973 genome. All lines that contained the
+
                 transcription start sites (TSS) of the <i>S. elongatus</i> UTEX 2973 genome. All lines that contained
 +
                the
 
                 word “gene” along with their corresponding genomic locational information, described by indices on
 
                 word “gene” along with their corresponding genomic locational information, described by indices on
 
                 the plus strand, were parsed. These indices provided information about the position of the first and
 
                 the plus strand, were parsed. These indices provided information about the position of the first and
Line 1,284: Line 1,305:
 
                 required. The missing number of nucleotides, which could not be covered by the intergenic region,
 
                 required. The missing number of nucleotides, which could not be covered by the intergenic region,
 
                 had to be filled up with the sequence of the upstream and downstream located genes. For this, a
 
                 had to be filled up with the sequence of the upstream and downstream located genes. For this, a
                 FASTA file containing the genomic sequence of <i>S. elongatus</i> UTEX 2973 <a href="https://doi.org/10.1038/srep08132">(Yu et al., 2015)</a> was read into
+
                 FASTA file containing the genomic sequence of <i>S. elongatus</i> UTEX 2973 <a
 +
                  href="https://doi.org/10.1038/srep08132">(Yu et al., 2015)</a> was read into
 
                 the environment and the potential intergenic sequences were extracted based on the indices +/- the
 
                 the environment and the potential intergenic sequences were extracted based on the indices +/- the
 
                 missing nucleotides and saved additionally in the tuple.<br>
 
                 missing nucleotides and saved additionally in the tuple.<br>
Line 1,296: Line 1,318:
 
                 The final step of the identification of aNSo is comprised of eliminating all entries which included
 
                 The final step of the identification of aNSo is comprised of eliminating all entries which included
 
                 a TSS in the intergenic region. Using the gbk file comprising all TSS identified in a
 
                 a TSS in the intergenic region. Using the gbk file comprising all TSS identified in a
                 transcriptomics study by <a href="https://doi.org/10.1186/s13068-018-1215-8">Tan et al., 2018</a> as input, the indices of TSSs in the genome were parsed
+
                 transcriptomics study by <a href="https://doi.org/10.1186/s13068-018-1215-8">Tan et al., 2018</a> as
 +
                input, the indices of TSSs in the genome were parsed
 
                 and defined in a list. Afterwards a set was created, containing all intergenic regions which
 
                 and defined in a list. Afterwards a set was created, containing all intergenic regions which
 
                 inherited a TSS, and the tuple containing all potential aNSo was transformed into a set as well. By
 
                 inherited a TSS, and the tuple containing all potential aNSo was transformed into a set as well. By
Line 1,419: Line 1,442:
 
                 Talking to numerous experts in the field of phototrophic research necessitated
 
                 Talking to numerous experts in the field of phototrophic research necessitated
 
                 the need for strong transcriptional termination for large genetic engineering projects.
 
                 the need for strong transcriptional termination for large genetic engineering projects.
                 <br>  
+
                 <br>
 
                 In bacteria, two processes are responsible for proper transcript termination: intrinsic Rho-independent
 
                 In bacteria, two processes are responsible for proper transcript termination: intrinsic Rho-independent
 
                 terminators, generally low energy RNA hairpins; and Rho-dependent terminators, which rely on the binding
 
                 terminators, generally low energy RNA hairpins; and Rho-dependent terminators, which rely on the binding
 
                 of the Rho protein.
 
                 of the Rho protein.
 
                 The majority of bacteria have a homolog of the E. coli Rho protein, with a few exceptions such as our
 
                 The majority of bacteria have a homolog of the E. coli Rho protein, with a few exceptions such as our
                 organism <i>S. elongatus</i> <a href="https://doi.org/10.1371/journal.pcbi.0010025">(<i>de Hoon et al.,</i>
+
                 organism <i>S. elongatus</i> <a href="https://doi.org/10.1371/journal.pcbi.0010025">(<i>de Hoon et
 +
                    al.,</i>
 
                   2005)</a>.
 
