Difference between revisions of "Team:Marburg/test joana"

Line 17: Line 17:
 
       margin-top: -12vh;
 
       margin-top: -12vh;
 
     }
 
     }
+
 
 
     .heading {
 
     .heading {
 
       color: #f5f5f5;
 
       color: #f5f5f5;
Line 27: Line 27:
 
       transform: rotate(-355deg);
 
       transform: rotate(-355deg);
 
     }
 
     }
+
 
 
     .line {
 
     .line {
 
       border-top: 2px solid #f5f5f5;
 
       border-top: 2px solid #f5f5f5;
Line 38: Line 38:
 
       transform: rotate(-355deg);
 
       transform: rotate(-355deg);
 
     }
 
     }
+
 
 
     .logo {
 
     .logo {
 
       width: 100px;
 
       width: 100px;
Line 47: Line 47:
 
       margin-left: -10px;
 
       margin-left: -10px;
 
     }
 
     }
+
 
 
     .main {
 
     .main {
 
       overflow-x: hidden;
 
       overflow-x: hidden;
 
     }
 
     }
+
 
 +
    hr {
 +
      display: block;
 +
      height: 1px;
 +
      border: 0;
 +
      border-top: 2px solid #3d404d;
 +
      padding: 0;
 +
      margin: 1em auto;
 +
      width: 50vw;
 +
    }
 +
 
 
     @media (max-width: 810px) {
 
     @media (max-width: 810px) {
+
 
 
       .logo,
 
       .logo,
 
       .line,
 
       .line,
Line 59: Line 69:
 
         margin-left: -30px;
 
         margin-left: -30px;
 
       }
 
       }
+
 
 
       .line {
 
       .line {
 
         margin: 1.5rem 0 !important;
 
         margin: 1.5rem 0 !important;
Line 65: Line 75:
 
       }
 
       }
 
     }
 
     }
+
    table.blueTable {
 +
        border: 0px solid #1C6EA4;
 +
        width: 300px;
 +
        text-align: left;
 +
        border-collapse: collapse;
 +
    }
 +
 
 +
    table.blueTable td,
 +
    table.blueTable th {
 +
        border: 1px solid #AAAAAA;
 +
        padding: 9px 9px;
 +
    }
 +
 
 +
    table.blueTable tbody td {
 +
        font-size: 14px;
 +
    }
 +
 
 +
    table.blueTable tr:nth-child(even) {
 +
        background: #F9F9F9;
 +
    }
 +
 
 +
    table.blueTable thead {
 +
        background: #FFFFFF;
 +
        background: -moz-linear-gradient(top, #ffffff 0%, #ffffff 66%, #FFFFFF 100%);
 +
        background: -webkit-linear-gradient(top, #ffffff 0%, #ffffff 66%, #FFFFFF 100%);
 +
        background: linear-gradient(to bottom, #ffffff 0%, #ffffff 66%, #FFFFFF 100%);
 +
        border-bottom: 2px solid #444444;
 +
    }
 +
 
 +
    table.blueTable thead th {
 +
        font-size: 16px;
 +
        font-weight: bold;
 +
        text-align: center;
 +
    }
 +
 
 +
    table.blueTable tfoot td {
 +
        font-size: 14px;
 +
    }
 +
 
 +
    table.blueTable tfoot .links {
 +
        text-align: right;
 +
    }
 +
 
 +
    table.blueTable tfoot .links a {
 +
        display: inline-block;
 +
        background: #1C6EA4;
 +
        color: #FFFFFF;
 +
        padding: 2px 8px;
 +
        border-radius: 5px;
 +
    }
 
   </style>
 
   </style>
 
   <div>
 
   <div>
 
     <div class="box-dark">
 
     <div class="box-dark">
 
       <h1 class="heading">
 
       <h1 class="heading">
         <!--Add page title here-->
+
         M I N I P R E P
 
