Difference between revisions of "Team:Marburg/Description"

 
(93 intermediate revisions by 7 users not shown)
Line 2: Line 2:
 
<html>
 
<html>
 
   <div>
 
   <div>
     <section class="section">
+
     <div class="box-dark">
       <div class="container">
+
       <h1 class="heading">
         <figure class="image">
+
         D E S C R I P T I O N
          <img src="https://static.igem.org/mediawiki/2019/b/b9/T--Marburg--m_logo-text.jpg" alt="Syntex Logo" style="width: auto; height: 7.5rem;">
+
      </h1>
        </figure>
+
      <hr class="line">
      </div>
+
      <img src="https://static.igem.org/mediawiki/2019/a/ac/T--Marburg--logo.svg"
     </section>
+
        class="logo"
    <section class="section" style="padding-top: 0;">
+
        alt="Syntex Logo">
       <div class="container">
+
    </div>
         <h1 class="title">
+
     <div style="margin-top: 10vh;">
          Our Project
+
       <section class="section">
        </h1>
+
         <h1 class="title"> </h1>
         <div class="columns is-desktop">
+
         <p style="text-align: justify;">
          <div class="column">
+
          We proudly present our project SYNTEX. We are establishing the new chassis <i>Synechocococcus elongatus </i>
            <p style="margin-bottom: 1rem;">
+
          UTEX 2973 for phototrophic Synthetic Biology.
              With rising atmospheric CO<sub>2</sub> concentrations and declining oil reserves,
+
        </p>
              we saw that the worldwide effort to change from a petroleum based industry to a carbon neutral industry needs to increase drastically.
+
      </section>
              One
+
      <hr>
              of the most promising key technologies right now is the use of phototrophic organisms for biotechnological applications. Hence, we
+
      <section class="section grid">
              decided
+
        <div class="sub"
              quite early this year to devote ourselves to a photosynthetic project. During the design phase, which we initially thought about a
+
          onclick="popup('synechococcus_elongatus')">
              project
+
          <div class="sub-header">
              around the model moss <i>Physcomitrella patens</i>, we soon stumbled upon many common obstacles characteristic to phototrophic chassis
+
             <h1>
              due
+
               S Y N E C H O C O C C U S<br>
              to our choice of organism. Issues like time intensive culturing and complicated techniques to perform basic molecular biological methods
+
               E L O N G A T U S
              eventually showed us, why only very few iGEM teams every year decide to use a phototrophic chassis. We saw a need to tackle these issues
+
            </h1>
              and were determined to find a solution.
+
             <hr>
              Consequently, our choice fell on the cyanobacterial strain <i>Synechococcus elongatus</i> UTEX 2973, due to its highly potential
+
              doubling
+
              time of about 2 hours <sup>1</sup>. This could have a huge impact, as the time consumed by many workflows is mainly dictated by the
+
              growth
+
              of your chassis. Our strain could compete with common heterotrophic chassis like yeast, which would be a novelty in photosynthetic
+
              research. We are dedicated to develop this strain as a chassis for the scientific community and future iGEM teams. To restore its
+
              natural
+
              competence, which it has lost after isolation, we will integrate a CRISPR/Cpf1 system into our toolbox, enabling easy genomic
+
              manipulation
+
              and thus giving us the tools to construct various strains and revert the point mutation responsible for the loss of natural competence.
+
              Additionally, we remove the wild type plasmid pANS from <i>Synechococcus</i> to use it’s origin of replication in our “Marburg
+
              Collection
+
              2.0”: a versatile Golden Gate based modular cloning library for fast state of the art assembly of genetic constructs based on a “one
+
              step
+
              - one pot” reaction. By designing “operon connectors”, our toolbox is the first to assemble complete operons in the span of two days.
+
              This
+
              assembly technique can be performed in our open source liquid handler OT-2 from Opentrons, paving the way for our vision of fully
+
              automated cloning in molecular and synthetic biology - from ordered primers to the finished construct. To add to this vision, we are the
+
              first to establish several laboratory practices in this robot such as colony picking, plating and plasmid purification. By making full
+
              cloning processes possible in the Opentron environment, we give iGEM teams access to an affordable way to accelerate their undertaking,
+
              allowing them to allocate more time to the design of their project. In our metabolic engineering project we prove the value of the tools
+
              we hereby provide: Using our cloning system, we modify our established chassis to produce limonene and farnesene, two valuable
+
              biochemicals that can be used as a biofuel. The chassis’ capabilities are not limited to terpene production but can be expanded to other
+
              areas of biotechnological applications as well as to academic experimental setups. Customized strains offer the opportunity of
+
              sustainable
+
              growth in drug development and manufacturing, helping us all to achieve our vision of a more sustainable future on this planet.
+
            </p>
+
             <p>
+
               <sup>1</sup> Yu, J.; Liberton M.; Cliften, P. F.; Head, R. D.; Jacobs, J. M.; Smith, R. D.; Koppenaal, D. W.; Brand J. J.; Pakrasi, H.
+
              B.:
+
              <i>Synechococcus elongatus</i> UTEX 2973, a
+
               fast growing cyanobacterial chassis for
+
              biosynthesis using light and CO<sub>2</sub>. Scientific Reports. 5:8132. DOI: 10.1038/srep08132 (2015)
+
             </p>
+
 
