Difference between revisions of "Team:Marburg/Description"

Line 1: Line 1:
 
{{Marburg}}
 
{{Marburg}}
<html>
+
<html style="overflow: hidden">
  <div>
+
 
     <section class="section">
+
<head>
      <div class="container">
+
     <link rel="stylesheet" type="text/css" href="./styles.css">
        <figure class="image">
+
    <script type="text/javascript" src="./scripts.js"></script>
          <img src="https://static.igem.org/mediawiki/2019/b/b9/T--Marburg--m_logo-text.jpg" alt="Syntex Logo" style="width: auto; height: 7.5rem;">
+
    <script type="text/javascript" src="https://code.jquery.com/jquery-2.2.4.min.js"></script>
        </figure>
+
    <link rel="stylesheet" href="https://cdnjs.cloudflare.com/ajax/libs/bulma/0.7.5/css/bulma.min.css">
      </div>
+
</head>
    </section>
+
 
    <section class="section" style="padding-top: 0;">
+
<body style="overflow: auto; max-height: 100vh;">
      <div class="container">
+
    <center>
         <h1 class="title">
+
         <h1 class="title">Description</h1>
          Our Project
+
    </center>
        </h1>
+
    <br>
        <div class="columns is-desktop">
+
    <p>
          <div class="column">
+
        <center>"crazy quote" - <b>sick author</b></center>
            <p style="margin-bottom: 1rem;">
+
        <br>
              With rising atmospheric CO<sub>2</sub> concentrations and declining oil reserves,
+
        <br>
              we saw that the worldwide effort to change from a petroleum based industry to a carbon neutral industry needs to increase drastically.
+
        Hier Abstract von Hinrik einfügen
              One
+
        <br>
              of the most promising key technologies right now is the use of phototrophic organisms for biotechnological applications. Hence, we
+
        <br>
              decided
+
    </p>
              quite early this year to devote ourselves to a photosynthetic project. During the design phase, which we initially thought about a
+
    <br>
              project
+
    <div class="container">
              around the model moss <i>Physcomitrella patens</i>, we soon stumbled upon many common obstacles characteristic to phototrophic chassis
+
        <div class="box" style="cursor: pointer;" onclick="popup('rbn211')">
              due
+
             <article class="media">
              to our choice of organism. Issues like time intensive culturing and complicated techniques to perform basic molecular biological methods
+
                <div class="media-content">
              eventually showed us, why only very few iGEM teams every year decide to use a phototrophic chassis. We saw a need to tackle these issues
+
                    <div class="content">
              and were determined to find a solution.
+
                        <h2><i>Synechococcus elongatus UTEX 2973</i></h2>
              Consequently, our choice fell on the cyanobacterial strain <i>Synechococcus elongatus</i> UTEX 2973, due to its highly potential
+
                        <p>
              doubling
+
                            1-2 sentence abstract
              time of about 2 hours <sup>1</sup>. This could have a huge impact, as the time consumed by many workflows is mainly dictated by the
+
                        </p>
              growth
+
                    </div>
              of your chassis. Our strain could compete with common heterotrophic chassis like yeast, which would be a novelty in photosynthetic
+
                </div>
              research. We are dedicated to develop this strain as a chassis for the scientific community and future iGEM teams. To restore its
+
             </article>
              natural
+
              competence, which it has lost after isolation, we will integrate a CRISPR/Cpf1 system into our toolbox, enabling easy genomic
+
              manipulation
+
              and thus giving us the tools to construct various strains and revert the point mutation responsible for the loss of natural competence.
+
              Additionally, we remove the wild type plasmid pANS from <i>Synechococcus</i> to use it’s origin of replication in our “Marburg
+
              Collection
+
              2.0”: a versatile Golden Gate based modular cloning library for fast state of the art assembly of genetic constructs based on a “one
+
              step
+
              - one pot” reaction. By designing “operon connectors”, our toolbox is the first to assemble complete operons in the span of two days.
+
              This
+
              assembly technique can be performed in our open source liquid handler OT-2 from Opentrons, paving the way for our vision of fully
+
              automated cloning in molecular and synthetic biology - from ordered primers to the finished construct. To add to this vision, we are the
+
              first to establish several laboratory practices in this robot such as colony picking, plating and plasmid purification. By making full
+
              cloning processes possible in the Opentron environment, we give iGEM teams access to an affordable way to accelerate their undertaking,
+
              allowing them to allocate more time to the design of their project. In our metabolic engineering project we prove the value of the tools
+
              we hereby provide: Using our cloning system, we modify our established chassis to produce limonene and farnesene, two valuable
+
              biochemicals that can be used as a biofuel. The chassis’ capabilities are not limited to terpene production but can be expanded to other
+
              areas of biotechnological applications as well as to academic experimental setups. Customized strains offer the opportunity of
+
              sustainable
+
              growth in drug development and manufacturing, helping us all to achieve our vision of a more sustainable future on this planet.
+
             </p>
+
            <p>
+
              <sup>1</sup> Yu, J.; Liberton M.; Cliften, P. F.; Head, R. D.; Jacobs, J. M.; Smith, R. D.; Koppenaal, D. W.; Brand J. J.; Pakrasi, H.
+
              B.:
+
              <i>Synechococcus elongatus</i> UTEX 2973, a
+
              fast growing cyanobacterial chassis for
+
              biosynthesis using light and CO<sub>2</sub>. Scientific Reports. 5:8132. DOI: 10.1038/srep08132 (2015)
+
            </p>
+
          </div>
+
          <div class="column">
+
            <figure class="image">
+
              <img src="https://static.igem.org/mediawiki/2019/d/d4/T--Marburg--m_team.jpg" alt="Team">
+
             </figure>
+
          </div>
+
 
         </div>
 
         </div>
      </div>
+
    </div>
     </section>
+
     <div id="rbn211" class="popup">
  </div>
+
        <div class="popup-container">
 +
            <div class="popup-header">
 +
                <h1><i> <b>Synechococcus elongatus</i> UTEX 2973: a review</b></h1>
 +
                <button type="button" onclick="hide('rbn211')">X</button>
 +
            </div>
 +
            <div class="popup-content" style="text-align: justify;">
 +
                <p>
 +
                    <b>Introduction</b>
 +
                    <br>
 +
                    Cyanobacteria have been popular in research for centuries but recently they gained a spotlight in
 +
                    Synthetic Biology. The forefather of photosynthesis is interesting because of its simplicity, making
 +
                    it easier to engineer the system but also because of its growth speed that surpasses that of plants.
 +
                    In recent years phototrophs became the notorious revolutionizers of “green biotechnology”: as
 +
                    photoautotrophic organisms, they only require CO2 and sunlight as carbon and energy sources to
 +
                    generate biomass.<br>
 +
 
