Difference between revisions of "Team:NCKU Tainan/Protocols"

Line 99: Line 99:
 
                       <div class="col">
 
                       <div class="col">
 
                         <div style="font-size: 2rem; text-align: center;margin-bottom: 1rem; font-weight: bold;">Protocol:</div>
 
                         <div style="font-size: 2rem; text-align: center;margin-bottom: 1rem; font-weight: bold;">Protocol:</div>
                         <p>1. Put 1mL of bacterial overnight culture into the cryovial and add 500uL of 50% glycerol. Mix it well.</p>
+
                         <p>1. Put 1ml of bacterial overnight culture into the cryovial and add 500μl of 50% glycerol. Mix it well.</p>
 
                         <p>2. Keep it in the -80°C freezer.</p>
 
                         <p>2. Keep it in the -80°C freezer.</p>
 
                       </div>
 
                       </div>
Line 134: Line 134:
 
                         <p>2. 10x PCR buffer</p>
 
                         <p>2. 10x PCR buffer</p>
 
                         <p>3. dNTPs 2.5mM</p>
 
                         <p>3. dNTPs 2.5mM</p>
                         <p>4. Forward and reverse primer (10uM)</p>
+
                         <p>4. Forward and reverse primer (10μM)</p>
                         <p>5. Taq polymerase with 3ul vent</p>
+
                         <p>5. Taq polymerase with 3μl vent</p>
 
                         </p>
 
                         </p>
 
                       </div>
 
                       </div>
Line 146: Line 146:
 
                             <tr style="border:3px solid #7E3B40;">
 
                             <tr style="border:3px solid #7E3B40;">
 
                               <th scope="col" style="font-size:1.2rem; text-align: center;">Components</th>
 
                               <th scope="col" style="font-size:1.2rem; text-align: center;">Components</th>
                               <th scope="col" style="font-size:1.2rem; text-align: center;">Volume(ul)</th>
+
                               <th scope="col" style="font-size:1.2rem; text-align: center;">Volume(μl)</th>
 
                             </tr>
 
                             </tr>
 
                           </thead>
 
                           </thead>
Line 167: Line 167:
 
                             </tr>
 
                             </tr>
 
                             <tr>
 
                             <tr>
                               <td scope="row" style="font-size:1.1rem;">Forward primer 10uM</th>
+
                               <td scope="row" style="font-size:1.1rem;">Forward primer 10μM</th>
 
                               <td style="font-size:1.1rem;">1</td>
 
                               <td style="font-size:1.1rem;">1</td>
 
                             </tr>
 
                             </tr>
 
                             <tr>
 
                             <tr>
                               <td scope="row" style="font-size:1.1rem;">Reverse primer 10uM</th>
+
                               <td scope="row" style="font-size:1.1rem;">Reverse primer 10μM</th>
 
                               <td style="font-size:1.1rem;">0.1</td>
 
                               <td style="font-size:1.1rem;">0.1</td>
 
                             </tr>
 
                             </tr>
Line 270: Line 270:
 
                       <div style="font-size: 2rem; text-align: center;margin-bottom: 1rem; font-weight: bold;">Protocol:</div>
 
                       <div style="font-size: 2rem; text-align: center;margin-bottom: 1rem; font-weight: bold;">Protocol:</div>
 
                       <h5>Competent cell making:</h5>
 
                       <h5>Competent cell making:</h5>
                       <p>1. Inoculate 500ul of overnight culture (<i>Escherichia coli</i> with pKD46) to 50ml of fresh SOB-Mg medium with 50ul of ampicillin at 30°C.</p>
+
                       <p>1. Inoculate 500μl of overnight culture (<i>Escherichia coli</i> with pKD46) to 50ml of fresh SOB-Mg medium with 50μl of ampicillin at 30°C.</p>
 
                       <p>2. Grow cells with shaking at 30°C for 1 hour and 50 mins.</p>
 
                       <p>2. Grow cells with shaking at 30°C for 1 hour and 50 mins.</p>
 
                       <p>3. Add 1ml of 10% L-arabinose and culture for 1 hour.</p>
 
                       <p>3. Add 1ml of 10% L-arabinose and culture for 1 hour.</p>
Line 277: Line 277:
 
                       <p>6. Remove the supernatant using a pipette and suspend the cells with 1ml of chilled 10% glycerol. Centrifuge again for 1 min at 4°C and 12,000 rpm. (second wash)</p>
 
                       <p>6. Remove the supernatant using a pipette and suspend the cells with 1ml of chilled 10% glycerol. Centrifuge again for 1 min at 4°C and 12,000 rpm. (second wash)</p>
 
                       <p>7. Remove the supernatant using a pipette and suspend the cells with 1ml of chilled 10% glycerol. Centrifuge again for 1 min at 4°C and 12,000 rpm. (third wash)</p>
 
                       <p>7. Remove the supernatant using a pipette and suspend the cells with 1ml of chilled 10% glycerol. Centrifuge again for 1 min at 4°C and 12,000 rpm. (third wash)</p>
                       <p>8. Remove the supernatant using a pipette and suspend the cells with 250ul (depends on the amount of the cell) of chilled 10% glycerol.</p>
+
                       <p>8. Remove the supernatant using a pipette and suspend the cells with 250μl (depends on the amount of the cell) of chilled 10% glycerol.</p>
 
                         <p><h5>Electroporation:</h5></p>
 
                         <p><h5>Electroporation:</h5></p>
                         <p>1. Mix 50ul of the competent cell and 5ul DNA solution in a fresh 1.5ml tube.</p>
+
                         <p>1. Mix 50μl of the competent cell and 5μl DNA solution in a fresh 1.5ml tube.</p>
 
                         <p>2. Transfer the mixture into chilled electroporation cuvette (2mm gap), and pulse (Ec 2).</p>
 
                         <p>2. Transfer the mixture into chilled electroporation cuvette (2mm gap), and pulse (Ec 2).</p>
                         <p>3. Add 1ml of SOC with 20ul 10% arabinose immediately after the pulse.</p>
+
                         <p>3. Add 1ml of SOC with 20μl 10% arabinose immediately after the pulse.</p>
 
                         <p>4. Incubate it for 1 hour at 37°C.</p>
 
                         <p>4. Incubate it for 1 hour at 37°C.</p>
                         <p>5. Plate 100ul of the culture on a selection plate, and incubate at 30°C.</p>
+
                         <p>5. Plate 100μl of the culture on a selection plate, and incubate at 30°C.</p>
 
                     </div>
 
                     </div>
 
                   </div>
 
                   </div>
Line 329: Line 329:
 
                       <p>4. Remove the supernatant and suspend the cells with 1ml of chilled 10% glycerol. Transfer the cell suspension into a 1.5ml tube and centrifuge again for 1 min at 4°C and 12,000rpm.</p>
 
                       <p>4. Remove the supernatant and suspend the cells with 1ml of chilled 10% glycerol. Transfer the cell suspension into a 1.5ml tube and centrifuge again for 1 min at 4°C and 12,000rpm.</p>
 
                       <p>5. Remove the supernatant using a pipette and suspend the cells with 1ml of chilled 10% glycerol. Centrifuge again for 1 min at 4°C and 12,000 rpm.</p>
 
                       <p>5. Remove the supernatant using a pipette and suspend the cells with 1ml of chilled 10% glycerol. Centrifuge again for 1 min at 4°C and 12,000 rpm.</p>
                       <p>6. Remove the supernatant using a pipette and suspend the cells with 250ul (depends on the amount of the cell) of chilled 10% glycerol.</p>
+
                       <p>6. Remove the supernatant using a pipette and suspend the cells with 250μl (depends on the amount of the cell) of chilled 10% glycerol.</p>
 
                         <p><h5>Electroporation:</h5></p>
 
                         <p><h5>Electroporation:</h5></p>
                       <p>1. Mix 50ul of the competent cell and DNA solution (the amount depends on the DNA plasmid) in a fresh 1.5ml tube.</p>
+
                       <p>1. Mix 50μl of the competent cell and DNA solution (the amount depends on the DNA plasmid) in a fresh 1.5ml tube.</p>
 
                       <p>2. Transfer the mixture into chilled electroporation cuvette (2mm gap), and pulse (Ec 2).</p>
 
                       <p>2. Transfer the mixture into chilled electroporation cuvette (2mm gap), and pulse (Ec 2).</p>
 
                       <p>3. Add 1ml of SOC immediately after the pulse.</p>
 
                       <p>3. Add 1ml of SOC immediately after the pulse.</p>
Line 381: Line 381:
 
                       <p>1. Adjust the amount of agarose to get the desired gel concentration (in this protocol, we’ll be using 0.7% agarose).</p>
 
                       <p>1. Adjust the amount of agarose to get the desired gel concentration (in this protocol, we’ll be using 0.7% agarose).</p>
 
                       <p>2. Weight 0.7 grams of agarose powder and add it to a glass bottle or Erlenmeyer flask.</p>
 
                       <p>2. Weight 0.7 grams of agarose powder and add it to a glass bottle or Erlenmeyer flask.</p>
                       <p>3. Measure 100mL of TBE buffer or TAE buffer and add it to the glass bottle or Erlenmeyer.</p>
+
                       <p>3. Measure 100ml of TBE buffer or TAE buffer and add it to the glass bottle or Erlenmeyer.</p>
 
