Difference between revisions of "Team:Marburg/test joana"

Line 1: Line 1:
 
{{Marburg}}
 
{{Marburg}}
 
<html>
 
<html>
<style>
+
  <style>
 
     .box-dark {
 
     .box-dark {
        background-color: #3d404d;
+
      background-color: #3d404d;
        min-height: 30vh;
+
      min-height: 30vh;
        box-shadow: 1px 1px 40px black;
+
      box-shadow: 1px 1px 40px black;
        margin-left: -10vw;
+
      margin-left: -10vw;
        width: 120vw;
+
      width: 120vw;
        position: relative;
+
      position: relative;
        z-index: 2;
+
      z-index: 2;
        display: flex;
+
      display: flex;
        flex-direction: column;
+
      flex-direction: column;
        align-items: center;
+
      align-items: center;
        transform: rotate(355deg);
+
      transform: rotate(355deg);
        justify-content: center;
+
      justify-content: center;
        margin-top: -12vh;
+
      margin-top: -12vh;
 
     }
 
     }
  
 
     .heading {
 
     .heading {
        color: #f5f5f5;
+
      color: #f5f5f5;
        text-align: center;
+
      text-align: center;
        font-size: 1.75em;
+
      font-size: 1.75em;
        width: fit-content;
+
      width: fit-content;
        margin-top: 25px;
+
      margin-top: 25px;
        margin-bottom: unset !important;
+
      margin-bottom: unset !important;
        transform: rotate(-355deg);
+
      transform: rotate(-355deg);
 
     }
 
     }
  
 
     .line {
 
     .line {
        border-top: 2px solid #f5f5f5;
+
      border-top: 2px solid #f5f5f5;
        background-color: #f5f5f5;
+
      background-color: #f5f5f5;
        border-width: 2px;
+
      border-width: 2px;
        display: block;
+
      display: block;
        width: 100px;
+
      width: 100px;
        margin-top: 25px;
+
      margin-top: 25px;
        margin-bottom: unset;
+
      margin-bottom: unset;
        transform: rotate(-355deg);
+
      transform: rotate(-355deg);
 
     }
 
     }
  
 
     .logo {
 
     .logo {
        width: 100px;
+
      width: 100px;
        height: 100px;
+
      height: 100px;
        position: absolute;
+
      position: absolute;
        bottom: -50px;
+
      bottom: -50px;
        transform: rotate(-355deg);
+
      transform: rotate(-355deg);
        margin-left: -10px;
+
      margin-left: -10px;
 
     }
 
     }
  
 
     .main {
 
     .main {
        overflow-x: hidden;
+
      overflow-x: hidden;
 
     }
 
     }
  
 
     hr {
 
     hr {
        display: block;
+
      display: block;
        height: 1px;
+
      height: 1px;
        border: 0;
+
      border: 0;
        border-top: 2px solid #3d404d;
+
      border-top: 2px solid #3d404d;
        padding: 0;
+
      padding: 0;
        margin: 1em auto;
+
      margin: 1em auto;
        width: 50vw;
+
      width: 50vw;
 
     }
 
     }
  
 
     @media (max-width: 810px) {
 
     @media (max-width: 810px) {
  
        .logo,
+
      .logo,
        .line,
+
      .line,
        .heading {
+
      .heading {
            margin-left: -30px;
+
        margin-left: -30px;
        }
+
      }
  
        .line {
+
      .line {
            margin: 1.5rem 0 !important;
+
        margin: 1.5rem 0 !important;
            margin-left: -40px !important;
+
        margin-left: -40px !important;
        }
+
      }
 
     }
 
     }
</style>
+
 
<div>
+
  </style>
 +
  <div>
 
     <div class="box-dark">
 
     <div class="box-dark">
        <h1 class="heading">
+
      <h1 class="heading">
            L A B A U T O M A T I O N
+
        L A B A U T O M A T I O N
        </h1>
+
      </h1>
        <hr class="line">
+
      <hr class="line">
        <img src="https://static.igem.org/mediawiki/2019/a/ac/T--Marburg--logo.svg" class="logo" alt="Syntex Logo">
+
      <img src="https://static.igem.org/mediawiki/2019/a/ac/T--Marburg--logo.svg"
 +
        class="logo"
 +
        alt="Syntex Logo">
 
