Difference between revisions of "Team:Fudan-TSI/Measurement"

Line 782: Line 782:
 
.row{
 
.row{
 
clear:both!important;
 
clear:both!important;
width:100%!important;
 
 
}
 
}
  
Line 803: Line 802:
 
}
 
}
 
.title3{
 
.title3{
font-size:1.5rem;
+
font-size:1.4rem;
 
color:white;
 
color:white;
 
text-align:left !important;
 
text-align:left !important;
Line 822: Line 821:
 
}
 
}
 
.para1 a{
 
.para1 a{
 +
text-decoration:underline !important;
 
color:white;
 
color:white;
 
}
 
}
Line 846: Line 846:
 
list-style-position:outside;
 
list-style-position:outside;
 
padding-left:auto;
 
padding-left:auto;
font-size:1.2rem;
+
font-size:1rem;
 
}
 
}
 
.paraUl li{
 
.paraUl li{
Line 896: Line 896:
 
background-color:rgba(0,0,0,0);
 
background-color:rgba(0,0,0,0);
 
padding:0;
 
padding:0;
 +
 
}
 
}
 
 
Line 1,080: Line 1,081:
 
.para1{
 
.para1{
 
font-size:1.2rem;
 
font-size:1.2rem;
}
 
.paraUl{
 
font-size:1.1rem;
 
 
}
 
}
 
.pic2{
 
.pic2{
Line 1,107: Line 1,105:
 
}
 
}
 
.para1{
 
.para1{
font-size:1.1rem;
 
}
 
.paraUl{
 
 
font-size:1rem;
 
font-size:1rem;
 
}
 
}
Line 1,285: Line 1,280:
 
<li class="li2"><a class="navA2" href="https://2019.igem.org/Team:Fudan-TSI/Description">Description</a></li>
 
<li class="li2"><a class="navA2" href="https://2019.igem.org/Team:Fudan-TSI/Description">Description</a></li>
 
<li class="li2"><a class="navA2" href="https://2019.igem.org/Team:Fudan-TSI/Design">Design</a></li>
 
<li class="li2"><a class="navA2" href="https://2019.igem.org/Team:Fudan-TSI/Design">Design</a></li>
<li class="li2"><a class="navA2" href="https://2019.igem.org/Team:Fudan-TSI/Applied_Design" style="white-space:nowrap">Applied Design</a></li>
+
<li class="li2"><a class="navA2" href="https://2019.igem.org/Team:Fudan-TSI/Design" style="white-space:nowrap">Applied Design</a></li>
<li class="li2"><a class="navA2" href="https://2019.igem.org/Team:Fudan-TSI/Experiments">Experiment</a></li>
+
<li class="li2"><a class="navA2" href="https://2019.igem.org/Team:Fudan-TSI/Experiment">Experiment</a></li>
 
</ul>
 
</ul>
 
</div>
 
</div>
Line 1,305: Line 1,300:
 
 
 
<li class="navLi">
 
<li class="navLi">
<a class="navA" href="https://2019.igem.org/Team:Fudan-TSI/Model">Model</a>
+
<a class="navA" href="https://2019.igem.org/Team:Fudan-TSI/Model_Software">Model</a>
 
<div class="n2">
 
<div class="n2">
 
<ul class="ul2">
 
<ul class="ul2">
 
<li class="li2"><a class="navA2" href="https://2019.igem.org/Team:Fudan-TSI/Model">Modeling</a></li>
 
<li class="li2"><a class="navA2" href="https://2019.igem.org/Team:Fudan-TSI/Model">Modeling</a></li>
 
<li class="li2"><a class="navA2" href="https://2019.igem.org/Team:Fudan-TSI/Software">Software</a></li>
 
<li class="li2"><a class="navA2" href="https://2019.igem.org/Team:Fudan-TSI/Software">Software</a></li>
<li class="li2"><a class="navA2" href="https://2019.igem.org/Team:Fudan-TSI/Hardware">Hardware</a></li>
 
 
</ul>
 
</ul>
 
</div>
 
</div>
Line 1,332: Line 1,326:
 
<ul class="ul2">
 
<ul class="ul2">
 
<li class="li2"><a class="navA2" style="white-space:nowrap;" href="https://2019.igem.org/Team:Fudan-TSI/Public_Engagement">Education &amp; <br />Public Engagement</a></li>
 