                       <p>4. Put the mix into the microwave and heat it until the agarose is completely dissolved.</p>
 
                       <p>4. Put the mix into the microwave and heat it until the agarose is completely dissolved.</p>
 
                       <p>5. Let the mix cool down and pour it to the electrophoresis tray.</p>
 
                       <p>5. Let the mix cool down and pour it to the electrophoresis tray.</p>
Line 400: Line 400:
 
                           <tr>   
 
                           <tr>   
 
                             <td scope="row"  style="font-size:1.1rem;">Size checking</th>
 
                             <td scope="row"  style="font-size:1.1rem;">Size checking</th>
                             <td style="font-size:1.1rem;">2uL</td>
+
                             <td style="font-size:1.1rem;">2μl</td>
                             <td style="font-size:1.1rem;">10uL (2X)</td>
+
                             <td style="font-size:1.1rem;">10μl (2X)</td>
                             <td style="font-size:1.1rem;">12uL</td>
+
                             <td style="font-size:1.1rem;">12μl</td>
 
                           </tr>
 
                           </tr>
 
                           <tr>
 
                           <tr>
 
                             <td scope="row" style="font-size:1.1rem;">Gel extraction</th>
 
                             <td scope="row" style="font-size:1.1rem;">Gel extraction</th>
 
                             <td style="font-size:1.1rem;">depends on how much DNA solution to be extracted</td>
 
                             <td style="font-size:1.1rem;">depends on how much DNA solution to be extracted</td>
                             <td style="font-size:1.1rem;">5uL (10X)</td>
+
                             <td style="font-size:1.1rem;">5μl (10X)</td>
 
                           </tr>
 
                           </tr>
 
                         </tbody>
 
                         </tbody>
Line 416: Line 416:
 
                         <p>2. Pour the TBE buffer or TAE buffer to the buffer tank. Note: buffer used for running has to be the same as the buffer used to prepare the gel solution.</p>
 
                         <p>2. Pour the TBE buffer or TAE buffer to the buffer tank. Note: buffer used for running has to be the same as the buffer used to prepare the gel solution.</p>
 
                         <p>3. Put the gel in the buffer tank.</p>
 
                         <p>3. Put the gel in the buffer tank.</p>
                         <p>4. Load 5uL λ EH (λ DNA/EcoRI+HindIII) marker (2X) in a well and load the DNA sample mix with SLB in the remaining wells.</p>
+
                         <p>4. Load 5μl λ EH (λ DNA/EcoRI+HindIII) marker (2X) in a well and load the DNA sample mix with SLB in the remaining wells.</p>
 
                         <p>5. Run for 20 mins at 100V. Note: voltage and time varies.</p>
 
                         <p>5. Run for 20 mins at 100V. Note: voltage and time varies.</p>
 
                         <p><h5>Agarose gel visualization:</h5></p>
 
                         <p><h5>Agarose gel visualization:</h5></p>
Line 464: Line 464:
 
                       <p>1. Excise band with scalpel and transfer to a new eppendorf tube.</p>
 
                       <p>1. Excise band with scalpel and transfer to a new eppendorf tube.</p>
 
                       <p>2. Weigh the gel slice in a tube (by measuring the weight difference of an empty eppendorf and the eppendorf with gel slice in the tube).</p>
 
                       <p>2. Weigh the gel slice in a tube (by measuring the weight difference of an empty eppendorf and the eppendorf with gel slice in the tube).</p>
                       <p>3. Add 3 volumes of binding buffer to 1 volume of gel (100mg = 100ul).</p>
+
                       <p>3. Add 3 volumes of binding buffer to 1 volume of gel (100mg = 100μl).</p>
 
                       <p>4. Incubate at 60°C for 2-10 mins (or until the gel has completely dissolved).</p>
 
                       <p>4. Incubate at 60°C for 2-10 mins (or until the gel has completely dissolved).</p>
 
                       <p>5. Add 1.5 volume of isopropanol and invert the eppendorf 10 times.</p>
 
                       <p>5. Add 1.5 volume of isopropanol and invert the eppendorf 10 times.</p>
                       <p>6. Place a spin column in a provided collection tube. Transfer 700ul sample to the spin column and centrifuge for 30 secs, 12,000 rpm.</p>
+
                       <p>6. Place a spin column in a provided collection tube. Transfer 700μl sample to the spin column and centrifuge for 30 secs, 12,000 rpm.</p>
 
                       <p>7. Discard flow-through and place the spin column back into the collection tube.</p>
 
                       <p>7. Discard flow-through and place the spin column back into the collection tube.</p>
 
                       <p><h5>2. Wash:</h5></p>
 
                       <p><h5>2. Wash:</h5></p>
                       <p>1. Add 500ul of washing buffer to the spin column and centrifuge for 30 secs, 12,000rpm.</p>
+
                       <p>1. Add 500μl of washing buffer to the spin column and centrifuge for 30 secs, 12,000rpm.</p>
 
                       <p>2. Discard flow-through and place the spin column back into the collection tube.</p>
 
                       <p>2. Discard flow-through and place the spin column back into the collection tube.</p>
                       <p>3. Add 200ul of washing buffer to the spin column and centrifuge for 5 mins, 12,000rpm.</p>
+
                       <p>3. Add 200μl of washing buffer to the spin column and centrifuge for 5 mins, 12,000rpm.</p>
 
                       <p>4. Discard flow-through and place the spin column back into the collection tube.</p>
 
                       <p>4. Discard flow-through and place the spin column back into the collection tube.</p>
 
                       <p><h5>3. DNA elution:</h5></p>
 
                       <p><h5>3. DNA elution:</h5></p>
                       <p>1. Transfer spin column to clean eppendorf. Add 50ul of elution buffer to the spin column. Centrifuge for 2 mins, 12,000rpm.</p>
+
                       <p>1. Transfer spin column to clean eppendorf. Add 50μl of elution buffer to the spin column. Centrifuge for 2 mins, 12,000rpm.</p>
 
                       <p>2. Collect the pure sample in the eppendorf and discard the spin column.</p>
 
                       <p>2. Collect the pure sample in the eppendorf and discard the spin column.</p>
 
                       <p>Keep the DNA solution in -20°C freezer.</p>
 
                       <p>Keep the DNA solution in -20°C freezer.</p>
Line 516: Line 516:
 
                           <tr>
 
                           <tr>
 
                             <td scope="col" style="border:1px #7E3B40 solid; font-size: 1.1rem;">Vector</th>
 
                             <td scope="col" style="border:1px #7E3B40 solid; font-size: 1.1rem;">Vector</th>
                             <td scope="col" style="border:1px #7E3B40 solid; text-align: center; font-size: 1.1rem;">12uL</th>
+
                             <td scope="col" style="border:1px #7E3B40 solid; text-align: center; font-size: 1.1rem;">12μl</th>
 
                           </tr>
 
                           </tr>
 
                         </thead>
 
                         </thead>
Line 522: Line 522:
 
                           <tr>   
 
                           <tr>   
 
                             <td scope="row" style="font-size: 1.1rem;">Insert</th>
 
                             <td scope="row" style="font-size: 1.1rem;">Insert</th>
                             <td style="font-size: 1.1rem;">40uL</td>
+
                             <td style="font-size: 1.1rem;">40μl</td>
 
                           </tr>
 
                           </tr>
 
                           <tr>
 
                           <tr>
 
                             <td scope="row" style="font-size: 1.1rem;">T4 DNA ligase buffer (10x)</th>
 
                             <td scope="row" style="font-size: 1.1rem;">T4 DNA ligase buffer (10x)</th>
                             <td style="font-size: 1.1rem;">5.8uL</td>
+
                             <td style="font-size: 1.1rem;">5.8μl</td>
 
                           </tr>
 
                           </tr>
 
                           <tr>
 
                           <tr>
 
                             <td scope="row" style="font-size: 1.1rem;">T4 DNA ligase</th>
 
                             <td scope="row" style="font-size: 1.1rem;">T4 DNA ligase</th>
                             <td colspan="1" style="font-size: 1.1rem;">0.5uL</td>
+
                             <td colspan="1" style="font-size: 1.1rem;">0.5μl</td>
 
                           </tr>
 
                           </tr>
 
                           <tr style="border:3px #7E3B40 solid">
 
                           <tr style="border:3px #7E3B40 solid">
 
                             <th scope="row" style="font-size:1.2rem; text-align: center;">Total Volume</th>
 
                             <th scope="row" style="font-size:1.2rem; text-align: center;">Total Volume</th>
                             <th style="font-size:1.2rem; text-align: center;">58.3uL</td>
+
                             <th style="font-size:1.2rem; text-align: center;">58.3μl</td>
 
                           </tr>
 
                           </tr>
 
                         </tbody>
 
                         </tbody>
Line 580: Line 580:
 
                       <div style="font-size: 2rem; text-align: center;margin-bottom: 1rem; font-weight: bold;">Protocol:</div>
 
                       <div style="font-size: 2rem; text-align: center;margin-bottom: 1rem; font-weight: bold;">Protocol:</div>
 
