Difference between revisions of "Team:Marburg/test joana"

Line 97: Line 97:
 
                 <br>
 
                 <br>
 
             </p>
 
             </p>
             <figure style="float: right; margin-left: 25px;">
+
             <figure>
                <img style="height: 400px; width: 600px"
+
                    <img style="display: block; margin: 0 auto 0 auto; width:100%"
                    src="https://static.igem.org/mediawiki/2019/6/60/T--Marburg--SyntexConnections.png"
+
                      src="https://lh3.googleusercontent.com/8ko4suiu3NQ_qmRIeZf1k1sg5EUw8g4JXfkGG3xAmRk1dxaVlZQbzC9Uz-6ToGKXaAf5p_yx9MVHhlO3QdMmG_l0ukJ0OVQOWBzcouM-HOTc_ta7LblxiVtTdLKrf9q4bpzP6ZRP"
                    alt="Connections between Opentrons, Promega and QInstruments">
+
                      alt="Lvl1 ori">
                <figcaption style="max-width: 600px">
+
                    <figcaption>
                    Fig.1 - iGEM team Marburg 2019 is establishing connections between Opentrons, Promega and QInstruments.
+
                      Fig.1 - Lvl1 ori
                </figcaption>
+
                    </figcaption>
            </figure>
+
                  </figure>
 +
           
 
             <div><p>
 
             <div><p>
                Since the time of an iGEM project is limited to only one year, consequently only a limited amount of work can be
+
                    Introduction of exogenous DNA can be done in multiple ways and propagated in a strain if it is integrated in the
                done in that time, which is even reduced by failing experiments and making mistakes in the lab. To overcome this
+
                    chromosome or stably expressed on a self-replicating plasmid.<br> For rapid prototyping in cyanobacteria
                problem and increase the reproducibility and simultaneously raise the amount of experiments in the lab, we
+
                    self-replicating plasmids are of higher interest than genome-integrations, as the latter can be quite
                automated plasmid purification on the OT-2. Using this protocol and making it <b><a
+
                    time-consuming in cyanobacterial strains with multiple genome copies (<a
                    href="https://github.com/igemsoftware2019/iGemMarburg2019">open-source</a></b>,
+
                      href="https://www.ncbi.nlm.nih.gov/pubmed/22092711">Griese <i>et al.,</i> 2011</a>). Furthermore, genes
                we
+
                    introduced in self-replicating vectors have been shown to have higher gene-expression levels than those integrated
                achieved to parallelize work in the lab or make more time for public engagement, human practice, IHP or
+
                    in the genome, as copy numbers are typically higher (<a href="https://doi.org/10.1099/mic.0.000377">Chen Titel anhand dieser DOI in Citavi-Projekt übernehmen <i>et
                everything else not directly lab-related, benefiting the whole iGEM community. This benefits will also be
+
                        al.,</i> 2016</a>) – a desirable trait, not just for rapid prototyping in research applications, but also for
                translated beyond iGEM community such as in the amateur biohackers, enthusiasts, and students community and even
+
                    biotechnological production of valuable compounds.<br>
                to research groups doing cutting-edge research.<br>
+
                    With our shuttle-vectors encompass a cyanobacterial origin of replication (ori) from <i>Synechococcus
                This idea started when we found out that there is also a great need in the industry for an automated cloning
+
                      elongatus</i> PCC7942 as well as an <i>E.coli</i> ori, which is perfect for fast cloning processes, as these
                workflow. Promega provided us with great advice <b>(Link to IHP)</b> and sponsored the Wizard® MagneSil® Plasmid
+
                    vectors can be easily recovered from the cyanobacteria and reintroduced in an <i>E.coli</i> strain.<br>
                Purification System, QInstruments sponsored the BioShake D30-T elm and Opentrons sponsored their Magnetic
+
                Module. Through our work aligned with the philosophy of iGEM for nurturing collaborations, we enabled
+
                connections between these companies to achieve the true potential of their products. This kind of bridge would
+
                not have been possible otherwise.<br>
+
                <br>
+
                Nevertheless, a massive amount of barriers had to be broken down. The shaker was a bit bigger than the space
+
                normally occupied by modules in the OT-2 and needed stabilizing support, so it was obvious to design a
+
                custom-made shaker adapter and print it with our own in-house 3D printer, which would keep the costs for the
+
                automation of this workflow extremely low. Moreover, the 3D design will be publicly available in our GitHub
+
                repository (LINK), which will make our solution accessible to everyone with access to a 3D printer.<br>
+
                <br>
+
                Additionally, we stumbled across serious problems with the calibration of our OT-2 and accessing the shaker with
+
                the pipette. The BioShake D30-T elm is currently not a usual labware defined by Opentrons’, so we had to be
+
                creative and come up with our own labware definition. Opentron is recently rolling out a major update from their
+
                OT-2 3.9 to 4.0 firmware that includes a lot of paradigm changes, making it impossible for us to define it as a
+
                decent custom labware. That is why we came up with the idea to use Opentrons’ internal coordinate system and
+
                defining the required 96 Deep Well Plate on the shaker as coordinates. This facilitated accessing the shaker
+
                with the pipette, being as precise as Opentrons’ own labware definitions, but a whole series of problems
+
                followed, as we tried to use Opentrons’ pipette functions to transfer the chemicals. We managed these problems
+
                as well, by defining our own Python functions, telling the pipette how to transfer liquids from and to the
+
                defined shaker. In the end when running the script, one would not be able to tell the difference between the
+
                labware and functions defined by us from the ones defined by Opentrons’.<br>
+
 