<li class="li2"><a class="navA2" style="white-space:nowrap;" href="https://2019.igem.org/Team:Fudan-TSI/Public_Engagement">Education &amp; <br />Public Engagement</a></li>
<li class="li2"><a class="navA2" style="white-space:nowrap;" href="https://2019.igem.org/Team:Fudan-TSI/Human_Practices">Integrated <br />Human Practice</a></li>
+
<li class="li2"><a class="navA2" style="white-space:nowrap;" href="https://2019.igem.org/Team:Fudan-TSI/Integrated_Human_Practice">Integrated <br />Human Practice</a></li>
 
<li class="li2"><a class="navA2" href="https://2019.igem.org/Team:Fudan-TSI/Collaborations">Collaboration</a></li>
 
<li class="li2"><a class="navA2" href="https://2019.igem.org/Team:Fudan-TSI/Collaborations">Collaboration</a></li>
 
<li class="li2"><a class="navA2" href="https://2019.igem.org/Team:Fudan-TSI/Safety">Safety</a></li>
 
<li class="li2"><a class="navA2" href="https://2019.igem.org/Team:Fudan-TSI/Safety">Safety</a></li>
Line 1,344: Line 1,338:
 
<ul class="ul2">
 
<ul class="ul2">
 
<li class="li2"><a class="navA2" style="white-space:nowrap;" href="https://2019.igem.org/Team:Fudan-TSI/Team">Team Members</a></li>
 
<li class="li2"><a class="navA2" style="white-space:nowrap;" href="https://2019.igem.org/Team:Fudan-TSI/Team">Team Members</a></li>
<li class="li2"><a class="navA2" href="https://2019.igem.org/Team:Fudan-TSI/Attributions">Attribution</a></li>
+
<li class="li2"><a class="navA2" href="https://2019.igem.org/Team:Fudan-TSI/Team/Attribution">Attribution</a></li>
<li class="li2"><a class="navA2" href="https://2019.igem.org/Team:Fudan-TSI/Acknowledgment">Acknowledgement</a></li>
+
 
</ul>
 
</ul>
 
</div>
 
</div>
 
</li>
 
</li>
 
 
<li class="navLi"><a class="navA noSubmenu" href="https://2019.igem.org/Team:Fudan-TSI/Judging">Judging</a></li>
+
<li class="navLi"><a class="navA noSubmenu" href="https://igem.org/2019_Judging_Form?id=3257">Judging</a></li>
 
 
 
</ul>
 
</ul>
Line 1,393: Line 1,386:
 
  <rect id="rect2" x="0" y="0" width="1600" height="600" stroke="none" fill="url(#grad2)"></rect>
 
  <rect id="rect2" x="0" y="0" width="1600" height="600" stroke="none" fill="url(#grad2)"></rect>
 
</svg>
 
</svg>
<div id="demoCover"><img id="coverPic" src="https://static.igem.org/mediawiki/2019/c/c6/T--Fudan-TSI--coverMeasurement.gif"></div>
+
<div id="demoCover"><img id="coverPic" src="https://static.igem.org/mediawiki/2019/8/83/T--Fudan-TSI--coverDemonstration.gif"></div>
 
</div>
 
</div>
 
<style>
 
<style>
Line 1,411: Line 1,404:
 
}
 
}
 
#coverPic{
 
#coverPic{
width:550px;
+
width:900px;
 
margin:20vh auto;
 
margin:20vh auto;
 
}
 
}
Line 1,444: Line 1,437:
 
}
 
}
 
#coverPic{
 
#coverPic{
width:500px;
+
width:800px;
 
margin:7vh auto;
 
margin:7vh auto;
 
}
 
}
Line 1,456: Line 1,449:
 
}
 
}
 
#coverPic{
 
#coverPic{
width:500px;
+
width:700px;
 
margin:6vh auto;
 
margin:6vh auto;
 
}
 
}
Line 1,468: Line 1,461:
 
}
 
}
 
#coverPic{
 
#coverPic{
width:400px;
+
width:450px;
 
margin:8vh auto;
 
margin:8vh auto;
 
}
 
}
Line 1,474: Line 1,467:
 
@media only screen and (max-width:500px){
 
@media only screen and (max-width:500px){
 
#coverPic{
 
#coverPic{
width:200px;
+
width:250px;
 
margin:8vh auto;
 
margin:8vh auto;
 
}
 
}
Line 1,816: Line 1,809:
 
