Difference between revisions of "Team:Marburg/Model"

Line 931: Line 931:
 
<br>
 
<br>
 
<h1 class = "title">References</h1>
 
<h1 class = "title">References</h1>
Ungerer, J., Wendt, K. E., Hendry, J. I., Maranas, C. D., & Pakrasi, H. B. (2018). Comparative genomics reveals the molecular determinants of rapid growth of the cyanobacterium Synechococcus elongatus UTEX 2973. Proceedings of the National Academy of Sciences, 115(50), E11761-E11770.
+
Ungerer, J., Wendt, K. E., Hendry, J. I., Maranas, C. D., & Pakrasi, H. B. (2018). Comparative genomics reveals the molecular determinants of rapid growth of the cyanobacterium <i>Synechococcus elongatus</i> UTEX 2973. Proceedings of the National Academy of Sciences, 115(50), E11761-E11770.
 
<br>
 
<br>
 
Russo, D. A., Zedler, J. A. Z., Wittmann, D. N., Möllers, B., Singh, R. K., Batth, T. S., ... & Jensen, P. E. (2019). Expression and secretion of a lytic polysaccharide monooxygenase by a fast-growing cyanobacterium. Biotechnology for biofuels, 12(1), 74.
 
Russo, D. A., Zedler, J. A. Z., Wittmann, D. N., Möllers, B., Singh, R. K., Batth, T. S., ... & Jensen, P. E. (2019). Expression and secretion of a lytic polysaccharide monooxygenase by a fast-growing cyanobacterium. Biotechnology for biofuels, 12(1), 74.
Line 978: Line 978:
 
                     As conventional neutral integration sites for cyanobacteria affect cellular fitness by knocking out
 
                     As conventional neutral integration sites for cyanobacteria affect cellular fitness by knocking out
 
                     existing genes (NSI: a knockout of a flotillin CDS locus tag in S. elongatus UTEX 2973: M744_RS03615
 
                     existing genes (NSI: a knockout of a flotillin CDS locus tag in S. elongatus UTEX 2973: M744_RS03615
                     affecting cell growth and division https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3551649/), we sought
+
                     affecting cell growth and division <a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3551649/">NCBI</a>), we sought
 
                     to find new integration sites that are truly independent of the genomic and cellular context. The
 
                     to find new integration sites that are truly independent of the genomic and cellular context. The
 
                     identification of potential artificial Neutral integration Site options (aNSo) in the genome of
 
                     identification of potential artificial Neutral integration Site options (aNSo) in the genome of
                     Synechococcus elongatus UTEX 2973 is paramount for the integration of orthogonal circuits and
+
                     <i>Synechococcus elongatus</i> UTEX 2973 is paramount for the integration of orthogonal circuits and
 
                     metabolic pathways. To address this issue we developed a custom algorithm based on the Python
 
                     metabolic pathways. To address this issue we developed a custom algorithm based on the Python
 
                     language.<br>
 
                     language.<br>

Revision as of 00:30, 22 October 2019

Modeling


This year we used our mathematical and programming background to look for artificial Neutral integration Site option (aNSo) and suitable terminators for our project. We took advantage of genome data bank of UTEX2973 and used bioinformatics tools to gain insights and implement it to our project. In addition to that, we designed a model to predict the doubling times of UTEX2973 that was only possible after a thorough investigation and standardization of the current state of the art methods. To achieve this level of standardization we also implemented a light model to properly predict light intensities for our cultures.


Growth Curve Model


artificial Neutral integration Site options


Terminator Model