                       <p><h5>DNA binding:</h5></p>
 
                       <p><h5>DNA binding:</h5></p>
                       <p>1. Add MQ or ddH<sub>2</sub>O to DNA solution until the volume reaches 100uL.</p>
+
                       <p>1. Add MQ or ddH<sub>2</sub>O to DNA solution until the volume reaches 100μl.</p>
                       <p>2. Add 300uL of binding buffer to the solution.</p>
+
                       <p>2. Add 300μl of binding buffer to the solution.</p>
                       <p>3. Add 150uL of isopropanol and invert the eppendorf 10 times.</p>
+
                       <p>3. Add 150μl of isopropanol and invert the eppendorf 10 times.</p>
                       <p>4. Place a spin column in a provided collection tube. Transfer 550uL sample to the spin column and centrifuge for 30 secs, 12,000 rpm.</p>
+
                       <p>4. Place a spin column in a provided collection tube. Transfer 550μl sample to the spin column and centrifuge for 30 secs, 12,000 rpm.</p>
 
                       <p>5. Discard flow-through and place the spin column back into the collection tube.</p>
 
                       <p>5. Discard flow-through and place the spin column back into the collection tube.</p>
 
                       <p><h5>Wash</h5></p>
 
                       <p><h5>Wash</h5></p>
                       <p>1. Add 500uL of washing buffer to the spin column and centrifuge for 30 secs, 12,000rpm.</p>  
+
                       <p>1. Add 500μl of washing buffer to the spin column and centrifuge for 30 secs, 12,000rpm.</p>  
 
                       <p>2. Discard flow-through and place the spin column back into the collection tube.</p>
 
                       <p>2. Discard flow-through and place the spin column back into the collection tube.</p>
                       <p>3. Add 200uL of washing buffer to the spin column and centrifuge for 5 mins, 12,000rpm.</p>
+
                       <p>3. Add 200μl of washing buffer to the spin column and centrifuge for 5 mins, 12,000rpm.</p>
 
                       <p>4. Discard flow-through and place the spin column back into the collection tube.</p>
 
                       <p>4. Discard flow-through and place the spin column back into the collection tube.</p>
 
                       <p><h5>DNA elution</h5></p>
 
                       <p><h5>DNA elution</h5></p>
                       <p>1. Transfer spin column to clean eppendorf. Add 50uL of elution buffer to the spin column. Centrifuge for 2 mins, 12,000rpm.</p>
+
                       <p>1. Transfer spin column to clean eppendorf. Add 50μl of elution buffer to the spin column. Centrifuge for 2 mins, 12,000rpm.</p>
 
                       <p>2. Collect the pure sample in the eppendorf and discard the spin column.</p>
 
                       <p>2. Collect the pure sample in the eppendorf and discard the spin column.</p>
 
                       <p>3. Keep the DNA solution in -20°C freezer.</p>
 
                       <p>3. Keep the DNA solution in -20°C freezer.</p>
Line 638: Line 638:
 
                       <p>1. Prepare 2-5ml overnight culture in LB medium with the antibiotic (depends on the plasmid to be extracted).</p>
 
                       <p>1. Prepare 2-5ml overnight culture in LB medium with the antibiotic (depends on the plasmid to be extracted).</p>
 
                       <p>2. Collect cells from the overnight culture with a centrifuge (12,000rpm 30sec) and discard the supernatant.</p>
 
                       <p>2. Collect cells from the overnight culture with a centrifuge (12,000rpm 30sec) and discard the supernatant.</p>
                       <p>3. Add 250ul of suspension buffer and suspend bacterial cells by vortex.</p>
+
                       <p>3. Add 250μl of suspension buffer and suspend bacterial cells by vortex.</p>
                       <p>4. Add 250ul of lysis buffer and mix gently by inverting the tube 10 times. </p>
+
                       <p>4. Add 250μl of lysis buffer and mix gently by inverting the tube 10 times. </p>
                       <p>5. Add 350ul of binding buffer and mix gently by inverting the tube 10 times. </p>
+
                       <p>5. Add 350μl of binding buffer and mix gently by inverting the tube 10 times. </p>
 
                       <p>6. Incubate on ice for 5 mins. </p>
 
                       <p>6. Incubate on ice for 5 mins. </p>
 
                       <p>7. Centrifuge at 4°C, 12,000rpm for 10 mins.</p>
 
                       <p>7. Centrifuge at 4°C, 12,000rpm for 10 mins.</p>
                       <p>8. Place a spin column in a provided collection tube. Transfer 750ul of supernatant to spin column.</p>
+
                       <p>8. Place a spin column in a provided collection tube. Transfer 750μl of supernatant to spin column.</p>
 
                       <p>9. Centrifuge at room temperature, 12,000 rpm for 30 sec and discard the flow-through.</p>
 
                       <p>9. Centrifuge at room temperature, 12,000 rpm for 30 sec and discard the flow-through.</p>
                       <p>10. Add 500ul of washing buffer I to the spin column and centrifuge for 30 sec. Discard the flow-through.</p>
+
                       <p>10. Add 500μl of washing buffer I to the spin column and centrifuge for 30 sec. Discard the flow-through.</p>
 
                     </div>
 
                     </div>
 
                   </div>
 
                   </div>
Line 716: Line 716:
 
                           <tr style="border: 1px #7E3B40 solid;">
 
                           <tr style="border: 1px #7E3B40 solid;">
 
                             <td scope="col" style="font-size: 1.1rem;">DNA</td>
 
                             <td scope="col" style="font-size: 1.1rem;">DNA</td>
                             <td scope="col" style="font-size: 1.1rem;">43uL</td>
+
                             <td scope="col" style="font-size: 1.1rem;">43μl</td>
 
                           </tr>
 
                           </tr>
 
                         </thead>
 
                         </thead>
Line 722: Line 722:
 
                           <tr>   
 
                           <tr>   
 
                             <td scope="row" style="font-size: 1.1rem;">Buffer 10x</td>
 
                             <td scope="row" style="font-size: 1.1rem;">Buffer 10x</td>
                             <td style="font-size: 1.1rem;">5uL</td>
+
                             <td style="font-size: 1.1rem;">5μl</td>
 
                           </tr>
 
                           </tr>
 
                           <tr>
 
                           <tr>
 
                             <td scope="row" style="font-size: 1.1rem;">Restriction enzyme 1</td>
 
                             <td scope="row" style="font-size: 1.1rem;">Restriction enzyme 1</td>
                             <td style="font-size: 1.1rem;">1uL</td>
+
                             <td style="font-size: 1.1rem;">1μl</td>
 
                           </tr>
 
                           </tr>
 
                           <tr>
 
                           <tr>
 
                             <td scope="row" style="font-size: 1.1rem;">Restriction enzyme 2</td>
 
                             <td scope="row" style="font-size: 1.1rem;">Restriction enzyme 2</td>
                             <td colspan="1" style="font-size: 1.1rem;">1uL</td>
+
                             <td colspan="1" style="font-size: 1.1rem;">1μl</td>
 
                           </tr>
 
                           </tr>
 
                           <tr style="font-size:1.2rem; text-align: center; border: 3PX #7E3B40 solid;">
 
                           <tr style="font-size:1.2rem; text-align: center; border: 3PX #7E3B40 solid;">
 
                             <th scope="row" style="font-size: 1.2rem;">Total Volume</th>
 
                             <th scope="row" style="font-size: 1.2rem;">Total Volume</th>
                             <th style="font-size: 1.2rem; text-align: center;">50uL</td>
+
                             <th style="font-size: 1.2rem; text-align: center;">50μl</td>
 
                           </tr>
 
                           </tr>
 
                         </tbody>
 
                         </tbody>
Line 743: Line 743:
 
                           <tr style="border: 1px #7E3B40 solid;">
 
                           <tr style="border: 1px #7E3B40 solid;">
 
                             <td scope="col" style="font-size: 1.1rem;">Plasmid DNA</th>
 
                             <td scope="col" style="font-size: 1.1rem;">Plasmid DNA</th>
                             <td style="font-size: 1.1rem;">2uL</td>
+
                             <td style="font-size: 1.1rem;">2μl</td>
 
                           </tr>
 
                           </tr>
 
                         </thead>
 
                         </thead>
Line 749: Line 749:
 
                           <tr>   
 
                           <tr>   
 
                             <td scope="row" style="font-size: 1.1rem;">Buffer 10x</th>
 
                             <td scope="row" style="font-size: 1.1rem;">Buffer 10x</th>
                             <td style="font-size: 1.1rem;">1.5uL</td>
+
                             <td style="font-size: 1.1rem;">1.5μl</td>
 
                           </tr>
 
                           </tr>
 
                           <tr>
 
                           <tr>
 
                             <td scope="row" style="font-size: 1.1rem;">Restriction enzyme</th>
 
                             <td scope="row" style="font-size: 1.1rem;">Restriction enzyme</th>
                             <td style="font-size: 1.1rem;">0.5uL</td>
+
                             <td style="font-size: 1.1rem;">0.5μl</td>
 
                           </tr>
 
                           </tr>
 
                           <tr>
 
                           <tr>
 
                             <td scope="row" style="font-size: 1.1rem;">MQ or ddH<sub>2</sub>O</th>
 
                             <td scope="row" style="font-size: 1.1rem;">MQ or ddH<sub>2</sub>O</th>
                             <td colspan="1" style="font-size: 1.1rem;">11uL</td>
+
                             <td colspan="1" style="font-size: 1.1rem;">11μl</td>
 