 +
 
 +
                    <br> The following introduction serves as an overview over our new chassis
 +
                    Synechococcus elongatus UTEX 2973, based on the latest research results.<br>
 +
                    <br>
 +
 
 +
                    <b>The organism</b>
 +
                    <br>
 +
                    The gram-negative photoautotrophic cyanobacterial strain Synechococcus elongatus UTEX 2973 is an
 +
                    isolate from the 1955 described strain Anacystis nidulans. This strain was kept at the University of
 +
                    Texas as Synechococcus leopoliensis UTEX 625. A colony was selected from a mixed culture of this
 +
                    strain, resulting in Synechococcus elongatus UTEX 2973. The resulting organism is genetically very
 +
                    close to the well studied strain Synechococcus elongatus PCC 7942. With the fastest measured
 +
                    doubling time of below 90 minutes and a high tolerance to temperature and light intensity, UTEX 2973
 +
                    is a chassis to keep an eye on.
 +
                    Cyanobacteria have big advantages compared to other phototrophic organisms such as plants or
 +
                    eukaryotic algae: next to their faster growth they also convert solar energy a lot more efficiently.
 +
                    The faster generation of biomass makes cyanobacteria a potential candidate for biotechnological
 +
                    application and their amenability to genetic modifications (Ungerer, Wendt, Hendry, Maranas, &
 +
                    Pakrasi, 2018) make them a great platform for research. Despite these advantages, cyanobacteria have
 +
                    still not arrived in Synthetic Biology quite as we want. With our highly optimized chassis
 +
                    Synechococcus UTEX 2973 we want to change just that.
 +
                    <br>
 +
                    <div class="wrap-collabsible">
 +
                        <input id="UTEX text" class="toggle" type="checkbox">
 +
                        <label for="UTEX text" class="lbl-toggle">Comparison to the well-studied organism Synechococcus
 +
                            elongatus PCC 7942</label>
 +
                        <div class="collapsible-content">
 +
                            <div class="content-inner">
 +
                                <p>
 +
                                    Genome sequencing has proven that our strain is 99.8% identical to the much better
 +
                                    studied strain Synechococcus elongatus PCC 7942, which is surprising since both
 +
                                    strains were isolated from completely different locations. While UTEX 2973 tolerates
 +
                                    high light intensities, PCC 7942 is photoinhibited by light intensities of less than
 +
                                    half of those which UTEX 2973 can withstand. In electron microscopic examinations
 +
                                    carboxysomes and polyphosphate bodies were found in both strains. Most conspicuous
 +
                                    are the spherical, 30nm sized electron-dense bodies in PCC 7942, which are not
 +
                                    present in UTEX 2973. It is assumed that the bodies are carbon stored in the form of
 +
                                    glycogen. UTEX 2973 does not generate glycogen storage and uses the carbon directly
 +
                                    for biomass production, resulting in faster growth.<br>
 +
                                    Research has also proven that several changes in the photosynthetic apparatus cause
 +
                                    decreased phycobilisomes but enhancement of Photosystem I, cytochrome f and
 +
                                    plastocyanin contents (Ungerer et al., 2018).<br>
 +
                                    The most notable advantage is UTEX’ unparalleled doubling time. PCC 7942 takes more
 +
                                    than twice as long, while only producing a third of its biomass. In an experiment
 +
                                    under the same initial conditions, the dry weight of UTEX 2973 also increased to
 +
                                    0.87 mg/ml, compared to only 0.33 mg/ml in PCC 7942 (Yu et al., 2015). Unlike UTEX
 +
                                    2973, PCC 7942 is naturally competent due to its porin-like proteins. These proteins
 +
                                    are encoded on the inverted region in the genome so that inversion in UTEX 2973 can
 +
                                    be reversed.<br>
 +
                                    <br>
 +
                                    But what allows UTEX 2973 to have such vital advantages?<br>
 +
                                    <br>
 +
                                    When comparing both strains, one can observe that their content of amino acids
 +
                                    varies greatly: the amount of amino acids in UTEX 2973 lies at 53% whereas in PCC
 +
                                    7942 it is 40.9% (Mueller, Ungerer, Pakrasi, & Maranas, 2017). This results in a
 +
                                    different composition of the biomass, which is due to the discovered single
 +
                                    nucleotide polymorphisms (SNP’s). Among other things, they cause an increased
 +
                                    translation rate through a more efficient RNA polymerase. In addition, UTEX 2973
 +
                                    increases.<br>
 +
                                </p>
 +
                            </div>
 +
                        </div>
 +
                    </div>
 +
                    <p>
 +
                        <br>
 +
                        <b>Molecular aspect</b>
 +
                        <br>
 +
                        UTEX 2973 differs from PCC 7942 in 55 single nucleotide polymorphisms and insertion-deletions,
 +
                        as well as a 188.6 kb inversion and a six open reading frame deletion (Mueller, Ungerer,
 +
                        Pakrasi, & Maranas, 2017). Thereby these mutations must contain the genetic determinant for
 +
                        UTEX’ rapid growth rate.<br>
 +
                        Three genes have been discovered as potentially being involved in better growth. AtpA encodes
 +
                        for the alpha subunit of an ATP-synthase with an apparent higher specific activity. The
 +
                        difference results in a substitution of one amino acid (Cys in PCC 7942 to Tyr in UTEX 2973).
 +
                        Another significant difference lies in the ppnK encoded NAD+-kinase. Glutamin acid in PCC 7942
 +
                        substitutes into aspartic acid in UTEX 2973, which affects improved enzyme kinetics. Another
 +
                        important gene is rpaA, which improves the circadian response regulator. These adjustments
 +
                        relieve a photosynthetic bottleneck, increasing the capacity for photosynthetic electron flow.
 +
                        This ensures the usage of higher light intensities while producing more ATP and NADPH to fix
 +
                        CO2. All this ultimately leads to better growth of UTEX 2973. In this experiment, the SNP’s in
 +
                        UTEX 2973 were inserted into PCC 7942, thereby significantly improving its growth rate (Ungerer
 +
                        et al., 2018).<br>
 +
                        Thus, these minimal genetic changes cause a huge impact in growth rate and CO2 absorption, which
 +
                        proves UTEX 2973 to be second to nothing. photorespiration and the synthesis of glyoxylate, a
 +
                        precursor of several amino acids. Some SNPs alter kinetic parameters of metabolic enzymes and
 +
                        increase the production of biomass components. Most striking is the difference in the rate of
 +
                        carbon uptake and its allocation in biomass. UTEX 2973 absorbs CO2 2.06 times more efficiently
 +
                        than PCC 7942.<br>
 +
                        <br>
 +
 
