Difference between revisions of "Team:Marburg/Model"

Line 1: Line 1:
 
{{Marburg}}
 
{{Marburg}}
 
<html>
 
<html>
<style>
+
  <style>
 +
    .popup-content {
 +
      max-height: calc(100vh - 88px - 4em) !important;
 +
    }
 +
    .box-dark {
 +
      background-color: #3d404d;
 +
      min-height: 30vh;
 +
      box-shadow: 1px 1px 40px black;
 +
      margin-left: -10vw;
 +
      width: 120vw;
 +
      position: relative;
 +
      z-index: 2;
 +
      display: flex;
 +
      flex-direction: column;
 +
      align-items: center;
 +
      transform: rotate(355deg);
 +
      justify-content: center;
 +
      margin-top: -12vh;
 +
    }
  
p {
+
    .heading {
 +
      color: #f5f5f5;
 +
      text-align: center;
 +
      font-size: 1.75em;
 +
      width: fit-content;
 +
      margin-top: 25px;
 +
      margin-bottom: unset !important;
 +
      transform: rotate(-355deg);
 +
    }
 +
 
 +
    .line {
 +
      border-top: 2px solid #f5f5f5;
 +
      background-color: #f5f5f5;
 +
      border-width: 2px;
 +
      display: block;
 +
      width: 100px;
 +
      margin-top: 25px;
 +
      margin-bottom: unset;
 +
      transform: rotate(-355deg);
 +
    }
 +
 
 +
    .logo {
 +
      width: 100px;
 +
      height: 100px;
 +
      position: absolute;
 +
      bottom: -50px;
 +
      transform: rotate(-355deg);
 +
      margin-left: -10px;
 +
    }
 +
 
 +
    .main {
 +
      overflow-x: hidden;
 +
    }
 +
 
 +
    @media (max-width: 810px) {
 +
 
 +
      .logo,
 +
      .line,
 +
      .heading {
 +
        margin-left: -30px;
 +
      }
 +
 
 +
      .line {
 +
        margin: 1.5rem 0 !important;
 +
        margin-left: -40px !important;
 +
      }
 +
    }
 +
    p {
 
  font-size: 100%;
 
  font-size: 100%;
 
  font-family: Arial;
 
  font-family: Arial;
Line 57: Line 122:
  
 
.figbor {
 
.figbor {
background-color: aliceblue;
+
  background-color: aliceblue;
border:thin silver solid;
+
  border:thin silver solid;
margin: 0.5em;
+
  margin: 0.5em;
padding: 0.5em;
+
  padding: 0.5em;
  
text-align: center;
+
  text-align: center;
font-style: italic;
+
  font-style: italic;
font-size: smaller;
+
  font-size: smaller;
 
}
 
}
  
Line 93: Line 158:
 
}
 
}
  
</style>
+
  </style>
 
+
  <div>
 +
    <div class="box-dark">
 +
      <h1 class="heading">
 +
        Modelling
 +
      </h1>
 +
      <hr class="line">
 +
      <img src="https://static.igem.org/mediawiki/2019/a/ac/T--Marburg--logo.svg"
 +
        class="logo"
 +
        alt="Syntex Logo">
 +
    </div>
 +
    <section style="margin-top: 11vh;">
 +
      <!--Add abstract like text here-->
 +
      <p>
 +
      This year we used our mathematical and programming background to look for artificial Neutral integration Site option (aNSo) and suitable terminators for our project. We took advantage of genome data bank of UTEX2973 and used bioinformatics tools to gain insights and implement it to our project.
 +
      In addition to that, we designed a model to predict the doubling times of UTEX2973 that was only possible after a thorough investigation and standardization of the current state of the art methods.
 +
      To achieve this level of standardization we also implemented a light model to properly predict light intensities for our cultures.
 +
    </p>
 +
    </section>
 +
    <hr>
 +
    <section class="section grid">
 +
      <div class="sub"
 +
        onclick="popup('model1')">
 +
        <div class="sub-header">
 +
          <h1>
 +
            Growth Curve Model
 +
          </h1>
 +
          <hr>
 +
        </div>
 +
        <div class="sub-content">
 +
          <img src="https://static.igem.org/mediawiki/2019/1/14/T--Marburg--wackelpudding2.png">
 +
        </div>
 +
      </div>
 +
      <div id="model1"
 +
        class="popup">
 +
        <div class="popup-container">
 +
          <div class="popup-header">
 +
            <h1 class="title">
 +
              Growth Curve Model
 +
            </h1>
 +
            <button type="button"
 +
              onclick="hide('model1')">X</button>
 +
          </div>
 +
          <div class="popup-content"
 +
            style="text-align: justify;">
 +
            <section class="section">
 +
   
 
<h1 class="title"> Growth Curves </h1>
 
<h1 class="title"> Growth Curves </h1>
 
<p>  
 
<p>  
 
Synthetic Biology was created by introducing engineering principles into the previously existing discipline of biology.  
 
Synthetic Biology was created by introducing engineering principles into the previously existing discipline of biology.  
 
While this came with numerous advantages, one of the most important was the standardization and characterization of parts that larger biological system are built of.  
 
While this came with numerous advantages, one of the most important was the standardization and characterization of parts that larger biological system are built of.  
Only with this toolbox of modular, well characterized parts the current achievements in companys like gingko bioworks or the teams of the iGEM competition were made possible and the biobrick standard is a great example.  
+
Only with this toolbox of modular, well characterized parts the current achievements in companys like Ginkgo bioworks or the teams of the iGEM competition were made possible and the biobrick standard is a great example.  
 