     </div>
 
     </div>
 
     <div style="margin-top: 10vh;">
 
     <div style="margin-top: 10vh;">
        <section class="section">
+
      <section class="section">
            <h1 class="title">A.P.P Automated Purfication Protocol</h1>
+
        <h1 class="title">Amplifying new standards in measurement</h1>
            <p style="text-align: justify;">
+
        <p style="text-align: justify;">
                 Vielleicht noch ein allgemeinem abstract zu Messung (vergleiche andere WIKIS)
+
                 This year’s iGEM Team worked extensively on automating a plasmid purification on Opentrons’ OT-2. Plasmid
 +
                purification is an indispensable part of completing the cloning workflow in the OT-2.<br>
 +
                <br>
 
             </p>
 
             </p>
        </section>
+
             <figure style="float: right; margin-left: 25px;">
        <section class="section">
+
                <img style="height: 400px; width: 600px"
             <article>
+
                    src="https://static.igem.org/mediawiki/2019/6/60/T--Marburg--SyntexConnections.png"
                <div>
+
                    alt="Connections between Opentrons, Promega and QInstruments">
                    <p style="text-align: justify; margin-bottom: 1em;">
+
                <figcaption style="max-width: 600px">
                        This year’s iGEM Team worked extensively on automating a plasmid purification on Opentrons’
+
                    Fig.1 - iGEM team Marburg 2019 is establishing connections between Opentrons, Promega and QInstruments.
                        OT-2. Plasmid
+
                </figcaption>
                        purification is an indispensable part of completing the cloning workflow in the OT-2.</p>
+
            </figure>
                    <figure style="float: right; margin-left: 25px;">
+
            <div><p>
                        <img style="height: 400px; width: 600px"
+
                Since the time of an iGEM project is limited to only one year, consequently only a limited amount of work can be
                            src="https://static.igem.org/mediawiki/2019/6/60/T--Marburg--SyntexConnections.png"
+
                done in that time, which is even reduced by failing experiments and making mistakes in the lab. To overcome this
                            alt="Connections between Opentrons, Promega and QInstruments">
+
                problem and increase the reproducibility and simultaneously raise the amount of experiments in the lab, we
                        <figcaption style="max-width: 600px">
+
                automated plasmid purification on the OT-2. Using this protocol and making it open-source <b>(GitHub Link?)</b>,
                            Fig.1 - iGEM team Marburg 2019 is establishing connections between Opentrons, Promega and
+
                we
                            QInstruments.
+
                achieved to parallelize work in the lab or make more time for public engagement, human practice, IHP or
                        </figcaption>
+
                everything else not directly lab-related, benefiting the whole iGEM community. This benefits will also be
                        <br>
+
                translated beyond iGEM community such as in the amateur biohackers, enthusiasts, and students community and even
                        <p style="text-align: justify; margin-bottom: 1em;">
+
                to research groups doing cutting-edge research.<br>
                            Since the time of an iGEM project is limited to only one year, consequently only a limited
+
                This idea started when we found out that there is also a great need in the industry for an automated cloning
                            amount of work can be
+
                workflow. Promega provided us with great advice <b>(Link to IHP)</b> and sponsored the Wizard® MagneSil® Plasmid
                            done in that time, which is even reduced by failing experiments and making mistakes in the
+
                Purification System, QInstruments sponsored the BioShake D30-T elm and Opentrons sponsored their Magnetic
                            lab. To overcome this
+
                Module. Through our work aligned with the philosophy of iGEM for nurturing collaborations, we enabled
                            problem and increase the reproducibility and simultaneously raise the amount of experiments
+
                connections between these companies to achieve the true potential of their products. This kind of bridge would
                            in the lab, we
+
                not have been possible otherwise.<br>
                            automated plasmid purification on the OT-2. Using this protocol and making it open-source
+
                <br>
                            <b>(GitHub Link?)</b>,
+
                Nevertheless, a massive amount of barriers had to be broken down. The shaker was a bit bigger than the space
                            we
+
                normally occupied by modules in the OT-2 and needed stabilizing support, so it was obvious to design a
                            achieved to parallelize work in the lab or make more time for public engagement, human
+
                custom-made shaker adapter and print it with our own in-house 3D printer, which would keep the costs for the
                            practice, IHP or
+
                automation of this workflow extremely low. Moreover, the 3D design will be publicly available in our GitHub
                            everything else not directly lab-related, benefiting the whole iGEM community. This benefits
+
                repository (LINK), which will make our solution accessible to everyone with access to a 3D printer.<br>
                            will also be
+
                <br>
                            translated beyond iGEM community such as in the amateur biohackers, enthusiasts, and
+
                Additionally, we stumbled across serious problems with the calibration of our OT-2 and accessing the shaker with
                            students community and even
+
                the pipette. The BioShake D30-T elm is currently not a usual labware defined by Opentrons’, so we had to be
                            to research groups doing cutting-edge research.<br>
+
                creative and come up with our own labware definition. Opentron is recently rolling out a major update from their
                            This idea started when we found out that there is also a great need in the industry for an
+
                OT-2 3.9 to 4.0 firmware that includes a lot of paradigm changes, making it impossible for us to define it as a
                            automated cloning
+
                decent custom labware. That is why we came up with the idea to use Opentrons’ internal coordinate system and
                            workflow. Promega provided us with great advice <b>(Link to IHP)</b> and sponsored the
+