       </h1>
 
       </h1>
 
       <hr class="line">
 
       <hr class="line">
Line 77: Line 136:
 
         alt="Syntex Logo">
 
         alt="Syntex Logo">
 
     </div>
 
     </div>
     <section style="margin-top: 11vh;">
+
     <div style="margin-top: 10vh;">
       <!--Add abstract like text here-->
+
       <section class="section">
    </section>
+
        <h1 class="title">A.P.P Automated Purfication Protocolment</h1>
    <hr>
+
         <p style="text-align: justify;">
    <section class="section grid">
+
                This year’s iGEM Team worked extensively on automating a plasmid purification on Opentrons’ OT-2. Plasmid
      <div class="sub"
+
                purification is an indispensable part of completing the cloning workflow in the OT-2.<br>
        onclick="popup('model1')">
+
                <br>
         <div class="sub-header">
+
            </p>
          <h1>
+
            <figure style="float: right; margin-left: 25px;">
            <!--Title of first model-->
+
                <img style="height: 400px; width: 600px"
          </h1>
+
                    src="https://static.igem.org/mediawiki/2019/6/60/T--Marburg--SyntexConnections.png"
          <hr>
+
                    alt="Connections between Opentrons, Promega and QInstruments">
        </div>
+
                <figcaption style="max-width: 600px">
        <div class="sub-content">
+
                    Fig.1 - iGEM team Marburg 2019 is establishing connections between Opentrons, Promega and QInstruments.
          <img src="">
+
                </figcaption>
        </div>
+
            </figure>
      </div>
+
             <div><p>
      <div id="model1"
+
                Since the time of an iGEM project is limited to only one year, consequently only a limited amount of work can be
        class="popup">
+
                done in that time, which is even reduced by failing experiments and making mistakes in the lab. To overcome this
        <div class="popup-container">
+
                problem and increase the reproducibility and simultaneously raise the amount of experiments in the lab, we
          <div class="popup-header">
+
                automated plasmid purification on the OT-2. Using this protocol and making it <b><a
            <h1 class="title">
+
                    href="https://github.com/igemsoftware2019/iGemMarburg2019">open-source</a></b>,
              <!--Title inside popup-->
+
                we
             </h1>
+
                achieved to parallelize work in the lab or make more time for public engagement, human practice, IHP or
            <button type="button"
+
                everything else not directly lab-related, benefiting the whole iGEM community. This benefits will also be
              onclick="hide('model1')">X</button>
+
                translated beyond iGEM community such as in the amateur biohackers, enthusiasts, and students community and even
          </div>
+
                to research groups doing cutting-edge research.<br>
          <div class="popup-content"
+
                This idea started when we found out that there is also a great need in the industry for an automated cloning
            style="text-align: justify;">
+
                workflow. Promega provided us with great advice <b>(Link to IHP)</b> and sponsored the Wizard® MagneSil® Plasmid
            <section class="section">
+
                Purification System, QInstruments sponsored the BioShake D30-T elm and Opentrons sponsored their Magnetic
              <!--Content of popup-->
+
                Module. Through our work aligned with the philosophy of iGEM for nurturing collaborations, we enabled
            </section>
+
                connections between these companies to achieve the true potential of their products. This kind of bridge would
          </div>
+
                not have been possible otherwise.<br>
        </div>
+
                <br>
      </div>
+
                Nevertheless, a massive amount of barriers had to be broken down. The shaker was a bit bigger than the space
      <div class="sub"
+
                normally occupied by modules in the OT-2 and needed stabilizing support, so it was obvious to design a
        onclick="popup('model2')">
+
                custom-made shaker adapter and print it with our own in-house 3D printer, which would keep the costs for the
        <div class="sub-header">
+
                automation of this workflow extremely low. Moreover, the 3D design will be publicly available in our GitHub
          <h1>
+
                repository (LINK), which will make our solution accessible to everyone with access to a 3D printer.<br>
            <!--Title of second model-->
+
                <br>
          </h1>
+
                Additionally, we stumbled across serious problems with the calibration of our OT-2 and accessing the shaker with
          <hr>
+
                the pipette. The BioShake D30-T elm is currently not a usual labware defined by Opentrons’, so we had to be
        </div>
+
                creative and come up with our own labware definition. Opentron is recently rolling out a major update from their
        <div class="sub-content">
+