Not only does this process allow for standardized parts, it also allows to critically question generally agreed on methodologies that otherwise might negatively influence either the reproducibility or performance of experiments.
 
Not only does this process allow for standardized parts, it also allows to critically question generally agreed on methodologies that otherwise might negatively influence either the reproducibility or performance of experiments.
 
<br>
 
<br>
Line 129: Line 239:
 
     <div class="content-inner">
 
     <div class="content-inner">
  
<figure style="float:left; height: 400px; width: 400px;" class="left">
+
  <figure style="float:left; height: 400px; width: 400px;" class="left">
<img style="float:left" src="https://upload.wikimedia.org/wikipedia/commons/thumb/e/e0/Luminosity.svg/1280px-Luminosity.svg.png" alt="HTML IST SCHEI?E" class="left">
+
      <img style="float:left" src="https://upload.wikimedia.org/wikipedia/commons/thumb/e/e0/Luminosity.svg/1280px-Luminosity.svg.png" alt="HTML IST SCHEI?E" class="left">
<figcaption style="float: left;"><b>Figure 2:</b> Luminosity function.<a href="https://en.wikipedia.org/wiki/Luminosity_function" >(Luminosity function)</a></figcaption>
+
      <figcaption style="float: left;"><b>Figure 1:</b> Luminosity function.<a href="https://en.wikipedia.org/wiki/Luminosity_function" >(Luminosity function)</a></figcaption>
</figure>
+
    </figure>
 
<p>
 
<p>
  
Line 138: Line 248:
 
As previously mentioned, Einstein descibres the number of photosinthetically available photons (400-700nm) per square metre per second and is not the SI unit for light intenstiy (luminous flux).
 
As previously mentioned, Einstein descibres the number of photosinthetically available photons (400-700nm) per square metre per second and is not the SI unit for light intenstiy (luminous flux).
 
The SI unit is lumen, which is described as candela multiplied with the steradian.  
 
The SI unit is lumen, which is described as candela multiplied with the steradian.  
Candela is the unit for luminous intensity and steradian is the threedimensional equivalent to a twodimensional angle [Figure 1].
+
Candela is the unit for luminous intensity and steradian is the threedimensional equivalent to a twodimensional angle [Figure 2].
  
 
</p>
 
</p>
<figure style="float:center; height: 300px; width: 300px;" class="right">
+
  <figure style="float:center; height: 300px; width: 300px;" class="right">
<img style="float:center" src="https://upload.wikimedia.org/wikipedia/commons/thumb/9/98/Steradian.svg/1024px-Steradian.svg.png" alt="HTML IST SCHEI?E" class="center">
+
      <img style="float:center" src="https://upload.wikimedia.org/wikipedia/commons/thumb/9/98/Steradian.svg/1024px-Steradian.svg.png" alt="HTML IST SCHEI?E" class="center">
<figcaption style="float: right;"><b>Figure 1:</b> Visual representation of Steradian.<a href="https://en.wikipedia.org/wiki/Steradian" >(Steradian)</a></figcaption>
+
      <figcaption style="float: right;"><b>Figure 2:</b> Visual representation of Steradian.<a href="https://en.wikipedia.org/wiki/Steradian" >(Steradian)</a></figcaption>
</figure>
+
    </figure>
 
<p>
 
<p>
Candela and therefore also lumen are not only describing the intensities of different wavelenghts and adding those up, but they are weighing them using the so called lumiosity function [Figure 2].  
+
Candela and therefore also lumen are not only describing the intensities of different wavelenghts and adding those up, but they are weighing them using the so called lumiosity function [Figure 1].  
 
This function weighs each wavelength depending on how well it is recognized by the human eye and this has huge applications in professional photography.  
 
This function weighs each wavelength depending on how well it is recognized by the human eye and this has huge applications in professional photography.  
 
While this is something that is very useful when working in photography where the recognition of the human eye is important, for photosynthetic purposes this is  not useful since photons of various wavelengths can be utilized in a similar way.
 
While this is something that is very useful when working in photography where the recognition of the human eye is important, for photosynthetic purposes this is  not useful since photons of various wavelengths can be utilized in a similar way.
Line 249: Line 359:
 
         <img style="float:center" src="https://static.igem.org/mediawiki/2019/5/57/T--Marburg--wackelpudding_hoehenlinien.png
 
         <img style="float:center" src="https://static.igem.org/mediawiki/2019/5/57/T--Marburg--wackelpudding_hoehenlinien.png
 
   " alt="HTML IST SCHEI?E" class="center">
 
   " alt="HTML IST SCHEI?E" class="center">
         <figcaption style="float: right;"><b>Figure X:</b> Top down view of the contour lines representing the light intensity.
+
         <figcaption style="float: right;"><b>Figure 3:</b> Top down view of the contour lines representing the light intensity.
 
   Depth and Width are measured in cm and represent the size of our incubator. The light intensity is measured in µE m^-2 s^-1. Warmer colors represent higher values, we move inwards at 100µE m^-2 s^-1 steps to a maximum value of 1800µE m^-2 s^-1. We see a surprisingly uneven distribution in light intensities and rapid increases in some areas.
 
   Depth and Width are measured in cm and represent the size of our incubator. The light intensity is measured in µE m^-2 s^-1. Warmer colors represent higher values, we move inwards at 100µE m^-2 s^-1 steps to a maximum value of 1800µE m^-2 s^-1. We see a surprisingly uneven distribution in light intensities and rapid increases in some areas.
 