                   2005)</a>.
  
Line 1,437: Line 1,461:
 
                 from the RNA polymerase (<i>Krebs et al.,</i> 2014).
 
                 from the RNA polymerase (<i>Krebs et al.,</i> 2014).
 
                 <br><br>
 
                 <br><br>
                 It’s important to note that, especially in our organism <i>S. elongatus</i>, not all terminators cause complete
+
                 It’s important to note that, especially in our organism <i>S. elongatus</i>, not all terminators cause
 +
                complete
 
                 termination. In some cases, these terminators are found in between ORFs inside the same operon and might
 
                 termination. In some cases, these terminators are found in between ORFs inside the same operon and might
 
                 be involved in creating complex transcription structures. From here on, however, our analysis will be
 
                 be involved in creating complex transcription structures. From here on, however, our analysis will be
Line 1,515: Line 1,540:
  
 
               <p>
 
               <p>
              Based upon these results we were tasked with the correct identification of the U-tract, hairpin and the
+
                Based upon these results we were tasked with the correct identification of the U-tract, hairpin and the
              A-tract regions. The predicted secondary structures were often hairpins that extended beyond the
+
                A-tract regions. The predicted secondary structures were often hairpins that extended beyond the
              terminator hairpin. The reason for this was the formation of base pairs between the upstream poly(A)
+
                terminator hairpin. The reason for this was the formation of base pairs between the upstream poly(A)
              sequences and the U-tract. For the precise identification of these regions it was important that the
+
                sequences and the U-tract. For the precise identification of these regions it was important that the
              poly(U) region was part of the U-tract and not the hairpin. To correctly distinguish these two several
+
                poly(U) region was part of the U-tract and not the hairpin. To correctly distinguish these two several
              steps had to be taken. Given a stem loop structure, we screened for possible U-tracts in the region
+
                steps had to be taken. Given a stem loop structure, we screened for possible U-tracts in the region
              between the sixth nucleotide in the 3’-arm of the stem loop and the eighth nucleotide after the stem by
+
                between the sixth nucleotide in the 3’-arm of the stem loop and the eighth nucleotide after the stem by
              evaluating every 8 base pairs.
+
                evaluating every 8 base pairs.
              For this we have calculated the Gibbs free energy of all possible U-tracts with the formula
+
                For this we have calculated the Gibbs free energy of all possible U-tracts with the formula
              <br>
+
                <br>
 
               </p>
 
               </p>
 
               <figure style="text-align:center;">
 
               <figure style="text-align:center;">
Line 1,533: Line 1,558:
  
 
               <p>
 
               <p>
                 Where N<sub>U</sub> = 8 is the length of the U-tract, ΔG<sub>RNA:DNA</sub> is the free-energy contribution of the
+
                 Where N<sub>U</sub> = 8 is the length of the U-tract, ΔG<sub>RNA:DNA</sub> is the free-energy
 +
                contribution of the
 
                 RNA:DNA hybridization from the two nucleotides pairs at position i and i+1.
 
                 RNA:DNA hybridization from the two nucleotides pairs at position i and i+1.
  
Line 1,718: Line 1,744:
 
                 <br>
 
                 <br>
 
                 <p>
 
                 <p>
                We now wanted to use these records to analyze the impact of mutations in different terminator regions.
+
                  We now wanted to use these records to analyze the impact of mutations in different terminator regions.
                In order to experimentally test this, we established a workflow that allows us to screen a huge
+
                  In order to experimentally test this, we established a workflow that allows us to screen a huge
                combinatorial library of terminators.
+
                  combinatorial library of terminators.
  