                defining the required 96 Deep Well Plate on the shaker as coordinates. This facilitated accessing the shaker
                            Wizard® MagneSil® Plasmid
+
                with the pipette, being as precise as Opentrons’ own labware definitions, but a whole series of problems
                            Purification System, QInstruments sponsored the BioShake D30-T elm and Opentrons sponsored
+
                followed, as we tried to use Opentrons’ pipette functions to transfer the chemicals. We managed these problems
                            their Magnetic
+
                as well, by defining our own Python functions, telling the pipette how to transfer liquids from and to the
                            Module. Through our work aligned with the philosophy of iGEM for nurturing collaborations,
+
                defined shaker. In the end when running the script, one would not be able to tell the difference between the
                            we enabled
+
                labware and functions defined by us from the ones defined by Opentrons’.<br>
                            connections between these companies to achieve the true potential of their products. This
+
                <br>
                            kind of bridge would
+
            </p>
                            not have been possible otherwise.<br>
+
            <figure align=center>
                            <br>
+
                <img style="height: 500px; width: 300px"
                            Nevertheless, a massive amount of barriers had to be broken down. The shaker was a bit
+
                    src="https://static.igem.org/mediawiki/2019/b/bb/T--Marburg--opentrons_magnetic_module.JPG"
                            bigger than the space
+
                    alt="OT-2 left">
                            normally occupied by modules in the OT-2 and needed stabilizing support, so it was obvious
+
                <img style="height: 500px; width: 300px"
                            to design a
+
                    src="https://static.igem.org/mediawiki/2019/3/30/T--Marburg--opentrons_shaker.JPG" alt="OT-2 right">
                            custom-made shaker adapter and print it with our own in-house 3D printer, which would keep
+
                <figcaption style="max-width: 1400px">
                            the costs for the
+
                    Fig.2 - Single-Channel pipette, magnetic module and shaker in action while performing the plasmid
                            automation of this workflow extremely low. Moreover, the 3D design will be publicly
+
                    purification.
                            available in our GitHub
+
                </figcaption>
                            repository (LINK), which will make our solution accessible to everyone with access to a 3D
+
            </figure>
                            printer.<br>
+
            <br>
                            <br>
+
            <p>
                            Additionally, we stumbled across serious problems with the calibration of our OT-2 and
+
                Putting the pieces together, we were able to translate the manual plasmid purification protocol provided by Nans
                            accessing the shaker with
+
                Bodet into an Opentrons protocol, being the very first of its kind. We pioneered a workflow for up to six
                            the pipette. The BioShake D30-T elm is currently not a usual labware defined by Opentrons’,
+
                samples with the p300 Single-Channel Electronic Pipette and a scaled-up version for up to 48 samples with the
                            so we had to be
+
                p300 8-Channel Electronic Pipette without having to intervene even once. This scalability provides important
                            creative and come up with our own labware definition. Opentron is recently rolling out a
+
                flexibility for various kinds of experiments.<br>
                            major update from their
+
                <br>
                            OT-2 3.9 to 4.0 firmware that includes a lot of paradigm changes, making it impossible for
+
                In our process of developing and running the protocol we determined some problems on increasing the yield of our
                            us to define it as a
+
                plasmids. There was a large number of parameters that could be varied, changing the final concentration of the
                            decent custom labware. That is why we came up with the idea to use Opentrons’ internal
+
                plasmids. For example, we realized that the duration of lysis is paramount for the yield and success of plasmid
                            coordinate system and
+
                purification. Over-lysis will lead to a decrease in plasmid yield, whereas under-lysis will induce clumping of
                            defining the required 96 Deep Well Plate on the shaker as coordinates. This facilitated
+
                magnetic beads; thus failing the experiment. After a whole heap of plasmid purifications we managed to identify
                            accessing the shaker
+
                the most relevant parameters and improve the protocol in the best way possible.<br>
                            with the pipette, being as precise as Opentrons’ own labware definitions, but a whole series
+
                <br>
                            of problems
+
            </p>
                            followed, as we tried to use Opentrons’ pipette functions to transfer the chemicals. We
+
            <figure align=center>
                            managed these problems
+
                <img style="height: 700px; width: 600px"
                            as well, by defining our own Python functions, telling the pipette how to transfer liquids
+
                    src="https://static.igem.org/mediawiki/2019/e/ea/T--Marburg--SingleChannelSetup.png" alt="OT-Layout left">
                            from and to the
+
                <img style="height: 700px; width: 600px"
                            defined shaker. In the end when running the script, one would not be able to tell the
+
                    src="https://static.igem.org/mediawiki/2019/d/df/T--Marburg--8channelSetup.png" alt="OT-Layout right">
                            difference between the
+
                <figcaption style="max-width: 1400px">
                            labware and functions defined by us from the ones defined by Opentrons’.<br>
+
                    Fig.3 - Final setup for the automated plasmid purification workflows in the OT-2. The left picture shows the
                            <br>
+
                    setup for the single channel workflow, the right picture for the 8-channel workflow.
                        </p>
+
                </figcaption>
                        <p style="text-align: justify; margin-bottom: 1em;">
+
            </figure>
                            While we wanted to establish Syn. elong. as a new chassis for the iGEM community and
+
       