                 <br>
 
                 <br>
 
             </p>
 
             </p>
            <figure align=center>
 
                <img style="height: 500px; width: 300px"
 
                    src="https://static.igem.org/mediawiki/2019/b/bb/T--Marburg--opentrons_magnetic_module.JPG"
 
                    alt="OT-2 left">
 
                <img style="height: 500px; width: 300px"
 
                    src="https://static.igem.org/mediawiki/2019/3/30/T--Marburg--opentrons_shaker.JPG" alt="OT-2 right">
 
                <figcaption style="max-width: 1400px">
 
                    Fig.2 - Single-Channel pipette, magnetic module and shaker in action while performing the plasmid
 
                    purification.
 
                </figcaption>
 
            </figure>
 
 
             <br>
 
             <br>
             <p>
+
             <p style="font-size: 20px">
                Putting the pieces together, we were able to translate the manual plasmid purification protocol provided by Nans
+
              Currently existing shuttle vectors for cyanobacteria are still based on standard systems working with multiple
                Bodet into an Opentrons protocol, being the very first of its kind. We pioneered a workflow for up to six
+
              cloning sites (MCS) for expression of homologous genes (<a href="https://doi.org/10.1099/mic.0.000377">Chen Titel anhand dieser DOI in Citavi-Projekt übernehmen <i>et
                samples with the p300 Single-Channel Electronic Pipette and a scaled-up version for up to 48 samples with the
+
                  al.,</i> 2016</a>). A huge downside is that these vectors include either an MCS (e.g. pAM5188) or a
                p300 8-Channel Electronic Pipette without having to intervene even once. This scalability provides important
+
              fluorescence reporter (e.g. pAM4787), which is unpractical for easy selection of recombinant clones. Additionally,
                flexibility for various kinds of experiments.<br>
+
              an MCS comes with possible sequence constraints due to restriction sites leaving unwanted base pairs in your
                <br>
+
              constructs.<br>
                In our process of developing and running the protocol we determined some problems on increasing the yield of our
+
              Facilitating and standardizing the process of engineering biological systems is one of the fundamental goals of
                plasmids. There was a large number of parameters that could be varied, changing the final concentration of the
+
              synthetic biology (<a href="https://doi.org/10.1186/1754-1611-2-5">Shetty Titel anhand dieser DOI in Citavi-Projekt übernehmen <i>et al.,</i> 2008</a>), so the
                plasmids. For example, we realized that the duration of lysis is paramount for the yield and success of plasmid
+
              construction of a shuttle-vector based on a modular cloning method significantly improves the genetic toolbox we
                purification. Over-lysis will lead to a decrease in plasmid yield, whereas under-lysis will induce clumping of
+
              created for genetic engineering and synthetic biology approaches in <i>S.elongatus</i> and other
                magnetic beads; thus failing the experiment. After a whole heap of plasmid purifications we managed to identify
+
              cyanobacteria.<br>
                the most relevant parameters and improve the protocol in the best way possible.<br>
+
                <br>
+
 
             </p>
 
             </p>
            <figure align=center>
 
                <img style="height: 700px; width: 600px"
 
                    src="https://static.igem.org/mediawiki/2019/e/ea/T--Marburg--SingleChannelSetup.png" alt="OT-Layout left">
 
                <img style="height: 700px; width: 600px"
 
                    src="https://static.igem.org/mediawiki/2019/d/df/T--Marburg--8channelSetup.png" alt="OT-Layout right">
 
                <figcaption style="max-width: 1400px">
 
                    Fig.3 - Final setup for the automated plasmid purification workflows in the OT-2. The left picture shows the
 
                    setup for the single channel workflow, the right picture for the 8-channel workflow.
 
