Difference between revisions of "Team:Rice/Model"

Line 141: Line 141:
 
<img class="img-responsive" style="width:100%" src="https://static.igem.org/mediawiki/2019/4/49/T--Rice--thermometerdesignn.svg"/>
 
<img class="img-responsive" style="width:100%" src="https://static.igem.org/mediawiki/2019/4/49/T--Rice--thermometerdesignn.svg"/>
 
</div> <div class="row" style = "background-color:#9bc4cf!important; padding-top:5vh;">
 
</div> <div class="row" style = "background-color:#9bc4cf!important; padding-top:5vh;">
 
            <h2>Percentage base pair optimization algorithm</h2>
 
            <ol>
 
                <li>
 
                    <p>
 
                        For each base of the complement of the context containing the RBS, create three other
 
                        permutations which have that base mutated. All of these permutations combined form the initial
 
                        population. The baseline is defined as the full sequence containing the context before the
 
                        variable region, the variable region which is the complement of the RBS-containing context, and
 
                        the RBS-containing context.
 
                    </p>
 
                </li>
 
                <li>
 
                    <p>
 
                        Calculate the base pairing probabilities at the two given temperatures for each test sequence
 
                        using the NuPack command <code>pairs -T TEMP -pseudo -material rna sequencename.</code>
 
                    </p>
 
                </li>
 
                <li>
 
                    <p>
 
                        The output of the command consists in part of a list of every base and the base(s) which it has
 
                        a > 0.001 probability of base pairing with by position number. Find the base pairings where one
 
                        of the bases is in the RBS-containing region and add up the probabilities corresponding to that
 
                        base pairing. The nature of this NuPack command should prevent duplicates. Then, subtract the
 
                        probability that these bases are unpaired.
 
                    </p>
 
                </li>
 
                <li>
 
                    <p>
 
                        Subtract the number of base pairings at 30°C from the number of base pairings at 25°C. We want
 
                        to maximize the number of RBS-base pairings that disappear as the temperature increases from
 
                        25°C to 30°C (for reference, the command I use for the minimum free energy calculation is
 
                        <code>mfe -T TEMP -pseudo -material rna sequencename</code>)
 
                    </p>
 
                </li>
 
                <li>
 
                    <p>
 
                        Using the library DEAP, select 50 individuals through the tournament selection method.
 
                    </p>
 
                </li>
 
            </ol>
 
 
         </div>
 
         </div>
  

Revision as of 22:48, 16 October 2019

Existing RNA thermometers operate around 37°C and do not exhibit significant conformational changes between 25°C and 30°C. As most plants will die at 37°C, it was necessary to design thermometers that experienced conformational change between 25°C. We chose to design thermometers by finding optimal candidates using a genetic algorithm, as the complexity of RNA folding made it difficult to rationally design thermometers.

<

RNA thermometer design


In essence, RNA thermometers are a form of temperature dependent translational regualtion. At low temperatures, there is a higher probability of more base pairs forming what is known as a "stem-loop structure". At higher temperatures, the thermometers "melt", meaning there is a decreased likilook of base pairs forming.

The stem-loop structure of the thermometer was created by taking the complement of the ribosome binding site(RBS) and surrounding the nucleotides and introducing mutations into the sequence. The resulting altered sequence is known as the variable region. Mutating this region serves a two prong purpose. First off, it ensures that the RBS will be locked into the structure of the thermometer, rendering it inaccessible to the ribosome at low temperatures. Secondly, it allows us to optimize for the targeted melting temperature.