 +
                        <b>Field of application</b>
 +
                        <br>
 +
                        Synechococcus elongatus UTEX 2973 has the potential to change paradigms in Synthetic
 +
                        Biology:<br>
 +
                        With its incredibly low doubling time for phototroph standards, UTEX 2973 is eligible for rapid
 +
                        prototyping.<br>
 +
                        We need good innovations to accelerate feasible photosynthetic research. Phototrophic organisms
 +
                        such as plants are simply too slow inhibiting innovative progress. With our organism UTEX 2973
 +
                        it is possible to test different parts and plasmids quickly, inexpensively and easily.<br>
 +
                        Cloning is a time-consuming process, especially when you have hundreds of parts in a collection.
 +
                        You can quickly test all the parts in UTEX 2973 and then test the working assemblies in your
 +
                        actual organism, so UTEX acts as a technical prototype to accelerate the design build test
 +
                        cycle.<br>
 +
                        <figure style="text-align:center">
 +
                            <img style="height: 300px; width: 320px;" src="https://static.igem.org/mediawiki/2019/a/a2/T--marburg--DesignBuildTestLearn.jpg
 +
                          " alt="design build test cycle">
 +
                            <figcaption style="max-width: 2400px; text-align: center">
 +
                                Fig.1 - design build test cycle
 +
                            </figcaption>
 +
                        </figure>
 +
                        <br>
 +
                        If an assembly didn't work, it's easy to locate the error, optimize the construct design and get
 +
                        the desired result quickly.<br>
 +
                        As a photoautotrophic prokaryote, UTEX 2973 is a simple organism that is easy to work with.
 +
                        Plants as eukaryotes are much more complicated, so the work and research become more
 +
                        complex.<br>
 +
                        So if you want to advance photosynthetic research, you can, for example, analyze and modify
 +
                        pathways on this prokaryot without much effort. UTEX 2973 is perfect to design engineering and
 +
                        principles in an easy chassis and afterwards apply it all to a higher organism.<br>
 +
                        UTEX 2973 can also be used to significantly enhance the process of characterization and
 +
                        standardization of cyanobacteria and their biological “parts-list”.<br>
 +
                        We have already advanced this aspect and established a reproducible “parts-list” so it is
 +
                        already possible to easily work with it.<br>
 +
                        <br>
 +
                        In "Green biotechnology” our chassis can be used to sustainably produce carbon neutral platform
 +
                        chemicals without fossil fuels. These platform chemicals can be used to produce biofuels and
 +
                        bioplastics or carbohydrate feedstocks (Song, Tan, Liang, & Lu, 2016). Innovations like these
 +
                        are needed to propel the development of a sustainable, fossil fuel independent industry of
 +
                        tomorrow.
 +
                        Many secondary metabolites have pharmaceutical benefits, such as amino acids, fatty acids,
 +
                        macrolides, lipopeptides and amides (Yu et al., 2015). The cyanobacteria strain Synechocystis
 +
                        sp. PCC 6803 already serves as a brilliant example for the application of cyanobacteria: it has
 +
                        been genetically modified to secrete fatty acids and thus to avoid costly biomass recovery in
 +
                        the production of photosynthetically produced, sustainable biofuels (Liu, Sheng, & Curtiss,
 +
                        2011).<br>
 +
                        <br>
 +
                        Establishing UTEX 2973 with its versatile capabilities could pave the way to making industrial
 +
                        biotechnology more sustainable and thus be a solution to combating climate change, one of the
 +
                        most horrific challenges humanity has ever faced. UTEX 2973 embodies progress and innovation on
 +
                        the highest level.<br>
 +
                        <br>
 +
 
 +
                        <b>Genetic amenability</b>
 +
                        <br>
 +
                        In recent years, the CRISPR system has enabled precise gene editing. Gene editing is well
 +
                        feasible in UTEX 2973 with the CRISPR technology and an alternative nuclease Cpf1 from the
 +
                        organism Francisella novicida as Cas9 is toxic to cyanobacteria (Ungerer & Pakrasi, 2016).<br>
 +
                        Despite the loss of its natural competence, UTEX 2973 is a suitable candidate for genetic
 +
                        engineering.
 +
                        DNA can be easily introduced into UTEX 2973 trough triparental conjugation via E. coli and the
 +
                        self-replicating vector pANS. Shuttle vectors are of great interest as they lead to higher gene
 +
                        expression compared to genome integration. In addition, they retain large DNA inserts in the
 +
                        organism even without selection pressure and are easy to transform (Chen et al., 2016).
 +
                        We developed facile-transforming shuttle-vectors and thus, we were able to extend the genetic
 +
                        toolbox and simplify genetic engineering.<br>
 +
 
 +
 
 +
 
 +
 
 +
 
 +
 
 +
 
 +
 
 +
 
 +
 
 +
 
 +
 
 +
                    </p>
 +
                    <br>
 +
                    <br>
 +
 
 +
            </div>
 +
        </div>
 +
    </div>
 +
    <br>
 +
    <div class="container">
 +
        <div class="box" style="cursor: pointer;" onclick="popup('rbn212')">
 +
            <article class="media">
 +
                <div class="media-content">
 +
                    <div class="content">
 +
                        <h2>Strain Engineering</h2>
 +
                        <p>
 +
                 