                </figcaption>
 
            </figure>
 
       
 
            <video src="https://static.igem.org/mediawiki/2019/c/c4/T--Marburg--PlasmidPurificationMarburg.mp4" controls
 
                poster="vorschaubild.jpg"></video>
 
       
 
 
             <br>
 
             <br>
        </p>
+
            <p style="font-size: 20px">
      </section>
+
              The commonly used <i>S.elongatus</i> strain PCC7942 carries two endogenous plasmids, the 46,4kb pANL (<a
      <section class="section">
+
                href="https://www.ncbi.nlm.nih.gov/pubmed/18353436">Chen <i>et al.,</i> 2008</a>) which is essential and the
        <article>
+
              7,8kb pANS (<a href="https://www.ncbi.nlm.nih.gov/pubmed/1552863">Van der Plas <i>et al.,</i> 1992</a>) which is
          <h1 class="title"></h1>
+
              not essential for the strain and can easily be cured.<br>
          <p style="text-align: justify; margin-bottom: 1em;">
+
              This small plasmid has already been used for construction of shuttle vectors (<a
         
+
                href="https://doi.org/10.1016/0076-6879(87)53054-3">Kuhlemeier Titel anhand dieser DOI in Citavi-Projekt übernehmen & van Arkel, 1987</a> ; <a
          </p></div>
+
                href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC217787/">Golden & Sherman, 1983</a> ; <a
        </article>
+
                href="https://doi.org/10.1099/mic.0.000377">Chen Titel anhand dieser DOI in Citavi-Projekt übernehmen <i>et al.,</i> 2016</a>). <br>
      </section>
+
              We followed this lead to create the best shuttle-vector available for cyanobacteria by encompassing the minimal
      <hr>
+
              replication region of pANS and the ColE1 origin of replication into our vectors, allowing for stable
     
+
              self-replication with high copy numbers in cyanobacteria (<a href="https://doi.org/10.1099/mic.0.000377">Chen Titel anhand dieser DOI in Citavi-Projekt übernehmen
    </div>
+
                <i>et al.,</i> 2016</a>) and <i>E.coli</i> (<a href="https://doi.org/10.1016/S0065-2660(02)46013-0">Gerhart Titel anhand dieser DOI in Citavi-Projekt übernehmen
  </div>
+
                <i>et al.,</i>2002</a>). This addition to the genetic toolbox proves invaluable, as it can be easily recovered
  </body>
+
              from the cyanobacterial strain and reintroduced in <i>E.coli</i> for fast GoldenGate-based cloning processes.<br>
 +
            </p>
 +
            <br>
 +
            <p style="font-size: 20px">
 +
              In order to supply the community with an easy selection system, we equipped our shuttle vector with a fluorescent
 +
              reporter that is cut out when introducing new genetic parts:<br>
 +
              A mRFP (red fluorescent protein) cassette is flanked by our standardized TypeIIS restriction enzyme recognition
 +
              sequences (BsmBI or BsaI depending on what level you want to clone in). In a standard Golden Gate reaction this
 +
              cassette will drop out and leave space for the parts that should be introduced, allowing for easy selection on
 +
              plate after successful cloning – red colonies are wrong, still harboring the mRFP cassette and white colonies (if
 +
              no other fluorescence is introduced) are correct, as the mRFP was switched with the parts of interest.<br>
 +
              <br>
 +
              This crucial part comes in two variations - one for cloning Lvl1 and one for Lvl2 constructs -, giving the Golden
 +
              Gate community everything they need for successful and reliable creation of self-replicating vectors in
 +
              cyanobacteria.
 +
            </p>
 +
            <br>
 +
            </p>
 +
          </div>
 +
          <br>
 +
        </main>
  
 
</html>
 
</html>

Revision as of 23:05, 21 October 2019

B A S I C P A R T S


The origin

Inspired by the fast progress in synthetic biology and its urgent need for genetic tools that enable the exploitation of cyanobacteria for research and biotechnological applications, we set out to construct the most versatile shuttle vector for cyanobacteria based on the modular Golden Gate Assembly method, allowing for flexible cloning into a reliable self-replicating system.