                           </tr>
 
                           </tr>
 
                           <tr style="font-size:1.2rem; text-align: center; border: 3PX #7E3B40 solid;">
 
                           <tr style="font-size:1.2rem; text-align: center; border: 3PX #7E3B40 solid;">
 
                             <th scope="row" style="font-size: 1.2rem; text-align: center;">Total Volume</th>
 
                             <th scope="row" style="font-size: 1.2rem; text-align: center;">Total Volume</th>
                             <th style="font-size: 1.2rem; text-align: center;">15uL</td>
+
                             <th style="font-size: 1.2rem; text-align: center;">15μl</td>
 
                           </tr>
 
                           </tr>
 
                         </tbody>
 
                         </tbody>
Line 830: Line 830:
 
                           <tr>
 
                           <tr>
 
                             <th scope="col" style="font-size:1.2rem; text-align: center;">Total Volume</th>
 
                             <th scope="col" style="font-size:1.2rem; text-align: center;">Total Volume</th>
                             <th scope="col" style="font-size:1.2rem; text-align: center;">5mL</th>
+
                             <th scope="col" style="font-size:1.2rem; text-align: center;">5ml</th>
                             <th scope="col" style="font-size:1.2rem; text-align: center;">10mL</th>
+
                             <th scope="col" style="font-size:1.2rem; text-align: center;">10ml</th>
                             <th scope="col" style="font-size:1.2rem; text-align: center;">15mL</th>
+
                             <th scope="col" style="font-size:1.2rem; text-align: center;">15ml</th>
 
                           </tr>
 
                           </tr>
 
                         </thead>
 
                         </thead>
Line 878: Line 878:
 
                       <p>5. Pour out the iso-propanol.</p>
 
                       <p>5. Pour out the iso-propanol.</p>
 
                       <p><h5>Stacking gel preparation</h5></p>
 
                       <p><h5>Stacking gel preparation</h5></p>
                       <p>1. In a 50mL eppendorf tube add all the components</p>
+
                       <p>1. In a 50ml eppendorf tube add all the components</p>
 
                       <table class="table table-Border">
 
                       <table class="table table-Border">
 
                         <thead>
 
                         <thead>
Line 931: Line 931:
 
                       <p><h5>Sample preparation</h5></p>
 
                       <p><h5>Sample preparation</h5></p>
 
                       <p>1. Take overnight cultures with the desired volume and centrifuge.</p>
 
                       <p>1. Take overnight cultures with the desired volume and centrifuge.</p>
                       <p>2. Take 12uL of pellet or supernatant (depends on necessity) and move to a new fresh eppendorf.</p>
+
                       <p>2. Take 12μl of pellet or supernatant (depends on necessity) and move to a new fresh eppendorf.</p>
                       <p>3. Add 3uL dye into the eppendorf. Vortex and centrifuge briefly.</p>
+
                       <p>3. Add 3μl dye into the eppendorf. Vortex and centrifuge briefly.</p>
 
                       <p>4. Heat the eppendorf at 100°C for 10 mins and centrifuge briefly.</p>
 
                       <p>4. Heat the eppendorf at 100°C for 10 mins and centrifuge briefly.</p>
 
                       <p>5. Put samples in the ice bucket.</p>
 
                       <p>5. Put samples in the ice bucket.</p>
 
                       <p><h5>Gel running</h5></p>
 
                       <p><h5>Gel running</h5></p>
 
                       <p>1. When the gel solidified, set up the running equipment and pour 1X tank buffer.</p>
 
                       <p>1. When the gel solidified, set up the running equipment and pour 1X tank buffer.</p>
                       <p>2. Take out the comb and load 3uL of the marker into a well and load the samples into the remaining wells.</p>
+
                       <p>2. Take out the comb and load 3μl of the marker into a well and load the samples into the remaining wells.</p>
 
                       <p>3. Run the first 30 mins at 120V then continue to run for 1 hour at 150V. Note: voltage and time may vary.</p>
 
                       <p>3. Run the first 30 mins at 120V then continue to run for 1 hour at 150V. Note: voltage and time may vary.</p>
 
                       <p><h5>Staining</h5></p>
 
                       <p><h5>Staining</h5></p>
Line 979: Line 979:
 
                       <p>2. 2x PCR buffer for KOD FX</p>
 
                       <p>2. 2x PCR buffer for KOD FX</p>
 
                       <p>3. dNTPs 2mM</p>
 
                       <p>3. dNTPs 2mM</p>
                       <p>4. Forward and reverse primer (10uM)</p>
+
                       <p>4. Forward and reverse primer (10μM)</p>
 
                       <p>5. KOD FX polymerase</p>
 
                       <p>5. KOD FX polymerase</p>
 
                     </div>
 
                     </div>
Line 989: Line 989:
 
                           <tr style="border:3px solid #7E3B40;">
 
                           <tr style="border:3px solid #7E3B40;">
 
                             <th scope="col" style="font-size:1.25rem; text-align: center;">Components</th>
 
                             <th scope="col" style="font-size:1.25rem; text-align: center;">Components</th>
                             <th scope="col" style="font-size:1.25rem; text-align: center;">Volume(ul)</th>
+
                             <th scope="col" style="font-size:1.25rem; text-align: center;">Volume(μl)</th>
 
                           </tr>
 
                           </tr>
 
                         </thead>
 
                         </thead>
Line 1,010: Line 1,010:
 
                           </tr>
 
                           </tr>
 
                           <tr>
 
                           <tr>
                             <td scope="row" style="font-size: 1.1rem;">Forward primer 10uM</th>
+
                             <td scope="row" style="font-size: 1.1rem;">Forward primer 10μM</th>
 
                             <td style="font-size: 1.1rem;">1</td>
 
                             <td style="font-size: 1.1rem;">1</td>
 
                           </tr>
 
                           </tr>
 
                           <tr>
 
                           <tr>
                             <td scope="row" style="font-size: 1.1rem;">Reverse primer 10uM</th>
+
                             <td scope="row" style="font-size: 1.1rem;">Reverse primer 10μM</th>
 
                             <td style="font-size: 1.1rem;">0.1</td>
 
                             <td style="font-size: 1.1rem;">0.1</td>
 
                           </tr>
 
                           </tr>
Line 1,124: Line 1,124:
 
                             <tr>
 
                             <tr>
 
                               <td scope="col" style="font-size: 1.1rem;">DW</th>
 
                               <td scope="col" style="font-size: 1.1rem;">DW</th>
                               <td style="font-size: 1.1rem;">98mL</td>
+
                               <td style="font-size: 1.1rem;">98ml</td>
 
                             </tr>
 
                             </tr>
 
                           </thead>
 
                           </thead>
Line 1,142: Line 1,142:
 
                             <tr>
 
                             <tr>
 
                               <td scope="row" style="font-size: 1.1rem;">NaOH (10N)</th>
 
                               <td scope="row" style="font-size: 1.1rem;">NaOH (10N)</th>
                               <td style="font-size: 1.1rem;">20uL</td>
+
                               <td style="font-size: 1.1rem;">20μl</td>
 
                             </tr>
 
                             </tr>
 
                             <tr style="border:3px solid #7E3B40;border-bottom:1px;">
 
                             <tr style="border:3px solid #7E3B40;border-bottom:1px;">
 
                               <th scope="row" style="font-size: 1.2rem; text-align: center;">Total Volume</th>
 
                               <th scope="row" style="font-size: 1.2rem; text-align: center;">Total Volume</th>
                               <th style="font-size: 1.2rem; text-align: center;">100mL</td>
+
                               <th style="font-size: 1.2rem; text-align: center;">100ml</td>
 
                             </tr>
 
                             </tr>
 
                             <tr style="border:3px solid #7E3B40; border-top:1px;">
 
                             <tr style="border:3px solid #7E3B40; border-top:1px;">
Line 1,157: Line 1,157:
 
                       <p>2. Mix well, pour the mixture into the bottle or flask and autoclave. Notes: For agar medium, pour the mixture to the petri dish and dry the plates.</p>
 
                       <p>2. Mix well, pour the mixture into the bottle or flask and autoclave. Notes: For agar medium, pour the mixture to the petri dish and dry the plates.</p>
 
                       <p>For selection plates, add antibiotics as the following before pouring the mixture to the petri dish:</p>
 
                       <p>For selection plates, add antibiotics as the following before pouring the mixture to the petri dish:</p>
                       <p><li style="font-size: 1.1rem;">Kanamycin: 100uL/100ml media</p></li>
+
                       <p><li style="font-size: 1.1rem;">Kanamycin: 100μl/100ml media</p></li>
                       <p><li style="font-size: 1.1rem;">Chloramphenicol: 50uL/100mL media</p></li>
+
                       <p><li style="font-size: 1.1rem;">Chloramphenicol: 50μl/100ml media</p></li>
                       <p><li style="font-size: 1.1rem;">Ampicillin: 100uL/100mL media</p></li>
+
                       <p><li style="font-size: 1.1rem;">Ampicillin: 100μl/100μl media</p></li>
 
                     </div>
 
                     </div>
 
                   </div>
 
                   </div>
Line 1,214: Line 1,214:
 
                             <tr>
 
                             <tr>
 
                               <td scope="row" style="font-size: 1.1rem;">3M KCL</th>
 
                               <td scope="row" style="font-size: 1.1rem;">3M KCL</th>
                               <td style="font-size: 1.1rem;">83uL</td>
+
                               <td style="font-size: 1.1rem;">83μl</td>
 