 +
<p>SHORT SELLING PARAGRAPH NEEDED</p>
 +
<br>
 +
<p><b>Natural Competence</b></p>
 +
<p>One of the most important aspects when engineering an organism is the actual modification of its genetic code.
 +
The introduction of exogenous DNA can be done in multiple ways - through electroporation, conjugation, heat shock or
 +
via natural competence.<br>
 +
Electroporation is a method in which an electrical field is applied to cells, in order to increase the permeability of
 +
the membrane, enabling DNA uptake not just in prokaryotic
 +
<a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC210424/">(Thiel and Poo, 1989)</a>,
 +
but also eukaryotic cells
 +
<a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2975437/">(Potter and Heller, 2010)</a>.
 +
Although relatively simple to perform, this technique is not ideal, as the success rate is rather low and many precautions
 +
have to be taken: salt concentration and field strength highly effect the outcome and secreted endonucleases can degrade the
 +
DNA beforehand  <a href="https://www.sciencedirect.com/science/article/pii/S0717345818300083">(Zeaiter et al., 2018)</a>.<br>
 +
Conjugation is a more complicated and laborious method where cell to cell contact is needed. Pili are formed to transfer DNA
 +
from one cell to another - but not all DNA can be transferred, as the plasmid that is to be conjugated needs to harbour a
 +
mobilization sequence <a href="https://www.sciencedirect.com/science/article/pii/B9780323074476000119?via%3Dihub">(Actor, 2012)</a>.
 +
This method is more popular in cyanobacterial research, as it overcomes the above mentioned problems that come with
 +
electroporation <a href="https://www.sciencedirect.com/science/article/pii/S0717345818300083">(Zeaiter et al., 2018)</a>.</p><br>
 +
 
 +
<p>And what is natural competence?</p><br>
 +
 
 +
<p>Natural competence was first discovered by Frederick Griffith in 1928
 +
<a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2167760/">(Griffith et al., 1928)</a>
 +
by studying different <i>Streptococcus pneumoniae</i> strains - a virulent and a non-virulent one. Although he did not know
 +
the biological processes behind it, he realized that genetic information can be passed on from one bacterium to another,
 +
as previously non-virulent strains could be transformed to virulent ones. In comparison to other types of competence that
 +
can e.g. be chemically induced, natural competence is the ability of cells to take up extracellular DNA from their
 +
environment under natural conditions.</p><br>
 +
 
 +
<p>Natural competence is found in different kinds of bacteria - also in cyanobacteria. Despite the fact that there is
 +
still much to uncover about the exact mechanisms of natural DNA uptake in cyanobacteria, previous efforts by
 +
<a href="https://www.frontiersin.org/articles/10.3389/fmicb.2019.01259/full#B26">Schuergers and Wilde, 2015</a>,
 +
<a href="https://academic.oup.com/pcp/article/42/1/63/1851484">Yoshihara et al., 2001</a>,
 +
<a href="https://onlinelibrary.wiley.com/doi/full/10.1046/j.1365-2958.2000.02068.x">Bhaya et al., 2002 </a>
 +
and many more have led to the construction of a preliminary model of the type IV-like pilus responsible for natural
 +
transformation in <i>Synechocystis sp.</i> PCC 6803
 +
<a href="https://www.frontiersin.org/articles/10.3389/fmicb.2019.01259/full">(Wendt and Pakrasi, 2019)</a>,
 +
which can be seen in <i>Figure 1</i>.<br>
 +
 
 +
<figure style="text-align:center">
 +
      <img style="height: 393px; width: 450px;"
 +
          src="https://static.igem.org/mediawiki/2019/4/4c/T--Marburg--T4-Pilus.svg" alt="Preliminary model of the cyanobacterial transformation pilus (Type4 Pilli).">
 +
      <figcaption style="max-width: 2400px; text-align: center">
 +
          Fig.1 - Preliminary model of the cyanobacterial transformation pilus (Type4 Pilli). Figure after <a href="https://www.frontiersin.org/articles/10.3389/fmicb.2019.01259/full">Wendt and Pakrasi, 2019</a>.
 +
      </figcaption>
 +
  </figure>
 +
 
 +
<br>
 +
In order to take up extracellular DNA several steps seem to be necessary: The double stranded DNA has to be picked up
 +
by the type IV-like pilus and transported through an outer membrane pore comprised of PilQ subunits
 +
<a href="https://onlinelibrary.wiley.com/doi/full/10.1046/j.1365-2958.2000.02068.x">(Bhaya et al., 2002)</a>
 +
and is then converted to single stranded DNA by a certain nuclease before being passed through an
 +
inner membrane pore composed of ComE subunits
 +
<a href="https://academic.oup.com/pcp/article/42/1/63/1851484">(Yoshihara et al., 2001)</a>.</p><br>
 +
 
 +
<p>Early studies have tried to identify cyanobacterial strains capable of natural transformation, from which just a few
 +
species have been frequently chosen to serve as model organisms, including <i>Synechococcus sp.</i> PCC 7002,
 +
<i>Synechococcus sp.</i> PCC 6803, <i>Synechococcus elongatus</i> PCC 7942
 +
<a href="https://www.frontiersin.org/articles/10.3389/fmicb.2019.01259/full#B13">(Koksharova and Wolk, 2002)</a>.<br>
 +
Cyanobacterial species are known to be naturally competent, yet have been shown they have at least one complete set of the
 +
genes identified in the above mentioned model
 +
<a href="https://www.frontiersin.org/articles/10.3389/fmicb.2019.01259/full">(Wendt and Pakrasi, 2019)</a>
 +
- one of them being <i>Synechococcus elongatus</i> PCC 7942.
 +
This strain is closely related to <i>Synechococcus elongatus</i> UTEX 2973, in fact genome comparisons show just 55
 +
single nucleotide polymorphisms and indels
 +
<a href="https://www.nature.com/articles/srep08132">(Yu et al., 2015)</a>.
 +
Previous studies have suggested that a single point mutation in the pilN gene is responsible for the loss of
 +
natural competence in <i>S. elongatus</i> UTEX 2973
 +
<a href="https://www.sciencedirect.com/science/article/pii/S1096717618301757?via%3Dihub">(Li et al., 2018)</a>,
 +
so in an effort to reintroduce natural competence into this strain, intact versions of the pilN gene from
 +
<i>S.elongatus</i> PCC 7942 have been successfully introduced into one of the neutral sites in the genome
 +
of UTEX 2973 via homologous recombination
 +
<a href="https://www.sciencedirect.com/science/article/pii/S1096717618301757?via%3Dihub">(Li et al., 2018)</a>,
 +
showing that natural competence can be achieved in this strain. </p><br>
 +
 