   </a></figcaption>
 
   </a></figcaption>
Line 257: Line 367:
 
         <img style="float:center" src="https://static.igem.org/mediawiki/2019/1/14/T--Marburg--wackelpudding2.png
 
         <img style="float:center" src="https://static.igem.org/mediawiki/2019/1/14/T--Marburg--wackelpudding2.png
 
   " alt="HTML IST SCHEI?E" class="center">
 
   " alt="HTML IST SCHEI?E" class="center">
         <figcaption style="float: right;"><b>Figure X:</b> 3D View of our predicted B-Spline surface. Width and Depth represent the size of our Incubator in cm. The z-axes shows the light intensity measured in µE m^-2 s^-1. The red dots represent the measured data that are interpolated by our surface.</a></figcaption>
+
         <figcaption style="float: right;"><b>Figure 4:</b> 3D View of our predicted B-Spline surface. Width and Depth represent the size of our Incubator in cm. The z-axes shows the light intensity measured in µE m^-2 s^-1. The red dots represent the measured data that are interpolated by our surface.</a></figcaption>
 
       </figure>
 
       </figure>
 
</div>   
 
</div>   
Line 277: Line 387:
 
Many of these parameters were categorial variables, but there are also some that are numerical values.  
 
Many of these parameters were categorial variables, but there are also some that are numerical values.  
 
We decided to do comparative growth curves for these parameters to determine which combination of parameters allows for the best possible doubling time.  
 
We decided to do comparative growth curves for these parameters to determine which combination of parameters allows for the best possible doubling time.  
 +
</p>
 
<h2 class="subtitle">Flask Geometry</h2>
 
<h2 class="subtitle">Flask Geometry</h2>
<h2 class="subtitle">Fill Volume</h2>
+
<p>
 +
This categorical variable was a major factor to us. Limited by available space in incubators our first growth curves were designed to evaluate which flask volume would provide best growing conditions. It turned out that small flasks with 50ml capacity supported a growth to a higher optical density. Indeed, at the same time cultures tend to faint into a green yellowish colour as compared to the firm green tone of healthy S. elongatus UTEX 2973 cultures. Flasks with much higher capacities were tested too, revealing that a high flask capacity slowed down culture growth. As cyanobacteria grow on CO<sub>2</sub> as their primary carbon source we speculated this could be due to worse gas exchange and lower light intensities towards the centre of the flask. From these experiments, we settled with a medium flask capacity of 250ml.
 +
<br>
 +
While speculating about gas exchange another geometrical flask variant came into our minds: flasks with baffles. They promised a high turbulence inside the flask providing higher nutrition and CO2 distribution within the fluid culture medium. However, we were concerned that to high velocities would lead to physical damage harming our cyanobacteria. Nevertheless, we conducted the experiments. The results are visualized in Figure 5 illustrating the positive influence of baffle flasks towards growth rates. Due to the limited availability of flasks with four baffles we continued to use 3 baffled flasks with a capacity of 250ml. Although they did not show much deviation from non-baffled flasks in our experiments, we were confident that baffles support better growth rates in the long run as indicated with smaller and therefore more CO2 restricting 100ml capacity flasks.
 +
 
 +
</p>
 +
 
 +
 
 
<h2 class="subtitle">Lid Types</h2>
 
<h2 class="subtitle">Lid Types</h2>
<h2 class="subtitle"></h2>
+
<p>
<h2 class="subtitle"></h2>
+
Then we had to figure out how to keep the culture safe from contamination but at the same way provide enough CO2, so that concentrations in the media could support the rapid growth of S. elongatus UTEX 2973. We took several approaches. Closing the flask opening tightly with gas permeable film under the sterile work bench seemed to us as the optimal solution. At the same time we tested foam material stuffing, rubber and transparent plastic lids (Figure 6). The rubber lid closes tightly while the plastic lid on the other hand is engineered to keep a small gap between glass and plastic allowing air to circulate. In the end we were quite surprised that the plastic lids did provide conditions that enabled the cyanobacteria to grow the fastest. Using the plastic lids was the best option for us because they not only ensured best growing conditions but also allowed for pretty easy handling of flasks when doing measurements.
<h2 class="subtitle"></h2>
+
</p>
<h2 class="subtitle"></h2>
+
<div style="height: 350px;">
<h2 class="subtitle"></h2>
+
 
 +
      <figure style="float:center; width: 500px;" class="left">
 +
        <img style="float:center" src="https://static.igem.org/mediawiki/2019/6/6d/T--Marburg--flask_geometry.png
 +
  " alt="HTML IST SCHEI?E" class="center">
 +
        <figcaption style="float: right;"><b>Figure 5:</b> Growth of S. elongatus UTEX 2973 influenced by flask geometry. Different geometries are given as flask capacity and amount of baffles.</a></figcaption>
 +
      </figure>
 +
 
 +
 
 +
    <figure style="float:right; width: 400px;" class="right">
 +
        <img style="float:center" src="https://static.igem.org/mediawiki/2019/3/36/T--Marburg--flasks.png
 +
  " alt="HTML IST SCHEI?E" class="center">
 +
        <figcaption style="float: right;"><b>Figure 6:</b> Comparing the solid types of flask caps. From left to right: rubber lid, plastic lid and foam stuffing.</a></figcaption>
 +
      </figure>
 +
</div>
 +
 