                            scientists we wanted to
+
            <video src="https://static.igem.org/mediawiki/2019/c/c4/T--Marburg--PlasmidPurificationMarburg.mp4" controls
                            show the best conditions for cultivation and the best measuring method for our parts in UTEX
+
                poster="vorschaubild.jpg"></video>
                            2973. Therefore
+
       
                            we analyzed a big variety of cultivating conditions in measuring growth curves, tried to
+
            <br>
                            find a standard in
+
        </p>
                            light measurement, evaluated different reporters???, established a measurement method and
+
      </section>
                            compared it to a
+
      <section class="section">
                            already known FACS measurement method (?).
+
         <article>
                        </p>
+
          <h1 class="title"></h1>
                        <p style="text-align: justify; margin-bottom: 1em;">
+
          <p style="text-align: justify; margin-bottom: 1em;">
                            At the beginning of our project we faced the first question on how to cultivate UTEX at 1500
+
         
                            μE. [quelle].
+
          </p></div>
                            So we had to measure the light conditions in our incubators and while doing this simple task
+
         </article>
                            the first
+
      </section>
                            part of standardization began. We discovered that nearly every paper? is using different
+
      <hr>
                            methods to measure
+
     
                            their light conditions and that it is a really complex and important procedure. So we got in
+
    </div>
                            contact with
+
  </div>
                            cyano and light measurement experts [link IHP] to confront this problem and standardize it.
+
  </body>
                            In the following
+
                            popup we show different ways of measurement, their (dis-)advantages and different results
+
                            depending on the
+
                            measuring instrument.<br>
+
                            Not only the light intensity but also a variety of other cultivating parameters needed to be
+
                            analyzed.
+
                            In literature and while talking with different experts (IHP), we recognized that small
+
                            deviations of these
+
                            parameters had a huge impact on the growth speed of Synechococcus elongatus. While
+
                            establishing UTEX 2973 as
+
                            a new chassis we evaluated this impact on the growth speed and were able to show
+
                            combinations of parameters
+
                            that lead to the fastest growth speed.<br>
+
                            Another aspect was measuring the expression and characterize our part. Different
+
                            possibilities were
+
                            discussed and after testing them we decided on two methods in our project (plate reader and
+
                            FACs). One
+
                            approach was to measure the fluorescence/luminescence with a plate reader [link part
+
                            measurement]. Plate
+
                            readers belong to standard equipment of every lab nowadays, and could deliver easy
+
                            reproducible results.<br>
+
                            The second way was to measure the fluorescence by FACS (Fluorescence-Activated Cell Sorting)
+
                            [link facs]. In
+
                            contrast to a platerader a FACs device delivers results with high accuracy by measuring
+
                            every cell by its
+
                            own(vielleicht erst spaeter FACS genau erklaeren aber nicht im abtract?). On the other side
+
                            not
+
                            every laboratory posses a FACs/device. So in the end we would like to offer a two method
+
                            analyzed database
+
                            from our crontructs for iGEM teams and research groups, who do not have access to a FACS and
+
                            show the
+
                            difference in measurement methods.<br>
+
                            At the end of the project we were able to create a protocol how to handle Synechococcus
+