<ul class="leftNav" style="margin:0;padding:0;">
 
<ul class="leftNav" style="margin:0;padding:0;">
 
 
<li class="leftNavLi"><a class="leftNavA" href="#mainTitle1">Naked eye detection</a></li>
+
<li class="leftNavLi"><a class="leftNavA" href="#mainTitle1">Naked eye detection</a>
<li class="leftNavLi"><a class="leftNavA" href="#mainTitle2">PCR verification</a></li>
+
</li>
 +
<li class="leftNavLi"><a class="leftNavA" href="#mainTitle2">PCR verification</a>
 +
 +
</li>
 
<li class="leftNavLi"><a class="leftNavA" href="#mainTitle3">Fluorescence quantification through measurement kit</a>
 
<li class="leftNavLi"><a class="leftNavA" href="#mainTitle3">Fluorescence quantification through measurement kit</a>
 
<ul class="leftNavUl2">
 
<ul class="leftNavUl2">
Line 1,826: Line 1,822:
 
</li>
 
</li>
 
<li class="leftNavLi"><a class="leftNavA" href="#mainTitle4">SDS-PAGE</a></li>
 
<li class="leftNavLi"><a class="leftNavA" href="#mainTitle4">SDS-PAGE</a></li>
 +
  
  
Line 1,831: Line 1,828:
 
</ul>
 
</ul>
 
 
 
 
 
 
<style>
 
<style>
 
.leftNav{
 
.leftNav{
Line 1,952: Line 1,946:
 
<div class="row title1" id="mainTitle1">
 
<div class="row title1" id="mainTitle1">
 
<div class="col">Naked eye detection</div>
 
<div class="col">Naked eye detection</div>
</div>
+
</div>
+
 
 
 
<div class="row para1">
 
<div class="row para1">
 
<div class="row">
 
<div class="row">
 
<div class="col">
 
<div class="col">
Single colony of Escherichia coli (BL21) transformed with plasmid containing EGFP is picked and cultured in liquid medium (2*YT). After overnight 37 ℃ culture, we transferred the liquid into an empty petri dish, and observed its fluorescence under a fluorescence microscope. Green fluorescence can be detected at the place of the bacteria solution while the rest of the plate as we expected. (Fig. 1).
+
Escherichia coli (BL21) transformed with plasmid containing EGFP is coated on a petri dish and cultured for 12-14 h overnight. Then the dish lid is removed and placed on UV light. Green fluorescence is emitted from single-cell colonies and detectable through naked eyes (Fig. 1).
 
</div>
 
</div>
 
</div>
 
</div>
 
</div>
 
</div>
 
 
<div class="row title1" id="mainTitle2">
 
<div class="col">PCR verification</div>
 
</div>
 
 
 
<div class="row para1">
+
<div class="col">
+
We designed a set of primers which cannot amplify the nonsense mutant but is able to amplify the recovered EGFP. After PCR reaction, electrophoresis is performed and the recovered EGFP band is visibly bright while the mutant band does not appear (Fig. 2).
+
 +
 +
 +
<div class="row legend">
 +
<div class="row">
 +
<img src="https://static.igem.org/mediawiki/2019/3/32/T--Fudan-TSI--Measurement_Fig1.jpeg" style="width:30%; margin:auto;">
 +
</div>
 +
<div class="row legends">
 +
<b>Figure 1. Cell colonies expressing green fluorescence can be detected by naked eyes under UV light.</b><br />
 +
Single colony of Escherichia coli (BL21) transformed with plasmid containing EGFP is picked and cultured in liquid medium (2*YT). After overnight 37 ℃ culture, we transferred the liquid into an empty petri dish, and observed its fluorescence under a fluorescence microscope. Green fluorescence can be detected at the place of the bacteria solution while the rest of the plate as we expected. (Fig. 2).
 
</div>
 
</div>
 
</div>
 
</div>
 
+
 +
 
<div class="row legend">
 
<div class="row legend">
 
<div class="row">
 
<div class="row">
<img src="https://static.igem.org/mediawiki/2019/f/f7/T--Fudan-TSI--3mgv.gif" style="width:30%; margin:auto;">
+
<img src="https://static.igem.org/mediawiki/2019/6/68/T--Fudan-TSI--Measurement_Fig2.png" style="width:30%; margin:auto;">
 
</div>
 
</div>
 
<div class="row legends">
 
<div class="row legends">
Figure 3. Crystal structure of Cre recombinase bound to a loxP holliday junction (PDB:3MGV).
+
<b>Figure 2. Fluorescence can be detected under fluorescence microscopy.</b><br />
 +
Green fluorescence can be detected from liquid culture under fluorescence microscopy (emission wavelength 488 nm). The line in the middle shows the boundary between culture and empty petri dish.
 
