Difference between revisions of "Team:Marburg/Description"

Line 776: Line 776:
 
         <div class="popup-content">
 
         <div class="popup-content">
 
             <p>
 
             <p>
With rising atmospheric CO2 concentrations and declining oil reserves, it is painfully obvious that the worldwide effort to change from petroleum-based industry to carbon neutral industry needs to accelerate drastically. One of the most promising key technologies right now is the use of phototrophic organisms for biotechnological applications.  
+
With rising atmospheric CO<sub> 2 </sub> concentrations and declining oil reserves, it is painfully obvious that the worldwide effort to change from petroleum-based industry to carbon neutral industry needs to accelerate drastically. One of the most promising key technologies right now is the use of phototrophic organisms for biotechnological applications.  
 
Hence, we decided quite early this year to devote ourselves to a project revolving around phototrophic organisms. During the design phase, we looked at different potential chassis like the model moss Physcomitrella patens, but soon stumbled upon many common obstacles that are characteristic for phototrophic chassis: time intensive culturing and complicated techniques to perform basic molecular biological methods.  
 
Hence, we decided quite early this year to devote ourselves to a project revolving around phototrophic organisms. During the design phase, we looked at different potential chassis like the model moss Physcomitrella patens, but soon stumbled upon many common obstacles that are characteristic for phototrophic chassis: time intensive culturing and complicated techniques to perform basic molecular biological methods.  
 
This showed us why every year, only very few iGEM teams decide to use a phototrophic chassis. As research on phototrophs is key to deeply understand and better engineer autotrophic organisms that offer powerful possibilities for a more sustainable future, we saw a need to tackle these issues.
 
This showed us why every year, only very few iGEM teams decide to use a phototrophic chassis. As research on phototrophs is key to deeply understand and better engineer autotrophic organisms that offer powerful possibilities for a more sustainable future, we saw a need to tackle these issues.

Revision as of 12:29, 7 December 2019

D E S C R I P T I O N


We proudly present our project SYNTEX. We are establishing the new chassis Synechocococcus elongatus UTEX 2973 for phototrophic Synthetic Biology.


SYNECHOCOCCUS
ELONGATUS


An extensive review on the history of our chassis, recent findings and its potential future

STRAIN
ENGINEERING


Here we show the results of our Strain Engineering project to tame our "wolf"

MARBURG
COLLECTION 2.0


We present to you the Marburg Collection 2.0, an extensive addition to the previosly established part collection that focuses around cyanobacteria.

P R O J E C T
I N S P I R A T I O N


The inspiration for our Project

R E F E R E N C E S


Here we list up our references