 +
<h2 class="subtitle">Fill Volume</h2>
 +
<p>
 +
The fill volume had to be considered as well. Flask capacity and geometry are contributing to this factor, but we found 1/5 of the flask´s capacity the be the most feasible fill volume. Although lower fill volumes grew better based on optical density, we did not feel comfortable with these cultures because they mostly gained a yellowish tone and produced a lot of yellow foam on top when shook in the incubator. We considered the foam and the yellowish colour might be traced back to higher concentrations of cell fragments due to the fact that the turbulence seemed more violent in lower fill volumes. However, we never brought that speculation to testing. Therefore, in the future it might be interesting to assess the relation between optical density and living cell number in lower fill volumes compared to higher ones via Fluorescent activated Cell Sorting (FACS).
 +
</p>
 +
<h2 class="subtitle">Culture Media</h2>
 +
<p>
 +
Being in contact with the cyano-community, we soon realized that a culture medium in not a culture medium, even though one is speaking from the same medium. This is owed to the fact that different laboratories use different protocols when preparing them (<a href="https://2019.igem.org/Team:Marburg/Human_Practices">see link to IHP</a>). After gathering protocols, we decided on four promising ones and tested them we (Figure 7). Off those four media, the one supporting rapid growth the best was BGM, which was adopted as the main growth medium and replaced BG11 (<a href="https://2019.igem.org/Team:Marburg/Experiments">see link to protocols</a>). BGM conferred a twice as fast growth within 14h after inoculation to an optical density of around 10. During media preparation, all media were buffered to a neutral pH value of around 7. Measuring pH value after 840min of growth, a lower pH value could be linked to a lower growth rate/final optical density (table 1). In which way around pH value and growth effect each other could not be clarified.
 +
</p>
 +
<div style="height: 400px;">
 +
    <figure style="float:left; width: 500px;" class="left">
 +
        <img style="float:center" src="https://static.igem.org/mediawiki/2019/3/32/T--Marburg--media_growth.png
 +
  " alt="HTML IST SCHEI?E" class="center">
 +
        <figcaption style="float: right;"><b>Figure 7:</b> Influence of different media to the growth of S. elongatus UDAR 2973. See (<a href="https://2019.igem.org/Team:Marburg/Experiments">protocols</a>) for contents and preparation methods. </a></figcaption>
 +
      </figure>
 +
 
 +
<table style="float:right">
 +
      <caption>pH values of media after 14h/840min of growth. Media with a lower pH value seem to be connected to a lower growth rate.</caption>
 +
  <tr>
 +
    <th>Medium</th>
 +
    <th>pH value after growth of 14h</th>
 +
  </tr>
 +
  <tr>
 +
    <td>BGM</td>
 +
    <td>8.21</td>
 +
  </tr>
 +
  <tr>
 +
    <td>BG11</td>
 +
    <td>7.79</td>
 +
  </tr>
 +
  <tr>
 +
    <td>Medium A</td>
 +
    <td>8.57</td>
 +
  </tr>
 +
  <tr>
 +
    <td>Medium B</td>
 +
    <td>7.77</td>
 +
  </tr>
 +
</table>
 +
</div>
 
</p>
 
</p>
 
<br>
 
<br>
Line 588: Line 759:
 
<p>
 
<p>
 
Due to the small amount of data we were able to collect we decided to use a polynomial regression model instead of a more data demanding approach like k nearest neighbors, support vector machines or neural networks.  
 
Due to the small amount of data we were able to collect we decided to use a polynomial regression model instead of a more data demanding approach like k nearest neighbors, support vector machines or neural networks.  
 +
This regressional model was built using <a href="https://scikit-learn.org/stable/">scikit learn</a> [<i>Pedregose et.al.</i> 2011].
 
Even with this approach, the amount of data we have at our disposal is not enough to deliver a model that we would describe as accurate within and especially not outside of our training data.  
 
Even with this approach, the amount of data we have at our disposal is not enough to deliver a model that we would describe as accurate within and especially not outside of our training data.  
 
Nevertheless, we think a model like this is the best way forward if we want to properly predict the doubling time and with more data a very accurate model can be built.  
 
Nevertheless, we think a model like this is the best way forward if we want to properly predict the doubling time and with more data a very accurate model can be built.  
Line 748: Line 920:
 
However, for many of the parameters we cannot do that in one measurement, since the rpm, CO<sub>2</sub> concentration and temperature has to be identical.  
 
However, for many of the parameters we cannot do that in one measurement, since the rpm, CO<sub>2</sub> concentration and temperature has to be identical.  
 
For the light intensity there could have been more sampling which would have improved the performance of the model.
 
For the light intensity there could have been more sampling which would have improved the performance of the model.
 +
In addition to that, we used doubling times that we calculated by hand and by manually choosing datapoints for the calulations.
 +
This can also introduce an error.
 +
By automating that process and maybe not only predicting doubling times but the optical densities at different timepoints this manual error could be circumvented.
 +
However, the automated calculation of doubling times can be troublesome for some suboptimal growth curves, since the automatic definition of the exponential phase can be troublesome.
 +
If this problem would be solved, this would take all the manual work out of the process and further improve the model.
  
  
Line 778: Line 955:
 
<br>
 
<br>
 
R., J., & de Boor, C. (1980). A Practical Guide to Splines. Mathematics of Computation, 34(149), 325.  
 