Lvl1 ori
Fig.1 - Lvl1 ori

Introduction of exogenous DNA can be done in multiple ways and propagated in a strain if it is integrated in the chromosome or stably expressed on a self-replicating plasmid.
For rapid prototyping in cyanobacteria self-replicating plasmids are of higher interest than genome-integrations, as the latter can be quite time-consuming in cyanobacterial strains with multiple genome copies (Griese et al., 2011). Furthermore, genes introduced in self-replicating vectors have been shown to have higher gene-expression levels than those integrated in the genome, as copy numbers are typically higher (Chen Titel anhand dieser DOI in Citavi-Projekt übernehmen et al., 2016) – a desirable trait, not just for rapid prototyping in research applications, but also for biotechnological production of valuable compounds.
With our shuttle-vectors encompass a cyanobacterial origin of replication (ori) from Synechococcus elongatus PCC7942 as well as an E.coli ori, which is perfect for fast cloning processes, as these vectors can be easily recovered from the cyanobacteria and reintroduced in an E.coli strain.


Currently existing shuttle vectors for cyanobacteria are still based on standard systems working with multiple cloning sites (MCS) for expression of homologous genes (Chen Titel anhand dieser DOI in Citavi-Projekt übernehmen et al., 2016). A huge downside is that these vectors include either an MCS (e.g. pAM5188) or a fluorescence reporter (e.g. pAM4787), which is unpractical for easy selection of recombinant clones. Additionally, an MCS comes with possible sequence constraints due to restriction sites leaving unwanted base pairs in your constructs.
Facilitating and standardizing the process of engineering biological systems is one of the fundamental goals of synthetic biology (Shetty Titel anhand dieser DOI in Citavi-Projekt übernehmen et al., 2008), so the construction of a shuttle-vector based on a modular cloning method significantly improves the genetic toolbox we created for genetic engineering and synthetic biology approaches in S.elongatus and other cyanobacteria.


The commonly used S.elongatus strain PCC7942 carries two endogenous plasmids, the 46,4kb pANL (Chen et al., 2008) which is essential and the 7,8kb pANS (Van der Plas et al., 1992) which is not essential for the strain and can easily be cured.
This small plasmid has already been used for construction of shuttle vectors (Kuhlemeier Titel anhand dieser DOI in Citavi-Projekt übernehmen & van Arkel, 1987 ; Golden & Sherman, 1983 ; Chen Titel anhand dieser DOI in Citavi-Projekt übernehmen et al., 2016).
We followed this lead to create the best shuttle-vector available for cyanobacteria by encompassing the minimal replication region of pANS and the ColE1 origin of replication into our vectors, allowing for stable self-replication with high copy numbers in cyanobacteria (Chen Titel anhand dieser DOI in Citavi-Projekt übernehmen et al., 2016) and E.coli (Gerhart Titel anhand dieser DOI in Citavi-Projekt übernehmen et al.,2002). This addition to the genetic toolbox proves invaluable, as it can be easily recovered from the cyanobacterial strain and reintroduced in E.coli for fast GoldenGate-based cloning processes.


In order to supply the community with an easy selection system, we equipped our shuttle vector with a fluorescent reporter that is cut out when introducing new genetic parts:
A mRFP (red fluorescent protein) cassette is flanked by our standardized TypeIIS restriction enzyme recognition sequences (BsmBI or BsaI depending on what level you want to clone in). In a standard Golden Gate reaction this cassette will drop out and leave space for the parts that should be introduced, allowing for easy selection on plate after successful cloning – red colonies are wrong, still harboring the mRFP cassette and white colonies (if no other fluorescence is introduced) are correct, as the mRFP was switched with the parts of interest.

This crucial part comes in two variations - one for cloning Lvl1 and one for Lvl2 constructs -, giving the Golden Gate community everything they need for successful and reliable creation of self-replicating vectors in cyanobacteria.