                             </tr>
 
                             </tr>
 
                             <tr style="border:3px solid #7E3B40;">
 
                             <tr style="border:3px solid #7E3B40;">
Line 1,302: Line 1,302:
 
                             <tr>
 
                             <tr>
 
                               <td scope="row" style="font-size: 1.1rem;">1M M<sub>g</sub>SO<sub>4</sub></th>
 
                               <td scope="row" style="font-size: 1.1rem;">1M M<sub>g</sub>SO<sub>4</sub></th>
                               <td style="font-size: 1.1rem;">200uL</td>
+
                               <td style="font-size: 1.1rem;">200μl</td>
 
                             </tr>
 
                             </tr>
 
                             <tr>
 
                             <tr>
 
                               <td scope="row" style="font-size: 1.1rem;">1M C<sub>a</sub>Cl<sub>2</sub></th>
 
                               <td scope="row" style="font-size: 1.1rem;">1M C<sub>a</sub>Cl<sub>2</sub></th>
                               <td colspan="1" style="font-size: 1.1rem;">10uL</td>
+
                               <td colspan="1" style="font-size: 1.1rem;">10μl</td>
 
                             </tr>
 
                             </tr>
 
                             <tr>
 
                             <tr>
Line 1,397: Line 1,397:
 
                         <br><br><div style="font-size: 2rem; text-align: center;margin-bottom: 1rem; font-weight:bold;">Protocol:</div>
 
                         <br><br><div style="font-size: 2rem; text-align: center;margin-bottom: 1rem; font-weight:bold;">Protocol:</div>
 
                         <p>1. Make overnight cultures induced with different concentrations of <i>p</i>-Cresol and also without p-Cresol for control. Incubate at 37°C incubator.</p>
 
                         <p>1. Make overnight cultures induced with different concentrations of <i>p</i>-Cresol and also without p-Cresol for control. Incubate at 37°C incubator.</p>
                         <p>2. Load 200ul of samples onto the 96 well plates. Arrange with your personal preference.</p>
+
                         <p>2. Load 200μl of samples onto the 96 well plates. Arrange with your personal preference.</p>
 
                         <p>3. Measure fluorescence using the spectrofluorometer.</p>
 
                         <p>3. Measure fluorescence using the spectrofluorometer.</p>
 
                       </div>
 
                       </div>
Line 1,415: Line 1,415:
 
                         <p>1. Bacterial culture</p>
 
                         <p>1. Bacterial culture</p>
 
                         <p>2. BHI plate</p>
 
                         <p>2. BHI plate</p>
                         <p>3. 0.22um filter</p>
+
                         <p>3. 0.22μm filter</p>
 
                         <p>4. Purified bacteriocin (positive control)</p>
 
                         <p>4. Purified bacteriocin (positive control)</p>
 
                         <p>5. LB medium</p>
 
                         <p>5. LB medium</p>
 
                       </div>
 
                       </div>
 
                       <div class="col">
 
                       <div class="col">
                         <br><br><div style="font-size: 2rem; text-align: center;margin-bottom: 1rem;">Protocol:</div>
+
                         <br><br><div style="font-size: 2rem; text-align: center;margin-bottom: 1rem; font-weight: bold;">Protocol:</div>
 
                         <p>1. Grow overnight cultures of <i>c. difficile</i> and bacteria carrying plasmid with bacteriocin in 6ml LB.<class="small-font bold-font">(Note: In this experiment, total cell lysate and filtered growth medium of the culture carrying plasmid with bacteriocin will be used to test both the expression and secretion of bacteriocin.)</p>
 
                         <p>1. Grow overnight cultures of <i>c. difficile</i> and bacteria carrying plasmid with bacteriocin in 6ml LB.<class="small-font bold-font">(Note: In this experiment, total cell lysate and filtered growth medium of the culture carrying plasmid with bacteriocin will be used to test both the expression and secretion of bacteriocin.)</p>
                         <p>Take 100ul of the <i>c. difficile</i> overnight culture and streak evenly on the dried BHI plate. </p>
+
                         <p>Take 100μl of the <i>c. difficile</i> overnight culture and streak evenly on the dried BHI plate. </p>
                         <p>To test the secretion ability of bacteriocin, take 2ml overnight culture of bacteriocin producing bacteria and filter it through a 0.22um filter. Spot 5 ul of the filtered solution on the streaked BHI plate.</p>
+
                         <p>To test the secretion ability of bacteriocin, take 2ml overnight culture of bacteriocin producing bacteria and filter it through a 0.22μm filter. Spot 5 μl of the filtered solution on the streaked BHI plate.</p>
                         <p>To test the expression of bacteriocin, take 2ml overnight culture of bacteriocin producing bacteria and put it in -80°C fridge. Freeze for 10 min and take the frozen bacteria back to the room temperature to unfroze it. Repeat this step twice. Then, take the culture solution and filter it through a 0.22um filter and spot 5ul of the filtered solution on the streaked BHI plate.</p>
+
                         <p>To test the expression of bacteriocin, take 2ml overnight culture of bacteriocin producing bacteria and put it in -80°C fridge. Freeze for 10 min and take the frozen bacteria back to the room temperature to unfroze it. Repeat this step twice. Then, take the culture solution and filter it through a 0.22μm filter and spot 5μl of the filtered solution on the streaked BHI plate.</p>
 
                         <p>For positive control, purified bacteriocin without yebF secretion tag kindly proved by one of the PI’s lab are used.</p>
 
                         <p>For positive control, purified bacteriocin without yebF secretion tag kindly proved by one of the PI’s lab are used.</p>
 
                         <p>Grow the plate in the anaerobic incubator and observe the inhibition zone.</p>
 
                         <p>Grow the plate in the anaerobic incubator and observe the inhibition zone.</p>
Line 1,446: Line 1,446:
 
                         <p>3. LB + 2mM tyrosine</p>
 
                         <p>3. LB + 2mM tyrosine</p>
 
                         <p>4. LB + 1mM tyrosine</p>
 
                         <p>4. LB + 1mM tyrosine</p>
                         <p>5. LB + 500uM tyrosine</p>
+
                         <p>5. LB + 500μM tyrosine</p>
 
                         <p>6. <i>p</i>-Coumaric acid</p>
 
                         <p>6. <i>p</i>-Coumaric acid</p>
 
                         <p>7. Lysis buffer</p>
 
                         <p>7. Lysis buffer</p>
Line 1,456: Line 1,456:
 
                         <p>1. For each <i>E.coli</i> strain, bacterial colony is inoculate to 6ml LB medium containing appropriate antibiotic and grow overnight in normal 37°C incubator.</p>
 
                         <p>1. For each <i>E.coli</i> strain, bacterial colony is inoculate to 6ml LB medium containing appropriate antibiotic and grow overnight in normal 37°C incubator.</p>
 
                         <p>2. Incubate for 16 hours. </p>
 
                         <p>2. Incubate for 16 hours. </p>
                         <p>3. Take 60ul of bacterial culture to refresh in 6ml LB containing containing appropriate antibiotic and different concentration of tyrosine.</p>
+
                         <p>3. Take 60μl of bacterial culture to refresh in 6ml LB containing containing appropriate antibiotic and different concentration of tyrosine.</p>
 
                         <p>4. Incubate the refreshed cell culture in anaerobic incubator at 37°C.</p>
 
                         <p>4. Incubate the refreshed cell culture in anaerobic incubator at 37°C.</p>
 
                         <p>5. Samples are collected in the 24- and 48- hour, after the initiation of the anaerobic 37°C incubation.</p>
 
                         <p>5. Samples are collected in the 24- and 48- hour, after the initiation of the anaerobic 37°C incubation.</p>
 
                         <h5 class="bold-font">Sample collection:</h5>
 
                         <h5 class="bold-font">Sample collection:</h5>
                         <p>1. 250uL of samples are collected at the 2 particular times stated above.</p>
+
                         <p>1. 250μl of samples are collected at the 2 particular times stated above.</p>
                         <p>2. The positive control is prepared by collecting 225ul of negative control(Wild-type strain) culture with 25ul of 500uM, 250uM and 50uM of <i>p</i>-Coumaric acid in LB to create a bacterial culture with <i>p</i>-Coumaric acid concentration of 50uM, 25uM and 5uM.</p>
+
                         <p>2. The positive control is prepared by collecting 225μl of negative control(Wild-type strain) culture with 25μl of 500μM, 250μM and 50μM of <i>p</i>-Coumaric acid in LB to create a bacterial culture with <i>p</i>-Coumaric acid concentration of 50μM, 25μM and 5μM.</p>
 
                         <h5 class="bold-font">Sample Extraction:</h5>
 
                         <h5 class="bold-font">Sample Extraction:</h5>
                         <p>1. Directly after sample collection, the samples are lysed with 25ul of Lysis buffer(PD2) and neutralized with 43.5ul neutralization buffer(PD3). (Thermo plasmid MiniPrep)</p>
+
                         <p>1. Directly after sample collection, the samples are lysed with 25μl of Lysis buffer(PD2) and neutralized with 43.5μl neutralization buffer(PD3). (Thermo plasmid MiniPrep)</p>
                         <p>2. All samples are acidified in 12.5ul concentrated acetic acid and vortexed.</p>
+
                         <p>2. All samples are acidified in 12.5μl concentrated acetic acid and vortexed.</p>
                         <p>3. Samples are then induced with 50ul n-octanol (the organic phase in two-phase extraction).</p>
+
                         <p>3. Samples are then induced with 50μl n-octanol (the organic phase in two-phase extraction).</p>
 