R., J., & de Boor, C. (1980). A Practical Guide to Splines. Mathematics of Computation, 34(149), 325.  
<br>
+
<br>  
Tillich, U. M., Wolter, N., Schulze, K., Kramer, D., Brödel, O., & Frohme, M. (2014). High-throughput cultivation and screening platform for unicellular phototrophs. BMC Microbiology, 14(1), 239. https://doi.org/10.1186/s12866-014-0239-x
+
Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., ... & Vanderplas, J. (2011). Scikit-learn: Machine learning in Python. Journal of machine learning research, 12(Oct), 2825-2830.
<br>
+
</p> 
Włodarczyk, A., Selão, T. T., Norling, B., & Nixon, P. J. (2019). Unprecedented biomass and fatty acid production by the newly discovered cyanobacterium Synechococcus sp. PCC 11901. BioRxiv, 684944. https://doi.org/10.1101/684944
+
            </section>
 
+
          </div>
 
+
        </div>
 
+
      </div>
</p>
+
      <div class="sub"
 +
        onclick="popup('model2')">
 +
        <div class="sub-header">
 +
          <h1>
 +
            <!--Title of second model-->
 +
            artificial Neutral integration Site options
 +
          </h1>
 +
          <hr>
 +
        </div>
 +
        <div class="sub-content">
 +
          <img src="https://static.igem.org/mediawiki/2019/e/e7/T--Marburg--anso_header.svg">
 +
        </div>
 +
      </div>
 +
      <div id="model2"
 +
        class="popup">
 +
        <div class="popup-container">
 +
          <div class="popup-header">
 +
            <h1 class="title">
 +
              <!--Title inside popup-->
 +
            </h1>
 +
            <button type="button"
 +
              onclick="hide('model2')">X</button>
 +
          </div>
 +
          <div class="popup-content"
 +
            style="text-align: justify;">
 +
            <section class="section">
 +
              <!--Content of popup-->
 +
              <h1 class = "title">Algorithm for identification of artificial Neutral integration Site options (aNSo)</h1>
 +
                              <p>
 +
                    As conventional neutral integration sites for cyanobacteria affect cellular fitness by knocking out
 +
                    existing genes (NSI: a knockout of a flotillin CDS locus tag in S. elongatus UTEX 2973: M744_RS03615
 +
                    affecting cell growth and division https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3551649/), we sought
 +
                    to find new integration sites that are truly independent of the genomic and cellular context. The
 +
                    identification of potential artificial Neutral integration Site options (aNSo) in the genome of
 +
                    Synechococcus elongatus UTEX 2973 is paramount for the integration of orthogonal circuits and
 +
                    metabolic pathways. To address this issue we developed a custom algorithm based on the Python
 +
                    language.<br>
 +
                    <br>
 +
                  </p>
 +
                    <figure style="text-align:center">
 +
                        <img style="height: 400px; width: 420px;" src="https://static.igem.org/mediawiki/2019/4/41/T--Marburg--Toolbox_Model_ANSOscreening.svg
 +
                      " alt="design build test cycle">
 +
                        <figcaption style="max-width: 2400px; text-align: center">
 +
                            Fig.1 - Schematic workflow of the Python script to find artificial Neutral integration Site options
 +
                        </figcaption>
 +
                    </figure>
 +
                    <p>
 +
                    <br>
 +
                    We achieved this by processing the GenBank file (gbk) containing all of the annotated genes and
 +
                    transcription start sites (TSS) of the S. elongatus UTEX 2973 genome. All lines that contained the
 +
                    word “gene” along with their corresponding genomic locational information, described by indices on
 +
                    the plus strand, were parsed. These indices provided information about the position of the first and
 +
                    the last base of the gene, respectively. Therefore this allows all intergenic regions to be
 +
                    described by the index of the last base of an upstream gene and the first base of the downstream
 +
                    gene, independent on which strand the gene was located. These indices were then stored in a Python
 +
                    tuple.<br>
 +
                    <br>
 +