                            elongatus UTEX 2973
+
                            and make a contribution to the cyano community by establishing essential/fixed standards in
+
                            measurement.
+
                        </p>
+
                        <figure align=center>
+
                            <img style="height: 500px; width: 300px"
+
                                src="https://static.igem.org/mediawiki/2019/b/bb/T--Marburg--opentrons_magnetic_module.JPG"
+
                                alt="OT-2 left">
+
                            <img style="height: 500px; width: 300px"
+
                                src="https://static.igem.org/mediawiki/2019/3/30/T--Marburg--opentrons_shaker.JPG"
+
                                alt="OT-2 right">
+
                            <figcaption style="max-width: 1400px">
+
                                Fig.2 - Single-Channel pipette, magnetic module and shaker in action while performing
+
                                the plasmid
+
                                purification.
+
                            </figcaption>
+
                        </figure>
+
                        <br>
+
                        <p>
+
                            Putting the pieces together, we were able to translate the manual plasmid purification
+
                            protocol provided by Nans
+
                            Bodet into an Opentrons protocol, being the very first of its kind. We pioneered a workflow
+
                            for up to six
+
                            samples with the p300 Single-Channel Electronic Pipette and a scaled-up version for up to 48
+
                            samples with the
+
                            p300 8-Channel Electronic Pipette without having to intervene even once. This scalability
+
                            provides important
+
                            flexibility for various kinds of experiments.<br>
+
                            <br>
+
                            In our process of developing and running the protocol we determined some problems on
+
                            increasing the yield of our
+
                            plasmids. There was a large number of parameters that could be varied, changing the final
+
                            concentration of the
+
                            plasmids. For example, we realized that the duration of lysis is paramount for the yield and
+
                            success of plasmid
+
                            purification. Over-lysis will lead to a decrease in plasmid yield, whereas under-lysis will
+
                            induce clumping of
+
                            magnetic beads; thus failing the experiment. After a whole heap of plasmid purifications we
+
                            managed to identify
+
                            the most relevant parameters and improve the protocol in the best way possible.<br>
+
                            <br>
+
                        </p>
+
                        <figure align=center>
+
                            <img style="height: 700px; width: 600px"
+
                                src="https://static.igem.org/mediawiki/2019/e/ea/T--Marburg--SingleChannelSetup.png"
+
                                alt="OT-Layout left">
+
                            <img style="height: 700px; width: 600px"
+
                                src="https://static.igem.org/mediawiki/2019/d/df/T--Marburg--8channelSetup.png"
+
                                alt="OT-Layout right">
+
                            <figcaption style="max-width: 1400px">
+
                                Fig.3 - Final setup for the automated plasmid purification workflows in the OT-2. The
+
                                left picture shows the
+
                                setup for the single channel workflow, the right picture for the 8-channel workflow.
+
                            </figcaption>
+
                        </figure>
+
 
+
                        <video src="https://static.igem.org/mediawiki/2019/c/c4/T--Marburg--PlasmidPurificationMarburg.mp4"
+
                            controls poster="vorschaubild.jpg"></video>
+
                </div>
+
            </article>
+
        </section>  
+
         </div>
+
         </div>
+
 
+
        <br>
+
        <br>
+
        </body>
+
  
 
</html>
 
</html>
{{Marburg/footer}}
 

Revision as of 18:23, 21 October 2019

L A B A U T O M A T I O N


Amplifying new standards in measurement

This year’s iGEM Team worked extensively on automating a plasmid purification on Opentrons’ OT-2. Plasmid purification is an indispensable part of completing the cloning workflow in the OT-2.