                OT-2 3.9 to 4.0 firmware that includes a lot of paradigm changes, making it impossible for us to define it as a
          <img src="">
+
                decent custom labware. That is why we came up with the idea to use Opentrons’ internal coordinate system and
        </div>
+
                defining the required 96 Deep Well Plate on the shaker as coordinates. This facilitated accessing the shaker
      </div>
+
                with the pipette, being as precise as Opentrons’ own labware definitions, but a whole series of problems
      <div id="model2"
+
                followed, as we tried to use Opentrons’ pipette functions to transfer the chemicals. We managed these problems
        class="popup">
+
                as well, by defining our own Python functions, telling the pipette how to transfer liquids from and to the
        <div class="popup-container">
+
                defined shaker. In the end when running the script, one would not be able to tell the difference between the
          <div class="popup-header">
+
                labware and functions defined by us from the ones defined by Opentrons’.<br>
            <h1 class="title">
+
                <br>
              <!--Title inside popup-->
+
            </p>
             </h1>
+
            <figure align=center>
             <button type="button"
+
                <img style="height: 500px; width: 300px"
              onclick="hide('model2')">X</button>
+
                    src="https://static.igem.org/mediawiki/2019/b/bb/T--Marburg--opentrons_magnetic_module.JPG"
          </div>
+
                    alt="OT-2 left">
          <div class="popup-content"
+
                <img style="height: 500px; width: 300px"
            style="text-align: justify;">
+
                    src="https://static.igem.org/mediawiki/2019/3/30/T--Marburg--opentrons_shaker.JPG" alt="OT-2 right">
            <section class="section">
+
                <figcaption style="max-width: 1400px">
              <!--Content of popup-->
+
                    Fig.2 - Single-Channel pipette, magnetic module and shaker in action while performing the plasmid
            </section>
+
                    purification.
          </div>
+
                </figcaption>
        </div>
+
             </figure>
      </div>
+
             <br>
      <div class="sub"
+
            <p>
        onclick="popup('model3')">
+
                Putting the pieces together, we were able to translate the manual plasmid purification protocol provided by Nans
        <div class="sub-header">
+
                Bodet into an Opentrons protocol, being the very first of its kind. We pioneered a workflow for up to six
          <h1>
+
                samples with the p300 Single-Channel Electronic Pipette and a scaled-up version for up to 48 samples with the
            <!--Title of third model-->
+
                p300 8-Channel Electronic Pipette without having to intervene even once. This scalability provides important
          </h1>
+
                flexibility for various kinds of experiments.<br>
          <hr>
+
                <br>
        </div>
+
                In our process of developing and running the protocol we determined some problems on increasing the yield of our
         <div class="sub-content">
+
                plasmids. There was a large number of parameters that could be varied, changing the final concentration of the
          <img src="">
+
                plasmids. For example, we realized that the duration of lysis is paramount for the yield and success of plasmid
         </div>
+
                purification. Over-lysis will lead to a decrease in plasmid yield, whereas under-lysis will induce clumping of
       </div>
+
                magnetic beads; thus failing the experiment. After a whole heap of plasmid purifications we managed to identify
       <div id="model3"
+
                the most relevant parameters and improve the protocol in the best way possible.<br>
        class="popup">
+
                <br>
         <div class="popup-container">
+
            </p>
           <div class="popup-header">
+
            <figure align=center>
            <h1 class="title">
+
                <img style="height: 700px; width: 600px"
              <!--Title inside popup-->
+
                    src="https://static.igem.org/mediawiki/2019/e/ea/T--Marburg--SingleChannelSetup.png" alt="OT-Layout left">
            </h1>
+
                <img style="height: 700px; width: 600px"
            <button type="button"
+
                    src="https://static.igem.org/mediawiki/2019/d/df/T--Marburg--8channelSetup.png" alt="OT-Layout right">
              onclick="hide('model3')">X</button>
+
                <figcaption style="max-width: 1400px">
           </div>
+
                    Fig.3 - Final setup for the automated plasmid purification workflows in the OT-2. The left picture shows the
          <div class="popup-content"
+
                    setup for the single channel workflow, the right picture for the 8-channel workflow.
            style="text-align: justify;">
+
                </figcaption>
            <section class="section">
+
            </figure>
              <!--Content of popup-->
+
          