</div>
 
</div>
 
</div>
 
</div>
 
 
<div class="row title1" id="mainTitle3">
+
<div class="col">Fluorescence quantification through measurement kit</div>
+
 +
 +
 +
<div class="row title1" id="mainTitle2">
 +
<div class="col">PCR verification</div>
 
</div>
 
</div>
 
 
 
<div class="row para1">
 
<div class="row para1">
<div class="col">
+
<div class="row">
After being sure that the fluorescence it recovered, we quantified its intensity with a microplate reader and the standard samples from distributed measurement kit. We followed the calibration protocol from measurement community.
+
<div class="col">
</div>
+
We designed a set of primers which cannot amplify the nonsense mutant but is able to amplify the recovered EGFP. After PCR reaction, electrophoresis is performed and the recovered EGFP band is visibly bright while the mutant band does not appear (Fig. 3).
</div>
+
</div>
+
</div>
<div class="row title2" id="mainTitle3_1">
+
<div class="col">Cell quantity</div>
+
 
</div>
 
</div>
 
 
 
<div class="row legend">
 
<div class="row legend">
 
<div class="row">
 
<div class="row">
<img src="https://static.igem.org/mediawiki/2019/6/6c/T--Fudan-TSI--designDemo.gif" style="width:90%; margin:auto;">
+
<img src="https://static.igem.org/mediawiki/2019/7/7f/T--Fudan-TSI--Measurement_Fig3.png" style="width:30%; margin:auto;">
 
</div>
 
</div>
 
<div class="row legends">
 
<div class="row legends">
Figure 6.  
+
<b>Figure 3. EGFP can be amplified through PCR while its nonsense mutant could not.</b><br />
 +
The primer is specifically designed at the site of mutation to only amplify the EGFP (sequence: CATGGCCGACAAGCAG). The expected product length should be 410 bp as the arrow shows, which correlates with the band. When the annealing temperature is set at 64 ℃, only the full-length EGFP can be amplified. Control is a nonrelevant plasmid.
 
</div>
 
</div>
 +
</div>
 +
 +
 +
 +
 +
 +
<div class="row title1" id="mainTitle3">
 +
<div class="col">Fluorescence quantification through measurement kit</div>
 +
</div>
 +
 +
<div class="row para1">
 +
<div class="row">
 +
<div class="col">
 +
After being sure that the fluorescence it recovered, we quantified its intensity with a microplate reader and the standard samples from distributed measurement kit. We followed the calibration protocol from measurement community.
 +
</div>
 +
</div>
 +
</div>
 +
 +
<div class="row title2" id="mainTitle3_1">
 +
<div class="col"> Cell quantity</div>
 
</div>
 
</div>
 
 
 
<div class="row para1">
 
<div class="row para1">
 
<div class="col">
 
<div class="col">
For OD600 measurement, we use the silica beads in 2019 iGEM measurement kit as a standard substance.<br /><br />
+
For OD600 measurement, we use the silica beads in 2019 iGEM measurement kit as a standard substance.
As a preparation, we have measured a particle standard curve of the silica beads from maximum concentration to 0 (pure ddH2O) and used iGEM official data processing excel to generate the particle standard curve. Then, we determined the best-fitted linear region with maximum correlation coefficient R2 (Fig. 3). Before each time we measure our samples, we will first measure the OD600 of the silica beads samples whose concentration are at both ends of the best-fitted linear region, which in our case, is from 300,000,000/100μl to 18,750,000/100μl for calibration of the particle standard curve. After measuring the bacteria liquid culture samples, we will change the OD600 to the number of particles according to the calibrated standard curve.
+
As a preparation, we have measured a particle standard curve of the silica beads from maximum concentration to 0 (pure ddH2O) and used iGEM official data processing excel to generate the particle standard curve. Then, we determined the best-fitted linear region with maximum correlation coefficient R2 (Fig. 4a). Before each time we measure our samples, we will first measure the OD600 of the silica beads samples whose concentration are at both ends of the best-fitted linear region, which in our case, is from 300,000,000/100 μl to 18,750,000/100 μl for calibration of the particle standard curve. After measuring the bacteria liquid culture samples, we will change the OD600 to the number of particles according to the calibrated standard curve.
 +
 