                         <p>4. Vortexing and centrifugation ( >12000g, 1 min ) followed and the upper organic phase is collected for measurement.</p>
 
                         <p>4. Vortexing and centrifugation ( >12000g, 1 min ) followed and the upper organic phase is collected for measurement.</p>
 
                         <h5 class="bold-font">Measurement:</h5>
 
                         <h5 class="bold-font">Measurement:</h5>
 
                         <p>1. The absorbance in the UV-spectrum (190nm-350nm) of the octanol extracts is measured in a spectrophotometer (NanoDrop).</p>
 
                         <p>1. The absorbance in the UV-spectrum (190nm-350nm) of the octanol extracts is measured in a spectrophotometer (NanoDrop).</p>
 
                         <p>2. The spectrophotometer blanked by pure <i>n</i>-octanol.</p>
 
                         <p>2. The spectrophotometer blanked by pure <i>n</i>-octanol.</p>
                         <p>3. All measurements are done on 2ul of extractant.</p>
+
                         <p>3. All measurements are done on 2μl of extractant.</p>
 
                         <p>4. Absorbance measurements are done in the same way on the standards of <i>p</i>-Coumaric acid in octanol prepared from solid <i>p</i>-Coumaric acid.</p>
 
                         <p>4. Absorbance measurements are done in the same way on the standards of <i>p</i>-Coumaric acid in octanol prepared from solid <i>p</i>-Coumaric acid.</p>
 
                       </div>
 
                       </div>

Revision as of 09:45, 17 October 2019

>

Collab

This page is about our protocols, you can find all the experimental process you need.
Enjoy!

Materials:

Equipment:

1. Pipette and pipette tips

2. Cryovial

Consumables:

1. 50% glycerol (autoclaved)

2. Bacterial overnight culture with an antibiotic if necessary

Protocol:

1. Put 1ml of bacterial overnight culture into the cryovial and add 500μl of 50% glycerol. Mix it well.

2. Keep it in the -80°C freezer.

Materials:

Equipment:

1. PCR tubes

2. Ice

3. Thermocycler

4. Pipette and pipette tips

Consumables:

1. MQ or ddH2O

2. 10x PCR buffer

3. dNTPs 2.5mM

4. Forward and reverse primer (10μM)

5. Taq polymerase with 3μl vent

Protocol:

1. On ice, add all components in a PCR tube, making up to 50 µl volume reaction.

Components Volume(μl)
MQ or ddH2O 1.1
10x PCR buffer 1
dNTP 2.5mM 0.8
Template 1
Forward primer 10μM 1
Reverse primer 10μM 0.1
Taq polymerase + vent 0.1
Total Volume 10

2. Gently mix the PCR reactions and centrifuge briefly.

3. Transfer the PCR tubes to a thermocycler.

step Temperature Time
Initial denaturalization 94°C 5 mins
25 - 35 cycles 94°C (denaturation) 30 secs
55°C (annealing) 30 secs
72°C (Extension) 2 mins (depend on sequence size 2kbp/min.)
Final Extension 72°C 5 mins
Hold 16°C (holding for a short time) or 4°C (holding for a long time)

Materials:

Equipment:

1. Pipette and pipette tips

2. Eppendorf tubes

3. Centrifuge

4. Flasks

5. Electroporation cuvettes (2mm gap)

6. Electroporator

Consumables:

1. SOB

2. Chilled 10% glycerol

3. Soc

4. Selection plates

5. DNA fragment

6. 10% L-arabinose

7. Ampicillin

Protocol:
Competent cell making:

1. Inoculate 500μl of overnight culture (Escherichia coli with pKD46) to 50ml of fresh SOB-Mg medium with 50μl of ampicillin at 30°C.

2. Grow cells with shaking at 30°C for 1 hour and 50 mins.

3. Add 1ml of 10% L-arabinose and culture for 1 hour.

4. Transfer the culture into 50ml centrifuge tube, and centrifuge it for 5 min at 4°C and 6,000 rpm to harvest cells. (After this stage, the cells should be kept cool throughout the cell preparation)

5. Remove the supernatant and suspend the cells with 1ml of chilled 10% glycerol. Transfer the cell suspension into a 1.5ml tube and centrifuge again for 1 min at 4°C and 12,000rpm. (first wash)

6. Remove the supernatant using a pipette and suspend the cells with 1ml of chilled 10% glycerol. Centrifuge again for 1 min at 4°C and 12,000 rpm. (second wash)

7. Remove the supernatant using a pipette and suspend the cells with 1ml of chilled 10% glycerol. Centrifuge again for 1 min at 4°C and 12,000 rpm. (third wash)

8. Remove the supernatant using a pipette and suspend the cells with 250μl (depends on the amount of the cell) of chilled 10% glycerol.

Electroporation:

1. Mix 50μl of the competent cell and 5μl DNA solution in a fresh 1.5ml tube.

2. Transfer the mixture into chilled electroporation cuvette (2mm gap), and pulse (Ec 2).

3. Add 1ml of SOC with 20μl 10% arabinose immediately after the pulse.

4. Incubate it for 1 hour at 37°C.

5. Plate 100μl of the culture on a selection plate, and incubate at 30°C.

Materials:

Equipment:

1. Pipette and pipette tips

2. Eppendorf tubes

3. Centrifuge

4. Flasks

5. Electroporation cuvettes (2mm gap)

6. Eletroporator

Consumables:

1. SOB

2. Chilled 10% glycerol

3. Soc

4. Selection plates

5. DNA plasmid

Protocol:
Competent cell making:

1. Inoculate 1ml of overnight culture to 50ml of fresh SOB-Mg medium.

2. Grow cells with shaking at 37°C for 1.5 hours (recA+ strain) or 1.75 hours (recA- strain).

3. Chill the flask on ice for 5 min, transfer the culture into 50ml centrifuge tube, and centrifuge it for 5 min at 4°C and 6,000 rpm to harvest cells. (After this stage, the cells should be kept cool throughout the cell preparation)

4. Remove the supernatant and suspend the cells with 1ml of chilled 10% glycerol. Transfer the cell suspension into a 1.5ml tube and centrifuge again for 1 min at 4°C and 12,000rpm.

5. Remove the supernatant using a pipette and suspend the cells with 1ml of chilled 10% glycerol. Centrifuge again for 1 min at 4°C and 12,000 rpm.

6. Remove the supernatant using a pipette and suspend the cells with 250μl (depends on the amount of the cell) of chilled 10% glycerol.

Electroporation:

1. Mix 50μl of the competent cell and DNA solution (the amount depends on the DNA plasmid) in a fresh 1.5ml tube.

2. Transfer the mixture into chilled electroporation cuvette (2mm gap), and pulse (Ec 2).

3. Add 1ml of SOC immediately after the pulse.

4. Incubate it for 1 hour at 37°C.

5. Plate the culture on a selection plate, and incubate.

Gel Electrophoresis

Materials:

Equipment:

1. Microwave

2. Electrophoresis comb

3. Electrophoresis trays

4. Pipette and pipette tips

5. Buffer tank

6. Voltage source

7. Glass bottle or Erlenmeyer flask

Consumables:

1. Agarose powder

2. TBE or TAE buffer

3. λ EH (λ DNA/EcoRI+HindIII) marker (2X) - Promega

4. 2X SLB or 10X SLB (sample loading buffer)

5. DNA sample

6. EtBr (Ethidium bromide)

7. RO (reverse osmosis)

Protocol:

Agarose gel preparation:

1. Adjust the amount of agarose to get the desired gel concentration (in this protocol, we’ll be using 0.7% agarose).

2. Weight 0.7 grams of agarose powder and add it to a glass bottle or Erlenmeyer flask.

3. Measure 100ml of TBE buffer or TAE buffer and add it to the glass bottle or Erlenmeyer.

4. Put the mix into the microwave and heat it until the agarose is completely dissolved.

5. Let the mix cool down and pour it to the electrophoresis tray.

6. Set the electrophoresis comb and wait for the gel to solidify.

Sample preparation:

1. Samples are prepared in various ways depends on its proposes.

Purpose DNA Solution SLB Total Volume
Size checking 2μl 10μl (2X) 12μl
Gel extraction depends on how much DNA solution to be extracted 5μl (10X)

Agarose gel running:

1. When the agarose gel solidified, take out the electrophoresis comb.

2. Pour the TBE buffer or TAE buffer to the buffer tank. Note: buffer used for running has to be the same as the buffer used to prepare the gel solution.

3. Put the gel in the buffer tank.

4. Load 5μl λ EH (λ DNA/EcoRI+HindIII) marker (2X) in a well and load the DNA sample mix with SLB in the remaining wells.

5. Run for 20 mins at 100V. Note: voltage and time varies.

Agarose gel visualization:

1. Take the gel out of the buffer tank.

2. Soak the gel in the EtBr solution for 8 mins and in RO for 30 secs.

3. Take the gel out of RO and visualize the DNA under UV transilluminator.

Gel Extraction and Purification

Materials:

Equipment:

1. Eppendorf tubes

2. Collection tubes

3. Spin column

4. Pipette and pipette tips

5. Centrifuge

6. Scalpel

7. Dry Thermounit

Consumables:

1. Isopropanol

2. Binding buffer

3. Washing buffer

4. Elution buffer

Protocol:

Gel excision, solubilization and DNA binding:

1. Excise band with scalpel and transfer to a new eppendorf tube.

2. Weigh the gel slice in a tube (by measuring the weight difference of an empty eppendorf and the eppendorf with gel slice in the tube).