 +
<p>As natural competence is the easiest and often most efficient way to incorporate exogenous DNA into an organism,
 +
this is a crucial feature that comes in handy for every chassis.<br>
 +
For this reason we planned to restore the natural competence of <i>S.elongatus</i> UTEX 2973 - what approaches we took
 +
and how we planned all of it through can be found in our <a href="https://2019.igem.org/Team:Marburg/Design">design</a> section. </p><br>
 +
 
 +
 
 +
 
 +
 
 +
<p><b>CRISPR gene editing</b></p>
 +
<p>Clustered regularly interspaced short palindromic repeats / CRISPR associated protein (CRISPR/Cas) systems are adaptive
 +
immune systems in bacteria and archaea that provide sequence-specific targeting of genetic sequences, in order to cut
 +
exogenous DNA <a href="https://science.sciencemag.org/content/315/5819/1709">(Barrangou et al., 2007)</a>.<br>
 +
Simplified systems have been a rising interest for use in genetic engineering approaches, as they can be used as powerful
 +
tools for precise genome alteration not just in prokaryotic, but also eukaryotic cells. This includes integration of whole
 +
genes, alteration of single nucleotides, knock-outs of whole genetic regions, as well as the use of the DNA-binding property
 +
in a multitude of applications through so called deadCas systems, where the Cas protein does not exhibit nuclease activity
 +
<a href="https://www.cell.com/action/showPdf?pii=S0092-8674%2814%2900604-7">(Hsu et al., 2014)</a>.</p><br>
 +
 
 +
<p>These adaptive systems incorporate invading DNA sequences, so called protospacers, into their CRISPR array, meaning
 +
that short sequences of DNA can be stored between identical repeat sequences. This whole array is transcribed into a
 +
long precursor CRISPR RNA (pre-crRNA) that is then processed into mature crRNAs that carry spacers which serve as guides,
 +
leading the Cas protein to their recognition sequence, where it can then exhibit nuclease activity
 +
<a href="https://royalsocietypublishing.org/doi/10.1098/rstb.2015.0496">(Hille and Charpentier, 2016)</a>.
 +
Maturation of crRNAs differs in different CRISPR/Cas systems. CRISPR/Cas9 systems that are widely used in genetic
 +
engineering approaches need an additional transactivating crRNA (tracrRNA) for crRNA maturation, while in CRISPR/Cas12a
 +
(also called CRISPR/Cpf1) only the crRNA is necessary for precise targeting
 +
<a href="https://www.nature.com/articles/cr201688">(Gao et al., 2016)</a>.<br>
 +
Another crucial factor of these systems are the protospacer adjacent motifs (PAM). In order for the Cas protein to
 +
effectively bind the targeted DNA sequence, it has to be next to a PAM sequence, proving that the PAM is an invaluable
 +
targeting component that allows the cell to distinguish between self and non-self DNA, as the PAM sequences cannot be
 +
found in the CRISPR array itself, preventing the Cas protein to cut inside of it
 +
<a href="https://www.nature.com/articles/nmeth.2649">(Mali et al., 2013)</a>.<br></p><br>
 +
 
 +
<p>As mentioned before, different CRISPR/Cas systems are available for genetic engineering of a large number of organisms.
 +
The most commonly used system is the CRISPR/Cas9 system, but another attractive system is CRISPR/Cas12a, also called
 +
CRISPR/Cpf1. The main differences are that Cas9 introduces blunt ends when cutting DNA, while Cas12a produces sticky ends
 +
and that Cas9 requires a tracrRNA for crRNA maturation, while Cas12a only needs the crRNA as a guide. In Cas9 systems the
 +
crRNA:tracrRNA duplex can be linked to form a single guided RNA (sgRNA), which is usually ~100nt long - in comparison
 +
the Cas12a crRNA is only ~43nt long
 +
<a href="https://onlinelibrary.wiley.com/doi/full/10.1002/wrna.1481">(Swarts and Jinek, 2018)</a>.</p><br>
 +
 
 +
<figure style="text-align:center">
 +
      <img style="height: 500px; width: 500px;"
 +
          src="https://static.igem.org/mediawiki/2019/4/43/T--Marburg--StrainEng_Cas9vsCas12a.svg" alt="GM crops 2018">
 +
      <figcaption style="max-width: 2400px; text-align: center">
 +
          Fig 2: Comparison of Cas12a and Cas9.
 +
      </figcaption>
 +
  </figure>
 +
  <br>
 +
 
 +
  <p>Both systems are of particular interest for genetic toolboxes, as they enable highly accurate genome engineering
 +
  with a wide application range - including multiplexed alterations.</p><br>
 +
 
 +
  <p><b>Cyanobacterial shuttle vectors</b></p>
 +
  <p>Cyanobacteria are known to contain multiple copy numbers of their chromosome, the unicellular cyanobacteria
 +
  <i>Synechococcus elongatus</i> reportedly contains 3-5
 +
  <a href="https://onlinelibrary.wiley.com/doi/full/10.1111/j.1574-6968.2011.02368.x?sid=nlm%3Apubmed">(Griese et al., 2011)</a>, 2-10
 +
  <a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4558043/">(Watanabe et al., 2015)</a> or 1-10
 +
  <a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3480399/">(Chen et al., 2012)</a> chromosomes per cell,
 +
  more recent studies have counted eight chromosomes per cell
 +
    <a href="https://www.microbiologyresearch.org/content/journal/micro/10.1099/mic.0.000377">(Yu et al., 2016)</a>.<br>
 +
<i>S. elongatus</i> PCC 7942 furthermore hosts two endogenous plasmids. The 46,4 kb pANL
 +
<a href="https://www.ncbi.nlm.nih.gov/pubmed/18353436">(Chen et al., 2008)</a> which is essential and the 7,8 kb pANS
 +
<a href="https://www.ncbi.nlm.nih.gov/pubmed/1552863">(Van der Plas et al., 1992)</a>
 +
which is not essential for the strain and can easily be cured
 +
<a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC218494/">(Lau & Doolittle, 1979)</a>.</p><br>
 +
 