 
</div>
 
</div>
 
</div>
 
</div>
 +
 +
 
 
 
<div class="row title2" id="mainTitle3_2">
 
<div class="row title2" id="mainTitle3_2">
Line 2,018: Line 2,045:
 
<div class="row para1">
 
<div class="row para1">
 
<div class="col">
 
<div class="col">
For fluorescence quantification, we use the fluorescein salt provided in 2019 iGEM measurement kit as a standard substance.<br /><br />
+
For fluorescence quantification, we use the fluorescein salt provided in 2019 iGEM measurement kit as a standard substance.</br></br>
As a preparation, we have measured a fluorescence standard curve of the fluorescein salt from maximum concentration to 0 (pure PBS) and used iGEM official data processing excel to generate the fluorescence standard curve. Then, we determined the best-fitted linear region with maximum correlation coefficient R2 (Fig. 4). Before each time we measure our samples, we will first measure the fluorescence intensity of the fluorescein salt samples whose concentration are at both ends of the best-fitted linear region, which in our case, is from 10μM to 0.0390625μM for calibration of the fluorescence standard curve. After measuring the bacteria liquid culture samples, we have changed the fluorescence intensity to the concentration of fluorescein salt according to the calibrated standard curve.  
+
As a preparation, we have measured a fluorescence standard curve of the fluorescein salt from maximum concentration to 0 (pure PBS) and used iGEM official data processing excel to generate the fluorescence standard curve. Then, we determined the best-fitted linear region with maximum correlation coefficient R2 (Fig. 4b). Before each time we measure our samples, we will first measure the fluorescence intensity of the fluorescein salt samples whose concentration are at both ends of the best-fitted linear region, which in our case, is from 10 μM to 0.0390625 μM for calibration of the fluorescence standard curve. After measuring the bacteria liquid culture samples, we have changed the fluorescence intensity to the concentration of fluorescein salt according to the calibrated standard curve.
 
+
 
</div>
 
</div>
 
</div>
 
</div>
 +
 +
<div class="row legend">
 +
<div class="row">
 +
<img src="https://static.igem.org/mediawiki/2019/8/80/T--Fudan-TSI--Measurement_Fig4.png" style="width:60%; margin:auto;">
 +
</div>
 +
<div class="row legends">
 +
<b>Figure 4. Standard line for fluorescence and cell quantity quantification. </b><br />
 +
The vertical axis stands for the abstract value measured by our microplate reader. Fluorescence is quantified by fluorescein (a) while cell quantity is quantified by silico beads (b). Both are from iGEM distributed measurement kit. For green fluorescence measurement, excitation wavelength is 485 nm; detection wavelength is 528 nm.
 +
</div>
 +
</div>
 +
 +
 
 
 
<div class="row title2" id="mainTitle3_3">
 
<div class="row title2" id="mainTitle3_3">
Line 2,030: Line 2,068:
 
<div class="row para1">
 
<div class="row para1">
 
<div class="col">
 
<div class="col">
Finally, we would divide the fluorescein salt concentration by the number of silica beads for our final quantified fluorescence intensity which is <b>c[fluorescein salt]/n[silica beads]</b> and has a unit of <b>μM/(pcs per 100 μl)</b>.
+
Finally, we would divide the fluorescein salt concentration by the number of silica beads for our final quantified fluorescence intensity which is (c[fluorescein salt])/(n[silica beads]) and has a unit of μM/(pcs/100 μl).
 
</div>
 
</div>
 
</div>
 
</div>
 
 
<div class="row title1" id="mainTitle4" style="margin-top:10%;">
+
 +
 +
 +
 +
 +
 +
<div class="row title1" id="mainTitle4">
 
<div class="col">SDS-PAGE</div>
 
<div class="col">SDS-PAGE</div>
</div>
+
</div>
 
 
 
<div class="row para1">
 
<div class="row para1">
<div class="col">
+
<div class="row">
The EGFP nonsense mutant can only express a truncated peptide of 17.8 kD, while the full-length EGFP protein is 26.9 kD, the difference between their molecular weight could be visualized through SDS-PAGE. (Fig. 5)
+
<div class="col">
</div>
+
The EGFP nonsense mutant can only express a truncated peptide of 17.8 kD, while the full-length EGFP protein is 26.9 kD, the difference between their molecular weight could be visualized through SDS-PAGE. (Fig. 5)
 +
 