            </section>
+
            <video src="https://static.igem.org/mediawiki/2019/c/c4/T--Marburg--PlasmidPurificationMarburg.mp4" controls
          </div>
+
                poster="vorschaubild.jpg"></video>
         </div>
+
       
       </div>
+
            <br>
     </section>
+
         </p>
 +
       </section>
 +
       <section class="section">
 +
         <article>
 +
           <h1 class="title"></h1>
 +
           <p style="text-align: justify; margin-bottom: 1em;">
 +
         
 +
          </p></div>
 +
         </article>
 +
       </section>
 +
      <hr>
 +
     
 +
     </div>
 
   </div>
 
   </div>
 +
  </body>
 +
 
</html>
 
</html>
{{Marburg/footer}}
 

Revision as of 22:55, 21 October 2019

M I N I P R E P


A.P.P Automated Purfication Protocolment

This year’s iGEM Team worked extensively on automating a plasmid purification on Opentrons’ OT-2. Plasmid purification is an indispensable part of completing the cloning workflow in the OT-2.

Connections between Opentrons, Promega and QInstruments
Fig.1 - iGEM team Marburg 2019 is establishing connections between Opentrons, Promega and QInstruments.

Since the time of an iGEM project is limited to only one year, consequently only a limited amount of work can be done in that time, which is even reduced by failing experiments and making mistakes in the lab. To overcome this problem and increase the reproducibility and simultaneously raise the amount of experiments in the lab, we automated plasmid purification on the OT-2. Using this protocol and making it open-source, we achieved to parallelize work in the lab or make more time for public engagement, human practice, IHP or everything else not directly lab-related, benefiting the whole iGEM community. This benefits will also be translated beyond iGEM community such as in the amateur biohackers, enthusiasts, and students community and even to research groups doing cutting-edge research.
This idea started when we found out that there is also a great need in the industry for an automated cloning workflow. Promega provided us with great advice (Link to IHP) and sponsored the Wizard® MagneSil® Plasmid Purification System, QInstruments sponsored the BioShake D30-T elm and Opentrons sponsored their Magnetic Module. Through our work aligned with the philosophy of iGEM for nurturing collaborations, we enabled connections between these companies to achieve the true potential of their products. This kind of bridge would not have been possible otherwise.

Nevertheless, a massive amount of barriers had to be broken down. The shaker was a bit bigger than the space normally occupied by modules in the OT-2 and needed stabilizing support, so it was obvious to design a custom-made shaker adapter and print it with our own in-house 3D printer, which would keep the costs for the automation of this workflow extremely low. Moreover, the 3D design will be publicly available in our GitHub repository (LINK), which will make our solution accessible to everyone with access to a 3D printer.

Additionally, we stumbled across serious problems with the calibration of our OT-2 and accessing the shaker with the pipette. The BioShake D30-T elm is currently not a usual labware defined by Opentrons’, so we had to be creative and come up with our own labware definition. Opentron is recently rolling out a major update from their OT-2 3.9 to 4.0 firmware that includes a lot of paradigm changes, making it impossible for us to define it as a decent custom labware. That is why we came up with the idea to use Opentrons’ internal coordinate system and defining the required 96 Deep Well Plate on the shaker as coordinates. This facilitated accessing the shaker with the pipette, being as precise as Opentrons’ own labware definitions, but a whole series of problems followed, as we tried to use Opentrons’ pipette functions to transfer the chemicals. We managed these problems as well, by defining our own Python functions, telling the pipette how to transfer liquids from and to the defined shaker. In the end when running the script, one would not be able to tell the difference between the labware and functions defined by us from the ones defined by Opentrons’.

OT-2 left OT-2 right
Fig.2 - Single-Channel pipette, magnetic module and shaker in action while performing the plasmid purification.

Putting the pieces together, we were able to translate the manual plasmid purification protocol provided by Nans Bodet into an Opentrons protocol, being the very first of its kind. We pioneered a workflow for up to six samples with the p300 Single-Channel Electronic Pipette and a scaled-up version for up to 48 samples with the p300 8-Channel Electronic Pipette without having to intervene even once. This scalability provides important flexibility for various kinds of experiments.

In our process of developing and running the protocol we determined some problems on increasing the yield of our plasmids. There was a large number of parameters that could be varied, changing the final concentration of the plasmids. For example, we realized that the duration of lysis is paramount for the yield and success of plasmid purification. Over-lysis will lead to a decrease in plasmid yield, whereas under-lysis will induce clumping of magnetic beads; thus failing the experiment. After a whole heap of plasmid purifications we managed to identify the most relevant parameters and improve the protocol in the best way possible.

OT-Layout left OT-Layout right
Fig.3 - Final setup for the automated plasmid purification workflows in the OT-2. The left picture shows the setup for the single channel workflow, the right picture for the 8-channel workflow.