 +
<p>In Synthetic Biology multiple approaches can be chosen to introduce exogenous DNA into an organism. Typically this
 +
is done by integrating the DNA into the host genome or by transforming plasmids that contain the genes of interest.<br>
 +
As we learned above, the copy number of the chromosomes can be highly variable, which is a huge downside when trying to
 +
engineer such organisms, as genome integrations have to be introduced into every single copy.<br>
 +
Shuttle vectors on the other hand can be stably maintained in the cells and are typically found in higher copy numbers,
 +
resulting in higher gene expression rates as genomic integrations
 +
<a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3480399/">(Chen et al., 2012)</a>.<br>
 +
Vectors that can be used in cyanobacteria are scarcely available, the few existing ones are mostly based on the
 +
RSF1010 plasmid that shows a broad host range and can be maintained in multiple cyanobacterial species, although for
 +
unknown reasons it is not present in high copy numbers
 +
<a href="https://link.springer.com/article/10.1007%2FBF01568955">(Mermet-Bouvier et al., 1993)</a>.
 +
The only shuttle vectors available that contain a native replication element of a cyanobacterial species are those that
 +
have been constructed from the previously mentioned pANS plasmid
 +
<a href="https://www.sciencedirect.com/science/article/pii/0076687987530543?via%3Dihub">(Kuhlemeier & van Arkel, 1987</a>;
 +
<a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC217787/">Golden & Sherman, 1983)</a>.
 +
Recent studies have shown that pANS-based shuttle vectors are present in a higher copy number than RSF1010- or pDU1-based
 +
vectors in cyanobacteria, clearly indicating the advantages of native replication elements. The same study has also proven
 +
that gene expression levels are higher when genes are expressed on the pANS-based vectors, than on pANL or the chromosome
 +
of <i>S. elongatus</i> <a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3480399/">(Chen et al., 2012)</a>.<br>
 +
In spite of these apparent advantages, many still prefer integrating DNA into the chromosome, which is why we
 +
incorporated parts for homologous recombination into our <a href="https://2019.igem.org/Team:Marburg/Design ">toolbox</a>
 +
and successfully identified <a href="https://2019.igem.org/Team:Marburg/Parts">new neutral side for integration</a>.
 +
providing invaluable tools for the community.</p><br>
 +
 
 +
<p>As we are certain that self replicating vectors are essential for many workflows, especially if rapid prototyping
 +
is to be done in an organism, we set out to construct the world's first MoClo compatible shuttle vector for cyanobacteria
 +
based on the modular Golden Gate Assembly method, allowing for flexible cloning into a reliable self-replicating system.
 +
With our constructs there is no need for tedious selection processes that come with genomic integrations.</p>
 +
                        </p>
 +
                    </div>
 +
                </div>
 +
            </article>
 +
        </div>
 +
    </div>
 +
    <div id="rbn212" class="popup">
 +
        <div class="popup-container">
 +
            <div class="popup-header">
 +
                <h1>Strain Engineering</h1>
 +
                <button type="button" onclick="hide('rbn212')">X</button>
 +
            </div>
 +
            <div class="popup-content" style="text-align: justify; text-align-last: justify;">
 +
                <p>
 +
                    Abstract?
 +
                </p>
 +
                <br>
 +
                <br>
 +
                <div class="wrap-collabsible">
 +
                    <input id="collapsible212_1" class="toggle" type="checkbox">
 +
                    <label for="collapsible212_1" class="lbl-toggle">
 +
                        <h3 class="title">Unterprojekt1</h3>
 +
                    </label>
 +
                    <div class="collapsible-content">
 +
                        <div class="content-inner" style="text-align: left; text-align-last: left;">
 +
                            <p>
 +
                                Hier bitte den für diese Stelle zutreffenden Text einfügen, wenn dieser fertig ist.
 +
                            </p>
 +
                        </div>
 +
                    </div>
 +
                </div>
 +
                <br>
 +
                <div class="wrap-collabsible">
 +
                    <input id="collapsible212_2" class="toggle" type="checkbox">
 +
                    <label for="collapsible212_2" class="lbl-toggle">
 +
                        <h3 class="title">Unterprojekt2</h3>
 +
                    </label>
 +
                    <div class="collapsible-content">
 +
                        <div class="content-inner" style="text-align: left; text-align-last: left;">
 +
                            <p>
 +
                                Hier bitte den für diese Stelle zutreffenden Text einfügen, wenn dieser fertig ist.
 +
                            </p>
 +
                        </div>
 +
                    </div>
 +
                </div>
 +
            </div>
 +
        </div>
 +
    </div>
 +
    <br>
 +
    <div class="container">
 +
        <div class="box" style="cursor: pointer;" onclick="popup('rbn213')">
 +
            <article class="media">
 +
                <div class="media-content">
 +
                    <div class="content">
 +
                        <h2>Marburg Collection 2.0</h2>
 +
                        <p>
 +
                            1-2 sentence abstract
 +
                        </p>
 +
                    </div>
 +
                </div>
 +
            </article>
 +
        </div>
 +
    </div>
 +
    <div id="rbn213" class="popup">
 +
        <div class="popup-container">
 +
            <div class="popup-header">
 +
                <h1>Marburg Collection 2.0</h1>
 +
                <button type="button" onclick="hide('rbn213')">X</button>
 +
            </div>
 +
            <div class="popup-content" style="text-align: justify; text-align-last: justify;">
 +
                <p>
 +
                    Abstract?
 +
                </p>
 +
                <br>
 +
                <br>
 +
                <div class="wrap-collabsible">
 +
                    <input id="collapsible213_1" class="toggle" type="checkbox">
 +
                    <label for="collapsible213_1" class="lbl-toggle">
 +
                        <h3 class="title">Unterprojekt1</h3>
 +
                    </label>
 +
                    <div class="collapsible-content">
 +
                        <div class="content-inner" style="text-align: left; text-align-last: left;">
 +
                            <p>
 +
                                Hier bitte den für diese Stelle zutreffenden Text einfügen, wenn dieser fertig ist.
 +
                            </p>
 +
                        </div>
 +
                    </div>
 +
                </div>
 +
                <br>
 +
                <div class="wrap-collabsible">
 +
                    <input id="collapsible213_2" class="toggle" type="checkbox">
 +
                    <label for="collapsible213_2" class="lbl-toggle">
 +
                        <h3 class="title">Unterprojekt2</h3>
 +
                    </label>
 +
                    <div class="collapsible-content">
 +
                        <div class="content-inner" style="text-align: left; text-align-last: left;">
 +
                            <p>
 +
                                Hier bitte den für diese Stelle zutreffenden Text einfügen, wenn dieser fertig ist.
 +
                            </p>
 +
                        </div>
 +
                    </div>
 +
                </div>
 +
            </div>
 +
        </div>
 +
    </div>
 +
    <br>
 +
    <div class="container">
 +
        <div class="box" style="cursor: pointer;" onclick="popup('rbn214')">
 +
            <article class="media">
 +
                <div class="media-content">
 +
                    <div class="content">
 +
                        <h2>References</h2>
 +
                        <p>
 +
                            ...
 +
                        </p>
 +
                    </div>
 +
                </div>
 +
            </article>
 +
        </div>
 +
    </div>
 +
    <div id="rbn214" class="popup">
 +
        <div class="popup-container">
 +
            <div class="popup-header">
 +
                <h1>References</h1>
 +
                <button type="button" onclick="hide('rbn214')">X</button>
 +
            </div>
 +
            <div class="popup-content" style="text-align: justify; text-align-last: justify;">
 +
                <p>
 +
                    Abstract?
 +
                </p>
 +
                <br>
 +
                <br>
 +
                <div class="wrap-collabsible">
 +
                    <input id="collapsible214_1" class="toggle" type="checkbox">
 +
                    <label for="collapsible214_1" class="lbl-toggle">
 +
                        <h3 class="title">Unterprojekt1</h3>
 +
                    </label>
 +
                    <div class="collapsible-content">
 +
                        <div class="content-inner" style="text-align: left; text-align-last: left;">
 +
                            <p>
 +
                                Hier bitte den für diese Stelle zutreffenden Text einfügen, wenn dieser fertig ist.
 +
                            </p>
 +
                        </div>
 +
                    </div>
 +
                </div>
 +
                <br>
 +
                <div class="wrap-collabsible">
 +
                    <input id="collapsible214_2" class="toggle" type="checkbox">
 +
                    <label for="collapsible214_2" class="lbl-toggle">
 +
                        <h3 class="title">Unterprojekt2</h3>
 +
                    </label>
 +
                    <div class="collapsible-content">
 +
                        <div class="content-inner" style="text-align: left; text-align-last: left;">
 +
                            <p>
 +
                                Hier bitte den für diese Stelle zutreffenden Text einfügen, wenn dieser fertig ist.
 +
                            </p>
 +
                        </div>
 +
                    </div>
 +
                </div>
 +
            </div>
 +
        </div>
 +
    </div>
 +
</body>
  