 +
</div>
 +
</div>
 
</div>
 
</div>
 +
<div class="row legend">
 +
<div class="row">
 +
<img src="https://static.igem.org/mediawiki/2019/f/f9/T--Fudan-TSI--Measurement_Fig5.png" style="width:60%; margin:auto;">
 +
</div>
 +
<div class="row legends">
 +
<b>Figure 5. EGFP and EGFP mutant are of different length on the PAGE gel.  </b><br />
 +
Full-length EGFP has a brighter band at 26.9 kDa, while its two mutants have brighter bands at 17.8 kDa. SDS-PAGE is performed on whole-cell lysis, which makes the band obscure.
 +
</div>
 +
</div>
 +
 +
 +
 +
 +
 
 
 
 
Line 2,096: Line 2,157:
 
 
 
<div class="col-sm-4">
 
<div class="col-sm-4">
<div class="footerUl align-items-center active">
+
<div class="footerUl align-items-center">
 
<span><a href="/Team:Fudan-TSI/Description" style="text-decoration:none;">Project</a></span>
 
<span><a href="/Team:Fudan-TSI/Description" style="text-decoration:none;">Project</a></span>
 
<ul>
 
<ul>
Line 2,109: Line 2,170:
 
 
 
<div class="col-sm-4">
 
<div class="col-sm-4">
<div class="footerUl align-items-center">
+
<div class="footerUl align-items-center active">
 
<span><a href="/Team:Fudan-TSI/Results" style="text-decoration:none;">Results</a></span>
 
<span><a href="/Team:Fudan-TSI/Results" style="text-decoration:none;">Results</a></span>
 
<ul>
 
<ul>
Line 2,295: Line 2,356:
  
 
</script>
 
</script>
 
  
 
 
 
<script src="https://2019.igem.org/wiki/index.php?title=Template:Fudan-TSI/popper.min.js&amp;action=raw&amp;ctype=text/javascript" integrity="sha384-UO2eT0CpHqdSJQ6hJty5KVphtPhzWj9WO1clHTMGa3JDZwrnQq4sF86dIHNDz0W1" crossorigin="anonymous"></script>
 
<script src="https://2019.igem.org/wiki/index.php?title=Template:Fudan-TSI/popper.min.js&amp;action=raw&amp;ctype=text/javascript" integrity="sha384-UO2eT0CpHqdSJQ6hJty5KVphtPhzWj9WO1clHTMGa3JDZwrnQq4sF86dIHNDz0W1" crossorigin="anonymous"></script>
 
<script src="https://2019.igem.org/wiki/index.php?title=Template:Fudan-TSI/bootstrap.js&amp;action=raw&amp;ctype=text/javascript" integrity="sha384-JjSmVgyd0p3pXB1rRibZUAYoIIy6OrQ6VrjIEaFf/nJGzIxFDsf4x0xIM+B07jRM" crossorigin="anonymous"></script>
 
<script src="https://2019.igem.org/wiki/index.php?title=Template:Fudan-TSI/bootstrap.js&amp;action=raw&amp;ctype=text/javascript" integrity="sha384-JjSmVgyd0p3pXB1rRibZUAYoIIy6OrQ6VrjIEaFf/nJGzIxFDsf4x0xIM+B07jRM" crossorigin="anonymous"></script>
+
 
+
 
 +
 +
 +
 +
 +
 +
 +
  
  

Revision as of 01:07, 22 October 2019

We focused our measurement on characterizing the fluorescence recovery of EGFP from its nonsense mutation in the following 4 ways:

1) Green fluorescence could be seen on the plate under UV light through naked eyes and recorded by a cellphone camera. Liquid culture could be placed in a culture dish and fluorescence is easily detectable under fluorescent microscopy.

2) We designed PCR primers to only amplify the recovered EGFP sequence but not the mutated version. The amplified band could be easily visualized after electrophoresis.

3) Fluorescence level was quantified through microplate reader according to fluorescein solutions and silicon beads, both standard samples are from the distributed measurement kit.

4) We ran PAGE gel of IPTG induced bacterial lysates. The mutated version produced a truncated protein at 17.8 kD, while the recovered EGFP is 26.9 kD.