                    Subsequently, all intergenic regions shorter than 500 bp are filtered out; leaving us with eligible
 +
                    sites. This was accomplished by calculating differences between the index of the start of one gene
 +
                    and the index of the end of the previous gene located upstream, resulting in 56 potential aNSo.<br>
 +
                    <br>
 +
                    All these potential aNSos are subsequently packaged in the tuple form and translated into a
 +
                    sequence. To ensure homologous recombination, sequences with a length of at least 2500 bp were
 +
                    required. The missing number of nucleotides, which could not be covered by the intergenic region,
 +
                    had to be filled up with the sequence of the upstream and downstream located genes. For this, a
 +
                    FASTA file containing the genomic sequence of S. elongatus Utex 2973 (Yu et al., 2015) was read into
 +
                    the environment and the potential intergenic sequences were extracted based on the indices +/- the
 +
                    missing nucleotides and saved additionally in the tuple.<br>
 +
                    <br>
 +
                    Subsequently, the number of potential aNSo was narrowed down by excluding all sequences that
 +
                    contained BsmBI and BsaI restriction sites. This was accomplished by eliminating all entries in the
 +
                    tuple whose sequences contained the substrings "CGTCTC" or "GAGACG" for BsmBI restriction sites and
 +
                    "GGTCTC" or "GAGACC" for BsaI restriction sites. Only 19 of 56 previously identified regions
 +
                    fulfilled these criteria.<br>
 +
                    <br>
 +
                    The final step of the identification of aNSo is comprised of eliminating all entries which included
 +
                    a TSS in the intergenic region. Using the gbk file comprising all TSS identified in a
 +
                    transcriptomics study by (Tan et al., 2018) as input, the indices of TSSs in the genome were parsed
 +
                    and defined in a list. Afterwards a set was created, containing all intergenic regions which
 +
                    inherited a TSS, and the tuple containing all potential aNSo was transformed into a set as well. By
 +
                    subtracting the set of all TSS in intergenic regions from the set of all potential aNSo, a set was
 +
                    generated containing only information about intergenic regions that do not contain BsmBI and BsaI
 +
                    restriction sites and TSS. Of the previously identified 19 potential aNSo 17 contained a TSS,
 +
                    leaving only two entries in the set of final aNSo fulfilling all of the required criteria. To make
 +
                    the information of this final set easily accessible, a CSV file and additionally a FASTA file were
 +
                    generated.<br>
 +
                    <br>
 +
                    The Python script, required input files as well as the generated results can be found in our <a
 +
                        href="https://github.com/igemsoftware2019/iGemMarburg2019"> Github Repository </a><br>
 +
                    <br>
 +
                    aNSo_1 BioBrick parts (<a href="http://parts.igem.org/Part:BBa_K3228000">BBa_K3228000</a>, <a href="http://parts.igem.org/Part:BBa_K3228002">BBa_K3228002</a>)
 +
                    <br>
 +
                  </p>
 +
                    <table class="table" style="width: 100%">
 +
                        <tbody>
 +
                          <tr>
 +
                            <th>Gene 1 start</th>
 +
                            <td>139038</td>
 +
                          </tr>
 +
                          <tr>
 +
                            <th>Gene 1 end</th>
 +
                            <td>139727</td>
 +
                          </tr>
 +
                          <tr>
 +
                            <th>Gene 2 start</th>
 +
                            <td>140309</td>
 +
                          </tr>
 +
                          <tr>
 +
                            <th>Gene 2 end</th>
 +
                            <td>140875</td>
 +
                          </tr>
 +
                          <tr>
 +
                            <th>Intergenic region length</th>
 +
                            <td>582</td>
 +
                          </tr>
 +
                          <tr>