 
</html>
 
</html>
 
{{Marburg/footer}}
 
{{Marburg/footer}}

Revision as of 01:00, 22 October 2019

Description


"crazy quote" - sick author


Hier Abstract von Hinrik einfügen


Synechococcus elongatus UTEX 2973

1-2 sentence abstract


Strain Engineering

SHORT SELLING PARAGRAPH NEEDED


Natural Competence

One of the most important aspects when engineering an organism is the actual modification of its genetic code. The introduction of exogenous DNA can be done in multiple ways - through electroporation, conjugation, heat shock or via natural competence.
Electroporation is a method in which an electrical field is applied to cells, in order to increase the permeability of the membrane, enabling DNA uptake not just in prokaryotic (Thiel and Poo, 1989), but also eukaryotic cells (Potter and Heller, 2010). Although relatively simple to perform, this technique is not ideal, as the success rate is rather low and many precautions have to be taken: salt concentration and field strength highly effect the outcome and secreted endonucleases can degrade the DNA beforehand (Zeaiter et al., 2018).
Conjugation is a more complicated and laborious method where cell to cell contact is needed. Pili are formed to transfer DNA from one cell to another - but not all DNA can be transferred, as the plasmid that is to be conjugated needs to harbour a mobilization sequence (Actor, 2012). This method is more popular in cyanobacterial research, as it overcomes the above mentioned problems that come with electroporation (Zeaiter et al., 2018).


And what is natural competence?


Natural competence was first discovered by Frederick Griffith in 1928 (Griffith et al., 1928) by studying different Streptococcus pneumoniae strains - a virulent and a non-virulent one. Although he did not know the biological processes behind it, he realized that genetic information can be passed on from one bacterium to another, as previously non-virulent strains could be transformed to virulent ones. In comparison to other types of competence that can e.g. be chemically induced, natural competence is the ability of cells to take up extracellular DNA from their environment under natural conditions.


Natural competence is found in different kinds of bacteria - also in cyanobacteria. Despite the fact that there is still much to uncover about the exact mechanisms of natural DNA uptake in cyanobacteria, previous efforts by Schuergers and Wilde, 2015, Yoshihara et al., 2001, Bhaya et al., 2002 and many more have led to the construction of a preliminary model of the type IV-like pilus responsible for natural transformation in Synechocystis sp. PCC 6803 (Wendt and Pakrasi, 2019), which can be seen in Figure 1.

Preliminary model of the cyanobacterial transformation pilus (Type4 Pilli).
Fig.1 - Preliminary model of the cyanobacterial transformation pilus (Type4 Pilli). Figure after Wendt and Pakrasi, 2019.

In order to take up extracellular DNA several steps seem to be necessary: The double stranded DNA has to be picked up by the type IV-like pilus and transported through an outer membrane pore comprised of PilQ subunits (Bhaya et al., 2002) and is then converted to single stranded DNA by a certain nuclease before being passed through an inner membrane pore composed of ComE subunits (Yoshihara et al., 2001).