We used multiple methods to ensure that EGFP is truly recovered from its nonsense mutation.
Naked eye detection
Escherichia coli (BL21) transformed with plasmid containing EGFP is coated on a petri dish and cultured for 12-14 h overnight. Then the dish lid is removed and placed on UV light. Green fluorescence is emitted from single-cell colonies and detectable through naked eyes (Fig. 1).
Figure 1. Cell colonies expressing green fluorescence can be detected by naked eyes under UV light.
Single colony of Escherichia coli (BL21) transformed with plasmid containing EGFP is picked and cultured in liquid medium (2*YT). After overnight 37 ℃ culture, we transferred the liquid into an empty petri dish, and observed its fluorescence under a fluorescence microscope. Green fluorescence can be detected at the place of the bacteria solution while the rest of the plate as we expected. (Fig. 2).
Figure 2. Fluorescence can be detected under fluorescence microscopy.
Green fluorescence can be detected from liquid culture under fluorescence microscopy (emission wavelength 488 nm). The line in the middle shows the boundary between culture and empty petri dish.
PCR verification
We designed a set of primers which cannot amplify the nonsense mutant but is able to amplify the recovered EGFP. After PCR reaction, electrophoresis is performed and the recovered EGFP band is visibly bright while the mutant band does not appear (Fig. 3).
Figure 3. EGFP can be amplified through PCR while its nonsense mutant could not.
The primer is specifically designed at the site of mutation to only amplify the EGFP (sequence: CATGGCCGACAAGCAG). The expected product length should be 410 bp as the arrow shows, which correlates with the band. When the annealing temperature is set at 64 ℃, only the full-length EGFP can be amplified. Control is a nonrelevant plasmid.
Fluorescence quantification through measurement kit
After being sure that the fluorescence it recovered, we quantified its intensity with a microplate reader and the standard samples from distributed measurement kit. We followed the calibration protocol from measurement community.
Cell quantity
For OD600 measurement, we use the silica beads in 2019 iGEM measurement kit as a standard substance. As a preparation, we have measured a particle standard curve of the silica beads from maximum concentration to 0 (pure ddH2O) and used iGEM official data processing excel to generate the particle standard curve. Then, we determined the best-fitted linear region with maximum correlation coefficient R2 (Fig. 4a). Before each time we measure our samples, we will first measure the OD600 of the silica beads samples whose concentration are at both ends of the best-fitted linear region, which in our case, is from 300,000,000/100 μl to 18,750,000/100 μl for calibration of the particle standard curve. After measuring the bacteria liquid culture samples, we will change the OD600 to the number of particles according to the calibrated standard curve.
Fluorescence
For fluorescence quantification, we use the fluorescein salt provided in 2019 iGEM measurement kit as a standard substance.

As a preparation, we have measured a fluorescence standard curve of the fluorescein salt from maximum concentration to 0 (pure PBS) and used iGEM official data processing excel to generate the fluorescence standard curve. Then, we determined the best-fitted linear region with maximum correlation coefficient R2 (Fig. 4b). Before each time we measure our samples, we will first measure the fluorescence intensity of the fluorescein salt samples whose concentration are at both ends of the best-fitted linear region, which in our case, is from 10 μM to 0.0390625 μM for calibration of the fluorescence standard curve. After measuring the bacteria liquid culture samples, we have changed the fluorescence intensity to the concentration of fluorescein salt according to the calibrated standard curve.
Figure 4. Standard line for fluorescence and cell quantity quantification.
The vertical axis stands for the abstract value measured by our microplate reader. Fluorescence is quantified by fluorescein (a) while cell quantity is quantified by silico beads (b). Both are from iGEM distributed measurement kit. For green fluorescence measurement, excitation wavelength is 485 nm; detection wavelength is 528 nm.
Normalization
Finally, we would divide the fluorescein salt concentration by the number of silica beads for our final quantified fluorescence intensity which is (c[fluorescein salt])/(n[silica beads]) and has a unit of μM/(pcs/100 μl).
SDS-PAGE
The EGFP nonsense mutant can only express a truncated peptide of 17.8 kD, while the full-length EGFP protein is 26.9 kD, the difference between their molecular weight could be visualized through SDS-PAGE. (Fig. 5)
Figure 5. EGFP and EGFP mutant are of different length on the PAGE gel.
Full-length EGFP has a brighter band at 26.9 kDa, while its two mutants have brighter bands at 17.8 kDa. SDS-PAGE is performed on whole-cell lysis, which makes the band obscure.