 +
                            <th>Sequence of aNSo_1 5’ to 3’</th>
 +
                            <td style="overflow-wrap: break-word; max-width: 70vw;">
 +
                              TTCAAAATTTGGTGCGCTGGCAGGTCTGTGAACCGGAAACCGCGATCATGCTGGCGACCCTAGCACCTCTGCGGGCCTTGGGGGTGGATTGGTCGGATCCGCGTCTTCTCTATTTGTCCCGTCCCGTCTGTCAGCTGCTGCGCTGGCACCAGTCCGACACGGGAGAACTGACTTGGCAGAGGCTCTGCGAAAACGACGAATTACCGACTCCTACGTCGATCTAGGTCAGTCGGAATATTAGAATCGTCTGCGAAGATGCCGCCCTTGCCATGACAGCCCTCGACGACAAAACTATCGTTCGTGACTATTTCAACGCCACGGGCTTCGATCGCTGGAGCCGGATCTATGGCGATGGCGAGGTCAATTTCGTCCAGAAGAACATCCGCATTGGTCACCAGCGCACCGTCGACACCGTGCTGAGTTGGCTGGAAGCCGATGGCAATCTGAGCGATCGCAGCTTTTGTGATGCCGGCTGCGGTGTCGGCAGCCTCAGCTTACCCCTAGCACAGCGGGGGGCACAGGCCGTTTATGCCAGCGACATCTCCGCCAAGATGGTGGAAGAGGCTCGCGAGCGGGCCAGTCAGATCCCCAATTTGAACAACATTCAGCTCGAAGTTTCGGACCTTGCTTCTCTGAGCGGTCGCTACGACACCGTCATCTGTTTGGATGTGTTGATTCACTATCCAGAATCCGACGCGGCGGCCATGTTGAGCCATCTTTGCAGCTTAGCTGAGCAACGGGTTTTGGTGAGCTTCGCGCCCAAATCCCCTGTCTTGAATGTGCTCAAGCGCATTGGACAGTTCTTCCCGGGGGCCAGCAAAACGACCCGCGCATATCAGCACAGTGAAACCGCGATCGCAGCAGCCTTAGCGGCGAATGGCTTCCAAGTGCAACGTCGGGCCTTCAACAAAGCACCCTTCTATTTCTCACTTCTGCTCGAAGCTGTCCGAACTGCCTAATCAATTGTTGTTCGAGAGGTATCGCAGATTGAAGACTGAACTGGCATTTGCATTAATCAGCTGCAATCACCTCTCAGATTGACTAGACACTCAAGCATACTGAAGGTTTCAAACATCAGTAACAAGCAATAATTTTGAATTTCACAGCAACCTCAGGCGGTAGCATTGCTGCAATTAAATGGCATCTTTCGCCATACCATTCTCTACAGTTTAAGGATGTATTGTTAAATCTTTTTCTTGAGTATCGTGTATCTTCTGCATGGAATCGAATTAACTGATCAGCGATGCAAGCTGCTTCTTCTAAGAAGTAATTTTCTTGGCGTTCTTTCCGTTGTTGCTGCTTGAATATGGAAGGCCGATTATGAGGTGATTTAGGCCAAGAATTAAGTTTTTCCTTCAAGTTTTCTACTTCCCTGAGATGGCAATTAATTTTTTTGTTATCTTGGGCACGAAATAATAGGACTTGAGGATTAGGACAAGCAGTAACGGTTAAATGTGACTGCCCCCCTAAAATAGAGTATCTAGAAGAACTTTTCTTCCCCTGTTCTTTCCTAGAATCGGAGCCCGAGAGAAGAGGTGAACTACGTGGAGTAGGTAAAGTTGATCGTACCGGCAAAGACATCGAGATCAACTGCAGCTTGGCGGTTTTCTGGGGTATCTGCAGCACCACCAAGGAACCATAAAACATCTGCAGAGATACTGTAGTAGTCTTGGGTTCGTTGATAGATATCTGCAGCTTCAATTTTGGCAAGTTGACATTCACCAATAATTCGATAGCCCGTCGAGAAAACGACTGCAACATCTGCAATTCGACCATTCTTTCCAGCTTCTGAAATTGGATGTTCAATTTCAATAAACGCTTCTTGGGCATCAATCATCCCCTTATAAACTTCTTGAAAGTACTTACTGATTTCCAACTTTCCTTGCAAGTGCTCTGGAGATTCCGGATGATGTTCCATTACTGTGGTGCAAGGATGAGTATGAACAAAGTGCAATGAGGTATTTTGTCTCTTTCTGGGAAACATTAATGTTTGACAGAAAGGACAAAAAAGACTTCCTTTGGGAAAATTTTTTCTGATTTCAAGGACTGACTTAAAATCTGTCGCAAGGACTATGTTACCCTGTTGATCTTTTGCTTTGAAAGGCATGATCAAATCTATTCCTTTATTGATACTTCTCGTTTAGAGAGTCAGTATAGTCTTCTTGTAAATCCTGATCACTAGAAGTTGTTCCATGGCTTTTATCAATCCCCCCTAGTCCAGTCAACGTACCAAGAGTAATAGCCTATTTACGAGTTGGGGTCTGTTTTTGCTAAAGAAACACTGCAAAGTGCAGGATTTCATTGATCTCCTCTTCAGGTATTGTCTGGATCAGCTGATAGAGCTTTTCAGTAGCAGTCATAGATTGCAGCGCATAAGAGATCTATATTCTGAGCAATCTCGACGGATCAAGCGATTGAGCTATCGGCGGCGATGCTTGGGGGGATCGTGGCGATCGTAGAAATCGGGTGGATGGCGGCGTACCCATTTCAGAAAACGCTG<br>
 +
                            </td>
 +
                          </tr>
 +
                        </tbody>
 +
                      </table>
 +
                      <br>
 +
                      <br>
 +
                    <p>
 +
                    aNSo_2 BioBrick parts (<a href="http://parts.igem.org/Part:BBa_K3228001">BBa_K3228001</a>, <a href="http://parts.igem.org/Part:BBa_K3228003">BBa_K3228003</a>)
 +
                    </p>
 +
                    <br>
 +
                    <table class="table" style="width: 100%">
 +
                        <tbody>
 +
                          <tr>
 +
                            <th>Gene 1 start</th>
 +
                            <td>1744903</td>
 +
                          </tr>
 +
                          <tr>
 +
                            <th>Gene 1 end</th>
 +
                            <td>1745412</td>
 +
                          </tr>
 +
                          <tr>
 +
                            <th>Gene 2 start</th>
 +
                            <td>1746009</td>
 +
                          </tr>
 +
                          <tr>
 +
                            <th>Gene 2 end</th>
 +
                            <td>1746731</td>
 +
                          </tr>
 +
                          <tr>
 +
                            <th>Intergenic region length</th>
 +
                            <td>597</td>
 +
                          </tr>
 +
                          <tr>
 +
                            <th>Sequence of aNSo_2 5’ to 3’</th>
 +
                            <td style="overflow-wrap: break-word; max-width: 70vw;">
 +