Early studies have tried to identify cyanobacterial strains capable of natural transformation, from which just a few species have been frequently chosen to serve as model organisms, including Synechococcus sp. PCC 7002, Synechococcus sp. PCC 6803, Synechococcus elongatus PCC 7942 (Koksharova and Wolk, 2002).
Cyanobacterial species are known to be naturally competent, yet have been shown they have at least one complete set of the genes identified in the above mentioned model (Wendt and Pakrasi, 2019) - one of them being Synechococcus elongatus PCC 7942. This strain is closely related to Synechococcus elongatus UTEX 2973, in fact genome comparisons show just 55 single nucleotide polymorphisms and indels (Yu et al., 2015). Previous studies have suggested that a single point mutation in the pilN gene is responsible for the loss of natural competence in S. elongatus UTEX 2973 (Li et al., 2018), so in an effort to reintroduce natural competence into this strain, intact versions of the pilN gene from S.elongatus PCC 7942 have been successfully introduced into one of the neutral sites in the genome of UTEX 2973 via homologous recombination (Li et al., 2018), showing that natural competence can be achieved in this strain.


As natural competence is the easiest and often most efficient way to incorporate exogenous DNA into an organism, this is a crucial feature that comes in handy for every chassis.
For this reason we planned to restore the natural competence of S.elongatus UTEX 2973 - what approaches we took and how we planned all of it through can be found in our design section.


CRISPR gene editing

Clustered regularly interspaced short palindromic repeats / CRISPR associated protein (CRISPR/Cas) systems are adaptive immune systems in bacteria and archaea that provide sequence-specific targeting of genetic sequences, in order to cut exogenous DNA (Barrangou et al., 2007).
Simplified systems have been a rising interest for use in genetic engineering approaches, as they can be used as powerful tools for precise genome alteration not just in prokaryotic, but also eukaryotic cells. This includes integration of whole genes, alteration of single nucleotides, knock-outs of whole genetic regions, as well as the use of the DNA-binding property in a multitude of applications through so called deadCas systems, where the Cas protein does not exhibit nuclease activity (Hsu et al., 2014).


These adaptive systems incorporate invading DNA sequences, so called protospacers, into their CRISPR array, meaning that short sequences of DNA can be stored between identical repeat sequences. This whole array is transcribed into a long precursor CRISPR RNA (pre-crRNA) that is then processed into mature crRNAs that carry spacers which serve as guides, leading the Cas protein to their recognition sequence, where it can then exhibit nuclease activity (Hille and Charpentier, 2016). Maturation of crRNAs differs in different CRISPR/Cas systems. CRISPR/Cas9 systems that are widely used in genetic engineering approaches need an additional transactivating crRNA (tracrRNA) for crRNA maturation, while in CRISPR/Cas12a (also called CRISPR/Cpf1) only the crRNA is necessary for precise targeting (Gao et al., 2016).
Another crucial factor of these systems are the protospacer adjacent motifs (PAM). In order for the Cas protein to effectively bind the targeted DNA sequence, it has to be next to a PAM sequence, proving that the PAM is an invaluable targeting component that allows the cell to distinguish between self and non-self DNA, as the PAM sequences cannot be found in the CRISPR array itself, preventing the Cas protein to cut inside of it (Mali et al., 2013).


As mentioned before, different CRISPR/Cas systems are available for genetic engineering of a large number of organisms. The most commonly used system is the CRISPR/Cas9 system, but another attractive system is CRISPR/Cas12a, also called CRISPR/Cpf1. The main differences are that Cas9 introduces blunt ends when cutting DNA, while Cas12a produces sticky ends and that Cas9 requires a tracrRNA for crRNA maturation, while Cas12a only needs the crRNA as a guide. In Cas9 systems the crRNA:tracrRNA duplex can be linked to form a single guided RNA (sgRNA), which is usually ~100nt long - in comparison the Cas12a crRNA is only ~43nt long (Swarts and Jinek, 2018).


GM crops 2018
Fig 2: Comparison of Cas12a and Cas9.

Both systems are of particular interest for genetic toolboxes, as they enable highly accurate genome engineering with a wide application range - including multiplexed alterations.


Cyanobacterial shuttle vectors

Cyanobacteria are known to contain multiple copy numbers of their chromosome, the unicellular cyanobacteria Synechococcus elongatus reportedly contains 3-5 (Griese et al., 2011), 2-10 (Watanabe et al., 2015) or 1-10 (Chen et al., 2012) chromosomes per cell, more recent studies have counted eight chromosomes per cell (Yu et al., 2016).
S. elongatus PCC 7942 furthermore hosts two endogenous plasmids. The 46,4 kb pANL (Chen et al., 2008) which is essential and the 7,8 kb pANS (Van der Plas et al., 1992) which is not essential for the strain and can easily be cured (Lau & Doolittle, 1979).


In Synthetic Biology multiple approaches can be chosen to introduce exogenous DNA into an organism. Typically this is done by integrating the DNA into the host genome or by transforming plasmids that contain the genes of interest.
As we learned above, the copy number of the chromosomes can be highly variable, which is a huge downside when trying to engineer such organisms, as genome integrations have to be introduced into every single copy.
Shuttle vectors on the other hand can be stably maintained in the cells and are typically found in higher copy numbers, resulting in higher gene expression rates as genomic integrations (Chen et al., 2012).
Vectors that can be used in cyanobacteria are scarcely available, the few existing ones are mostly based on the RSF1010 plasmid that shows a broad host range and can be maintained in multiple cyanobacterial species, although for unknown reasons it is not present in high copy numbers (Mermet-Bouvier et al., 1993). The only shuttle vectors available that contain a native replication element of a cyanobacterial species are those that have been constructed from the previously mentioned pANS plasmid (Kuhlemeier & van Arkel, 1987; Golden & Sherman, 1983). Recent studies have shown that pANS-based shuttle vectors are present in a higher copy number than RSF1010- or pDU1-based vectors in cyanobacteria, clearly indicating the advantages of native replication elements. The same study has also proven that gene expression levels are higher when genes are expressed on the pANS-based vectors, than on pANL or the chromosome of S. elongatus (Chen et al., 2012).
In spite of these apparent advantages, many still prefer integrating DNA into the chromosome, which is why we incorporated parts for homologous recombination into our toolbox and successfully identified new neutral side for integration. providing invaluable tools for the community.


As we are certain that self replicating vectors are essential for many workflows, especially if rapid prototyping is to be done in an organism, we set out to construct the world's first MoClo compatible shuttle vector for cyanobacteria based on the modular Golden Gate Assembly method, allowing for flexible cloning into a reliable self-replicating system. With our constructs there is no need for tedious selection processes that come with genomic integrations.


Marburg Collection 2.0

1-2 sentence abstract


References

...