3. Add 3 volumes of binding buffer to 1 volume of gel (100mg = 100μl).

4. Incubate at 60°C for 2-10 mins (or until the gel has completely dissolved).

5. Add 1.5 volume of isopropanol and invert the eppendorf 10 times.

6. Place a spin column in a provided collection tube. Transfer 700μl sample to the spin column and centrifuge for 30 secs, 12,000 rpm.

7. Discard flow-through and place the spin column back into the collection tube.

2. Wash:

1. Add 500μl of washing buffer to the spin column and centrifuge for 30 secs, 12,000rpm.

2. Discard flow-through and place the spin column back into the collection tube.

3. Add 200μl of washing buffer to the spin column and centrifuge for 5 mins, 12,000rpm.

4. Discard flow-through and place the spin column back into the collection tube.

3. DNA elution:

1. Transfer spin column to clean eppendorf. Add 50μl of elution buffer to the spin column. Centrifuge for 2 mins, 12,000rpm.

2. Collect the pure sample in the eppendorf and discard the spin column.

Keep the DNA solution in -20°C freezer.

Ligation

Materials:

Equipment:

1. Eppendorf tubes

2. Pipette and pipette tips

3. Centrifuge

Consumables:

1. T4 DNA ligase (NEB)

2. T4 DNA ligase buffer (NEB)

Protocol:

1. Set up the following reaction on ice:

Vector 12μl
Insert 40μl
T4 DNA ligase buffer (10x) 5.8μl
T4 DNA ligase 0.5μl
Total Volume 58.3μl

2. Gently mix the reaction and centrifuge.

3. Incubate at 16°C overnight.

4. Keep the DNA solution in -20°C freezer.

PCR Clean-up

Materials:

Equipment:

1. Eppendorf tubes

2. Collection tubes

3. Spin column

4. Pipette and pipette tips

5. Centrifuge

Consumables:

1. Isopropanol

2. Binding buffer

3. Washing buffer

4. Elution buffer

5. MQ or ddH2O

Protocol:

DNA binding:

1. Add MQ or ddH2O to DNA solution until the volume reaches 100μl.

2. Add 300μl of binding buffer to the solution.

3. Add 150μl of isopropanol and invert the eppendorf 10 times.

4. Place a spin column in a provided collection tube. Transfer 550μl sample to the spin column and centrifuge for 30 secs, 12,000 rpm.

5. Discard flow-through and place the spin column back into the collection tube.

Wash

1. Add 500μl of washing buffer to the spin column and centrifuge for 30 secs, 12,000rpm.

2. Discard flow-through and place the spin column back into the collection tube.

3. Add 200μl of washing buffer to the spin column and centrifuge for 5 mins, 12,000rpm.

4. Discard flow-through and place the spin column back into the collection tube.

DNA elution

1. Transfer spin column to clean eppendorf. Add 50μl of elution buffer to the spin column. Centrifuge for 2 mins, 12,000rpm.

2. Collect the pure sample in the eppendorf and discard the spin column.

3. Keep the DNA solution in -20°C freezer.

Plasmid Isolation: Miniprep

Materials:

Equipment:

1. Eppendorf tubes

2. Collection tubes

3. Spin column

4. Pipette and pipette tips

5. Centrifuge

6. Ice bucket

Consumables:

1. Suspension buffer

2. Lysis buffer

3. Binding buffer

4. Washing buffer I

5. Washing buffer II

6. Elution buffer

7. LB broth

8. Antibiotic as needed

Protocol:

1. Prepare 2-5ml overnight culture in LB medium with the antibiotic (depends on the plasmid to be extracted).

2. Collect cells from the overnight culture with a centrifuge (12,000rpm 30sec) and discard the supernatant.

3. Add 250μl of suspension buffer and suspend bacterial cells by vortex.

4. Add 250μl of lysis buffer and mix gently by inverting the tube 10 times.

5. Add 350μl of binding buffer and mix gently by inverting the tube 10 times.

6. Incubate on ice for 5 mins.

7. Centrifuge at 4°C, 12,000rpm for 10 mins.

8. Place a spin column in a provided collection tube. Transfer 750μl of supernatant to spin column.

9. Centrifuge at room temperature, 12,000 rpm for 30 sec and discard the flow-through.

10. Add 500μl of washing buffer I to the spin column and centrifuge for 30 sec. Discard the flow-through.

Restriction Enzyme Digestion

Restriction Enzymes Buffer
(Buffer will depend on restriction enzyme being used)
EcoRI SuR E/Cut Buffer H (10X) - Roche
XbaI CutSmart Reaction Buffer (10x) - NEB or 3.1 - NEB
SpeI CusSmart Reaction Buffer (10x) - NEB
PstI 3.1(10X) - NEB
Materials:

Equipment:

1. Eppendorf tubes

2. Pipette and pipette tips

3. Ice bucket

4. Incubator (37°C)

Consumables:

1. Restriction enzymes

2. Buffer 10x (depends on its restriction enzymes)

3. DNA sample

4. MQ od ddH2O (for single digestion)

Protocol:

1. On the ice, add all the components.

Double Digestion:

DNA 43μl
Buffer 10x 5μl
Restriction enzyme 1 1μl
Restriction enzyme 2 1μl
Total Volume 50μl

Single Digestion(Structure Check):

Plasmid DNA 2μl
Buffer 10x 1.5μl
Restriction enzyme 0.5μl
MQ or ddH2O 11μl
Total Volume 15μl

2.Mix gently and incubate for 1-2 hours for double digestion or 30 mins - 1 hour for single digestion at 37°C. Note: Incubation time varies along the total volume of the reaction.

SDS-PAGE

Materials:

Equipment:

1. Eppendorf tubes

2. Pipette and pipette tips

3. Centrifuge

4. Vortex

5. Ice bucket

6. Empty box

7. Dry Thermounit

8. Glass plates

9. 10-well comb

10. Spacer

11. Clamp

12. Casting stand

13. Buffer tank

14. Voltage source

15. Shaker

Consumables:

1. H2O

2. 30% acrylamide

3. 1.5M tris pH 8.8

4. 1M tris pH 6.8

5. 10% SDS

6. 10% APS

7. TEMED

8. Prestained Protein Marker - Bioman

9. Protein dye

10. Overnight culture (sample)

11. CBB (Coomassie Brilliant Blue) staining solution

12. Destaining buffer

13. Tank buffer (1X)

14. Iso-propanol

Protocol:

Resolving gel preparation

1. Adjust the amount of agarose to get the desired gel concentration

2. In a 50ml eppendorf tube add all the components 15% gel concentration

Total Volume 5ml 10ml 15ml
H2O (ml) 1.15 2.3 3.4
30% acrylamide mix (ml) 2.5 5 7.5
1.5M Tris pH 8.8 (ml) 1.25 2.5 3.3
10% SDS (ml) 0.05 0.1 0.15
10% APS (ml) 0.10 0.2 0.3
TEMED (ml) 0.002 0.004 0.006

3. Pour the mixture in between the glasses and add iso-propanol afterward.

4. Wait for 10-15 mins or until the gel solidifies.

5. Pour out the iso-propanol.

Stacking gel preparation

1. In a 50ml eppendorf tube add all the components

Total Volume 1.5ml 3ml 5ml
H2O (ml) 1.05 2.1 3.4
30% acrylamide mix (ml) 0.25 0.5 0.83
1M Tris pH 6.8 (ml) 0.19 0.38 0.63
10% SDS (ml) 0.015 0.03 0.05
10% APS (ml) 0.03 0.06 0.05
TEMED (ml) 0.0015 0.003 0.005

2. Pour the mixture in between the glass plates and add the 10-well comb.

3. Wait for 10-15 mins or until the gel solidifies.

Sample preparation

1. Take overnight cultures with the desired volume and centrifuge.

2. Take 12μl of pellet or supernatant (depends on necessity) and move to a new fresh eppendorf.

3. Add 3μl dye into the eppendorf. Vortex and centrifuge briefly.

4. Heat the eppendorf at 100°C for 10 mins and centrifuge briefly.

5. Put samples in the ice bucket.

Gel running

1. When the gel solidified, set up the running equipment and pour 1X tank buffer.

2. Take out the comb and load 3μl of the marker into a well and load the samples into the remaining wells.

3. Run the first 30 mins at 120V then continue to run for 1 hour at 150V. Note: voltage and time may vary.

Staining

1. Take out the glass plates out of the buffer tank and split up the glass plates to take out the gel.

2. the stacking gel and put the resolving gel inside an empty box, then add the CBB staining solution until it covers the gel.

Put the box on a shaker and shake for 30 mins or until the gel turns blue.