                              GTTAGTGCCTGCAGCCAAGCCCTAGAACTCCAGCCCAGCGCCGCGCGGGCTCGATATTTGCGGGCCTTGGCTTACTGGCAATTGCATCAGCCGCAAGCCGCGATCGCTGATTTACGACAAGCCTGTGATGCCTTTGCACAAGCTGGAGCAACGGTCCAACTCGATCGAGCCCGTCAGCTTCTGCAACACTGGCAGCAACAGTCCAGCCTCGTCGCCCAGGCTCCTCGCCTACAATCCAAGAACTGGCCTGGAGCTGTAACCTATGCAATGGATTTGGCGAACTGCCACGATCGCAGTCCTCTTAACGAGTTGGAGTTCTGCTGCGATCGCGCATTCCAACAATGCTGATGTCAATCAGTGTCATCACGATCGTCGCACCGGCGAATATCACTGCCACTAGGCCTGACAATAGAGTCGTTTTGATCTTTGCTGATTAGCTTCAATGATGCTTCCGACCCTGAGCACCCTGAAAACAGCGGTGCTCCTGCTTCCTTTGGCAATTCCAACGGCTGCTCTTGCCCTACCTCAAACCGCTGTTTGGCGACTGGCTGATGCTCAAAATCATCAGCACCAGAATCATCAACATCAAAGCGGGGCTGGCCATTCCCATGGCAGCTTGGCGGTGCCAACAGGCACTCCACAACCGACTGTCAATTTAGTGGTTGAACGCGACCGCAAAAGTGGTTGGAATCTCCGGCTAACTACCACTAACTTCCAGTTTGCCCCCGAGGAACTTGACAAAACAAATCGAGTTGATTCCGGGCATGCCCATTTGTTCCTTAATGGGAAAAAGATTGCGAGACTTTACGGACCTTGGTATCACTTGGCTTCGCTCCCAGCCGGGAAGCAGACTCTCATGGTGGAATTGACCAGCAATCAACACAATGTAATTACGGTTAATGGTCAACCTGTCATTGCCAAAGTGACTGTAGACGTTCCAGCGATGAAGTAATTTTCATACTGAGCTACTACGGTAGCCTCTGCCTCTCTTCCAGCAAATGGGGAGAGGCCTTGACAACTAACAGTGTTCAATCGACAGATTTTCAGACCTTGAACGATCGGATCGTAATCCTACCTGAGCGATCGTAAAATCTGTCACGGCAAAGGATATAAATACACTTGAGTTAAAGGTTTAATTCTCAGTCGCTACAGTTGTTTTTTGATTGACTGAATGAAGGTCAAGGAATCAGTTTTAGCGATAGCTTTTCAGTATTAATAATAGTAACCTTCATGCATCGGCCGTAGCTGAAAATGCAAAATAATACTTTGACTATCGTAGGCCAATATCGAGTGACTTATTGCCTGCTCTTAGTCAATGGAATAAATAAAATGCCCATCAAGCTGTCAGTGCTGGCTCGAAGCGATCTGAATCTTGTCCTAGTAGGCTAGCAAGATAATCTCGATGAGAAAAGCGATCGCCCTTAAACCAGATTTTTTGACTTTCTTGATCAATCTATTGTCCAAAAAGACCTAGGTGCGATAATTATAAAAACTATAATTCACTCTAGGGATAGAAGCTTGGCTTTGCACTCTCGTCGTTGGCTATTGATGGTGCTCACAAGCTGCTTCGCGACTAGCCTGTTCGCTAGACCTGCAATCGCTGCTGATGGCTGGTGGATCGATCAGTATGCGGTCATTCTCTTTACTGCCACGGGACGGCTCGATGCAGAACTGAAAGAAATGCGCATCGAAGGAGCCGATACGCTGCTCGTCCATGCGGATAGCCTGCCCCCACTGCTGCTACGTTGGGTTGCTTGGCGTGCCTCTCTACAGAATATGAAGTCAGTCGCCTGGGTTCAGCGTCCCACTCTCCAGCGACTCAAACATGCTAGCTCTCTCAATGGCTATGCTGCGTTGCAAGTGGATGATCACTTTTTTGCTGATCCCATTGTGAGCTTCAGTCAGCTGCGCCAAATGATTGGCAAGAAGCAGCTTTGGTGCTCTTTTCAACCGAATCAATTTTCGGAGTTTCTAGCGCGGAATTGTGATCATGTGGATGTACAAATCTACCGAATGAGTTGCCCTGCCACAATCGATTTAGCCGATAGATTGGGGTTGCTAGGTCGTCCTCAATCTGCGATCGCGGTCTATCATGATGGCACCTCTCAAGCCGATCGCGATCTCCAATGCTTCCGTCAAGCAGGTCGCGATGTTCGTAATTCAATCTTTGTTTTCAAATGGAAGAATCCAGGATCTGTCTTGTCGCGATTTTTGAAGCATCCATTAGTAGCACGACTGGAACGGATATATATTCAGCTATTTAAGGACTAGCGCTGAACTATAATCGAGCGATCAAATTTTATTGTCATCACTAAATTCTTGTGCAATTTCCCTCAAAAATTGGTTGATTTGTTGAGGCGATCGCAAATGGTAGACTTTGCGGTTTGTTCGAGCTGTCTCAATATACTCTCGATATTGAGGTGTTAATCGCTGGTGGCAAAGCCAAAGAACGCGGTAGCTACTCATTGAGCTTTTAAATAAAGGACTGTCCTCAGGCCAGC<br>
 +
                            </td>
 +
                          </tr>
 +
                        </tbody>
 +
                      </table>
 +
                      <p>
 +
                    </p>
 +
            </section>
 +
          </div>
 +
        </div>
 +
      </div>
 +
      <div class="sub"
 +
        onclick="popup('model3')">
 +
        <div class="sub-header">
 +
          <h1>
 +
            <!--Title of third model-->
 +
            Terminator Model
 +
          </h1>
 +
          <hr>
 +
        </div>
 +
        <div class="sub-content">
 +
          <img src="https://static.igem.org/mediawiki/2019/2/25/T--Marburg--cedric_senpai.jpg">
 +
        </div>
 +
      </div>
 +
      <div id="model3"
 +
        class="popup">
 +
        <div class="popup-container">
 +
          <div class="popup-header">
 +
            <h1 class="title">
 +
              <!--Title inside popup-->
 +
            </h1>
 +
            <button type="button"
 +
              onclick="hide('model3')">X</button>
 +
          </div>
 +
          <div class="popup-content"
 +
            style="text-align: justify;">
 +
            <section class="section">
 +
              <!--Content of popup-->
 +
            </section>
 +
          </div>
 +
        </div>
 +
      </div>
 +
    </section>
 +
  </div>
 
</html>
 
</html>
 
{{Marburg/footer}}
 
{{Marburg/footer}}

Revision as of 00:58, 22 October 2019

Modelling


This year we used our mathematical and programming background to look for artificial Neutral integration Site option (aNSo) and suitable terminators for our project. We took advantage of genome data bank of UTEX2973 and used bioinformatics tools to gain insights and implement it to our project. In addition to that, we designed a model to predict the doubling times of UTEX2973 that was only possible after a thorough investigation and standardization of the current state of the art methods. To achieve this level of standardization we also implemented a light model to properly predict light intensities for our cultures.


Growth Curve Model


artificial Neutral integration Site options


Terminator Model