Connections between Opentrons, Promega and QInstruments
Fig.1 - iGEM team Marburg 2019 is establishing connections between Opentrons, Promega and QInstruments.

Since the time of an iGEM project is limited to only one year, consequently only a limited amount of work can be done in that time, which is even reduced by failing experiments and making mistakes in the lab. To overcome this problem and increase the reproducibility and simultaneously raise the amount of experiments in the lab, we automated plasmid purification on the OT-2. Using this protocol and making it open-source (GitHub Link?), we achieved to parallelize work in the lab or make more time for public engagement, human practice, IHP or everything else not directly lab-related, benefiting the whole iGEM community. This benefits will also be translated beyond iGEM community such as in the amateur biohackers, enthusiasts, and students community and even to research groups doing cutting-edge research.
This idea started when we found out that there is also a great need in the industry for an automated cloning workflow. Promega provided us with great advice (Link to IHP) and sponsored the Wizard® MagneSil® Plasmid Purification System, QInstruments sponsored the BioShake D30-T elm and Opentrons sponsored their Magnetic Module. Through our work aligned with the philosophy of iGEM for nurturing collaborations, we enabled connections between these companies to achieve the true potential of their products. This kind of bridge would not have been possible otherwise.

Nevertheless, a massive amount of barriers had to be broken down. The shaker was a bit bigger than the space normally occupied by modules in the OT-2 and needed stabilizing support, so it was obvious to design a custom-made shaker adapter and print it with our own in-house 3D printer, which would keep the costs for the automation of this workflow extremely low. Moreover, the 3D design will be publicly available in our GitHub repository (LINK), which will make our solution accessible to everyone with access to a 3D printer.

Additionally, we stumbled across serious problems with the calibration of our OT-2 and accessing the shaker with the pipette. The BioShake D30-T elm is currently not a usual labware defined by Opentrons’, so we had to be creative and come up with our own labware definition. Opentron is recently rolling out a major update from their OT-2 3.9 to 4.0 firmware that includes a lot of paradigm changes, making it impossible for us to define it as a decent custom labware. That is why we came up with the idea to use Opentrons’ internal coordinate system and defining the required 96 Deep Well Plate on the shaker as coordinates. This facilitated accessing the shaker with the pipette, being as precise as Opentrons’ own labware definitions, but a whole series of problems followed, as we tried to use Opentrons’ pipette functions to transfer the chemicals. We managed these problems as well, by defining our own Python functions, telling the pipette how to transfer liquids from and to the defined shaker. In the end when running the script, one would not be able to tell the difference between the labware and functions defined by us from the ones defined by Opentrons’.

OT-2 left OT-2 right
Fig.2 - Single-Channel pipette, magnetic module and shaker in action while performing the plasmid purification.

Putting the pieces together, we were able to translate the manual plasmid purification protocol provided by Nans Bodet into an Opentrons protocol, being the very first of its kind. We pioneered a workflow for up to six samples with the p300 Single-Channel Electronic Pipette and a scaled-up version for up to 48 samples with the p300 8-Channel Electronic Pipette without having to intervene even once. This scalability provides important flexibility for various kinds of experiments.

In our process of developing and running the protocol we determined some problems on increasing the yield of our plasmids. There was a large number of parameters that could be varied, changing the final concentration of the plasmids. For example, we realized that the duration of lysis is paramount for the yield and success of plasmid purification. Over-lysis will lead to a decrease in plasmid yield, whereas under-lysis will induce clumping of magnetic beads; thus failing the experiment. After a whole heap of plasmid purifications we managed to identify the most relevant parameters and improve the protocol in the best way possible.

OT-Layout left OT-Layout right
Fig.3 - Final setup for the automated plasmid purification workflows in the OT-2. The left picture shows the setup for the single channel workflow, the right picture for the 8-channel workflow.