Destaining

1. Pour the CBB staining solution back to the bottle and add the destaining buffer into the box until it covers the gel.

2. Put the box on a shaker and shake until the protein bands are visible or until the gel turns white.

3. Pour out the destaining buffer.

Standard PCR

Materials:

Equipment:

1. PCR tubes

2. Ice bucket

3. Thermocycler

4. Pipette and pipette tips

Consumables:

1. MQ or ddH2O

2. 2x PCR buffer for KOD FX

3. dNTPs 2mM

4. Forward and reverse primer (10μM)

5. KOD FX polymerase

Protocol:

1. On the ice, add all components in a PCR tube, making up to 50 µl volume reaction.

Components Volume(μl)
MQ or ddH2O 1.1
10x PCR buffer 1
dNTP 2.5mM 0.8
Template 1
Forward primer 10μM 1
Reverse primer 10μM 0.1
Taq polymerase + vent 0.1
Total Volume 10

2. Gently mix the PCR reactions and centrifuge briefly.

3. Transfer the PCR tubes to a thermocycler.

Step Temp Time
Initial denaturalization 94°C 2 mins
25 - 35 cycles 98°C (denaturation) 30 secs
55°C (annealing) 30 secs
68°C (Extension) 2 mins
Final Extension 68°C 2 mins
Hold 16°C (holding for a short time) or 4°C (holding for a long time)

Media Preparation

1.LB (Lysogeny Broth)




Materials:

Equipment:

1. Glass bottle (for LB broth) or Erlenmeyer flask (for agar medium)

2. Magnetic stirrer

3. Magnetic stirring bar

4. Plastic measure jug

5. Measure cylinder

6. Spoon

7. Petri dish (for agar medium)

8. Aluminum foil

9. Electronic balance

10. Weighing paper or weighing bowl

11. Pipette and pipette tips

Consumables:

1. DW (distilled water)

2. Tryptone

3. Yeast extract

4. NaCl

5. NaOH (10N)

6. Agar (for LB agar)

7. Antibiotics (for selection plate)



Protocol:

1. Prepare mixture as the following inside a jar with a magnetic stirring bar inside and place it on the magnetic stirrer.

DW 98ml
Tryptone 1g
Yeast Extract 0.5g
NaCl 1g
NaOH (10N) 20μl
Total Volume 100ml
Agar (for LB agar) 1.5%

2. Mix well, pour the mixture into the bottle or flask and autoclave. Notes: For agar medium, pour the mixture to the petri dish and dry the plates.

For selection plates, add antibiotics as the following before pouring the mixture to the petri dish:

  • Kanamycin: 100μl/100ml media

  • Chloramphenicol: 50μl/100ml media

  • Ampicillin: 100μl/100μl media

  • 2.SOB (Super Optimal Broth)




    Materials:

    Equipment:

    1. Flask

    2. Magnetic stirrer

    3. Magnetic stirring bar

    4. Plastic measure jug

    5. Measure cylinder

    6. Spoon

    7. Aluminum foil

    8. Electronic balance

    9. Weighing paper or weighing bowl

    10. Pipette and pipette tips

    Consumables:

    1. DW (distilled water)

    2. Tryptone

    3. Yeast extract

    4. 5M NaCl

    5. 3M KCL



    Protocol:

    1. Prepare mixture as the following inside a jar with a magnetic stirring bar inside and place it on the magnetic stirrer.

    DW 96ml
    Tryptone 2g
    Yeast Extract 0.5g
    5M NaCl 0.2ml
    3M KCL 83μl
    Total Volume 100ml

    2. Mix well, pour the mixture into the flask and autoclave.

    3.SOC




    Materials:

    Equipment:

    1. Pipette and pipette tips

    Consumables:

    1. SOB medium in a glass bottle

    2. 1M MgCl2

    3. 1M MgSO4

    4. 20% glucose



    Protocol:

    1. Add chemicals as the following to a bottle of 100ml SOB (autoclaved)

    1M MgCl2 96 ml
    1M MgSO4 2g
    20% glucose 0.5g

    4. M9 Medium




    Materials:

    Equipment:

    1. Pipette and pipette tips

    Consumables:

    1. M9 salts(5x)

    2. 20% glucose

    3. 1M MgSO4

    4. 1M CaCl2

    5. H2O



    Protocol:

    1. Add chemicals as the following to a bottle

    M9 salts (5X) 20ml
    20% glucose 2ml
    1M MgSO4 200μl
    1M CaCl2 10μl
    H2O 78ml
    Total Volume 100ml

    2. Mix well, pour the mixture into the flask and autoclave.

    Functional Test

    can gene kill switch functional test




    Materials:

    Equipment:

    1. CO2 incubator

    2. Toothpick

    Consumables:

    1. LB plates (can also with the desired antibiotic)



    Protocol:

    1. Divide the plate into several parts depends on how many colonies are being tested.

    2. Streak the plates using the toothpick.

    3. Grow the bacteria in the 37°C CO2 incubator and normal incubator for comparison.

    dap gene kill switch functional test




    Materials:

    Equipment:

    1. 37°C incubator

    2. Toothpick

    Consumables:

    1. LB plates (can also with the desired antibiotic)

    2. LB + dap plates (concentration of dap may vary)



    Protocol:

    1. Divide the plates with dap chemical and without dap chemical into several parts depends on how many colonies are being tested.

    2. Streak the plates using the toothpick.

    3. Grow the bacteria in the 37°C incubator.

    p-Cresol Sensing Functional Test




    Materials:

    Equipment:

    1. 96 well-plate

    2. Pipette and tips

    3. 37°C incubator

    4. Spectrofluorometer

    Consumables:

    1. Bacterial culture

    2. p-Cresol



    Protocol:

    1. Make overnight cultures induced with different concentrations of p-Cresol and also without p-Cresol for control. Incubate at 37°C incubator.

    2. Load 200μl of samples onto the 96 well plates. Arrange with your personal preference.

    3. Measure fluorescence using the spectrofluorometer.

    Spot on Lawn Assay




    Materials:

    Equipment:

    1. Pipette and tips

    2. -80°C fridge

    3. 37°C anaerobic incubator

    Consumables:

    1. Bacterial culture

    2. BHI plate

    3. 0.22μm filter

    4. Purified bacteriocin (positive control)

    5. LB medium



    Protocol:

    1. Grow overnight cultures of c. difficile and bacteria carrying plasmid with bacteriocin in 6ml LB.(Note: In this experiment, total cell lysate and filtered growth medium of the culture carrying plasmid with bacteriocin will be used to test both the expression and secretion of bacteriocin.)

    Take 100μl of the c. difficile overnight culture and streak evenly on the dried BHI plate.

    To test the secretion ability of bacteriocin, take 2ml overnight culture of bacteriocin producing bacteria and filter it through a 0.22μm filter. Spot 5 μl of the filtered solution on the streaked BHI plate.

    To test the expression of bacteriocin, take 2ml overnight culture of bacteriocin producing bacteria and put it in -80°C fridge. Freeze for 10 min and take the frozen bacteria back to the room temperature to unfroze it. Repeat this step twice. Then, take the culture solution and filter it through a 0.22μm filter and spot 5μl of the filtered solution on the streaked BHI plate.

    For positive control, purified bacteriocin without yebF secretion tag kindly proved by one of the PI’s lab are used.

    Grow the plate in the anaerobic incubator and observe the inhibition zone.

    TAL Functional Test




    Materials:

    Equipment:

    1. 37°C anaerobic incubator

    2. Pipette and tips

    3. Spectrophotometer (NanoDrop)

    Consumables:

    Bacterial culture

    1. n-octanol

    2. LB

    3. LB + 2mM tyrosine

    4. LB + 1mM tyrosine

    5. LB + 500μM tyrosine

    6. p-Coumaric acid

    7. Lysis buffer

    8. Neutralization buffer



    Protocol:
    p-Coumaric acid fermentation:

    1. For each E.coli strain, bacterial colony is inoculate to 6ml LB medium containing appropriate antibiotic and grow overnight in normal 37°C incubator.

    2. Incubate for 16 hours.

    3. Take 60μl of bacterial culture to refresh in 6ml LB containing containing appropriate antibiotic and different concentration of tyrosine.

    4. Incubate the refreshed cell culture in anaerobic incubator at 37°C.

    5. Samples are collected in the 24- and 48- hour, after the initiation of the anaerobic 37°C incubation.

    Sample collection:

    1. 250μl of samples are collected at the 2 particular times stated above.

    2. The positive control is prepared by collecting 225μl of negative control(Wild-type strain) culture with 25μl of 500μM, 250μM and 50μM of p-Coumaric acid in LB to create a bacterial culture with p-Coumaric acid concentration of 50μM, 25μM and 5μM.

    Sample Extraction:

    1. Directly after sample collection, the samples are lysed with 25μl of Lysis buffer(PD2) and neutralized with 43.5μl neutralization buffer(PD3). (Thermo plasmid MiniPrep)

    2. All samples are acidified in 12.5μl concentrated acetic acid and vortexed.

    3. Samples are then induced with 50μl n-octanol (the organic phase in two-phase extraction).

    4. Vortexing and centrifugation ( >12000g, 1 min ) followed and the upper organic phase is collected for measurement.

    Measurement:

    1. The absorbance in the UV-spectrum (190nm-350nm) of the octanol extracts is measured in a spectrophotometer (NanoDrop).

    2. The spectrophotometer blanked by pure n-octanol.

    3. All measurements are done on 2μl of extractant.

    4. Absorbance measurements are done in the same way on the standards of p-Coumaric acid in octanol prepared from solid p-Coumaric acid.