                For this we have selected 3 of the strongest terminators which have mutually distinct features such as
+
                  For this we have selected 3 of the strongest terminators which have mutually distinct features such as
                different hairpin and loop length.
+
                  different hairpin and loop length.
                Based on research experience we have decided to include mutations in the respective U and A-tracts. The
+
                  Based on research experience we have decided to include mutations in the respective U and A-tracts.
                synthetic library was ordered as degenerate oligos.
+
                  The
 +
                  synthetic library was ordered as degenerate oligos.
  
                To test the terminator efficiency in vivo we build a GoldenGate Lvl2 constructs with a terminator
+
                  To test the terminator efficiency in vivo we build a GoldenGate Lvl2 constructs with a terminator
                spaceholder surrounded by 2 fluorescent proteins.
+
                  spaceholder surrounded by 2 fluorescent proteins.
  
                <br>
+
                  <br>
                Because of the different emitting spectra of these fluorescent proteins we will be able to measure both
+
                  Because of the different emitting spectra of these fluorescent proteins we will be able to measure
                independently which allows for indirect measurement of terminator strength.
+
                  both
                For this we calculate the ratio between induced mTurquoise and induced YFP normalized by control
+
                  independently which allows for indirect measurement of terminator strength.
                (plasmid with no terminator inserted).
+
                  For this we calculate the ratio between induced mTurquoise and induced YFP normalized by control
 +
                  (plasmid with no terminator inserted).
  
                With the help of FACS we will be able to systematically separate the different terminators and analyze
+
                  With the help of FACS we will be able to systematically separate the different terminators and analyze
                the impact of different mutations.
+
                  the impact of different mutations.
  
                We hope that this approach will inspire other teams to build and screen large libraries of synthetic
+
                  We hope that this approach will inspire other teams to build and screen large libraries of synthetic
                parts so that the scientific community can gain a deeper insight into the inner workings of elementary
+
                  parts so that the scientific community can gain a deeper insight into the inner workings of elementary
                molecular building blocks.
+
                  molecular building blocks.
 
                 </p>
 
                 </p>
 
                 <br>
 
                 <br>
Line 1,748: Line 1,776:
 
                     src="https://static.igem.org/mediawiki/2019/0/05/T--Marburg--terminator_construct_dunno.png"
 
                     src="https://static.igem.org/mediawiki/2019/0/05/T--Marburg--terminator_construct_dunno.png"
 
                     alt="Placeholder image">
 
                     alt="Placeholder image">
                <figcaption> <b> Figure 3 </b> Overview of the Golden Gate Lvl2 construct which we constructed to measure the terminator strength using different fluorescent proteins.  
+
                  <figcaption> <b> Figure 3 </b> Overview of the Golden Gate Lvl2 construct which we constructed to
                </figcaption>
+
                    measure the terminator strength using different fluorescent proteins.
 +
                  </figcaption>
 
                 </figure>
 
                 </figure>
 
                 <br>
 
                 <br>

Revision as of 19:19, 7 December 2019

M O D E L L I N G


The Unreasonable Effectiveness of Mathematics in the Natural Sciences" is the title of a very well-known article published by nobel laureate Eugene Wigner in the 1960s. Although this dictum is common reality in fields such as physics, many biologists still neglect the usefulness of these rigorous methods. This year, our interdisciplinary team has worked hard to change this impression and incorporated many state-of-the-art methods from various scientific fields into the project. We put a high emphasis on standardization which has emerged from a yearning for a meticulous quantitative approach to cyanobacterial research. In particular, our interest laid in determining the optimal growth parameters of our organism S. elongatus as these differed greatly in literature. The development of a state-of-the-art machine learning model allowed us to rapidly speed up this process and guide us towards our ultimate goal. In order to extend our standardization efforts, we additionally implemented a light model to properly predict light intensities for our cultures. Furthermore, modelling played a crucial role in both the search/design of suitable genome integration sites as well as the construction of a synthetic terminator library based on an extensive biophysical model. Without these rigorous analytical methods our project would have been unfeasible.


Growth Curve Model


artificial Neutral integration
Site options


Terminator Model