           </div>
 
           </div>
           <div class="column">
+
           <div class="sub-content">
             <figure class="image">
+
             <div> An extensive review on the history of our chassis, recent findings and its potential future.
              <img src="https://static.igem.org/mediawiki/2019/d/d4/T--Marburg--m_team.jpg" alt="Team">
+
             </div>
             </figure>
+
 
           </div>
 
           </div>
 
         </div>
 
         </div>
      </div>
+
        <div id="synechococcus_elongatus"
 +
          class="popup">
 +
          <div class="popup-container">
 +
            <div class="popup-header">
 +
              <h1 class="title">Synechococcus elongatus</h1>
 +
              <button type="button"
 +
                onclick="hide('synechococcus_elongatus')">X</button>
 +
            </div>
 +
            <div class="popup-content"
 +
              style="text-align: justify;">
 +
              <section class="section">
 +
                <p>
 +
                  <u>Introduction</u>
 +
                  <br>
 +
                  Cyanobacteria have been popular in research for centuries but recently they gained a spotlight in
 +
                  Synthetic Biology. The forefather of photosynthesis is interesting because of its simplicity, making
 +
                  it easier to engineer the system but also because of its growth speed that surpasses that of plants.
 +
                  In recent years phototrophs became the notorious revolutionizers of “Green Biotechnology”: as
 +
                  photoautotrophic organisms only require CO<sub>2</sub> and sunlight as carbon and energy source
 +
                  to
 +
                  generate biomass.<br>
 +
 
 +
 
 +
                  <br> The following introduction serves as an overview over our new chassis
 +
                  <i>Synechococcus elongatus</i> UTEX 2973, based on the latest research results.<br>
 +
                  <br>
 +
 
 +
                  <u>The organism</u>
 +
                  <br>
 +
                  The gram-negative photoautotrophic cyanobacterial strain <i>Synechococcus elongatus</i> UTEX 2973 is
 +
                  an
 +
                  isolate from the 1955 described strain <i>Anacystis nidulans</i>. This strain was kept at the
 +
                  University of
 +
                  Texas as <i>Synechococcus leopoliensis</i> UTEX 625. A colony was selected from a mixed culture of
 +
                  this
 +
                  strain, resulting in <i>Synechococcus elongatus</i> UTEX 2973. The resulting organism is genetically
 +
                  very
 +
                  closely related to the well studied strain <i>Synechococcus elongatus</i> PCC 7942. With the fastest measured
 +
                  doubling time of below 90 minutes and a high tolerance to temperature and light intensity, UTEX 2973
 +
                  is a chassis to keep an eye on.
 +
                  Cyanobacteria have big advantages compared to other phototrophic organisms such as plants or
 +
                  eukaryotic algae: Next to their faster growth they also convert solar energy a lot more efficiently.
 +
                  The faster generation of biomass makes cyanobacteria a potential candidate for biotechnological
 +
                  application and their amenability to genetic modifications <a
 +
                    href="https://www.ncbi.nlm.nih.gov/pubmed/30409802" target="_blank">
 +
                    (Ungerer, Wendt, Hendry, Maranas & Pakrasi, 2018) </a> make them a great platform for research.
 +
                  Despite these advantages, cyanobacteria have
 +
                  still not arrived in Synthetic Biology quite as expected. With our highly optimized chassis
 +
                  <i> Synechococcus elongatus</i> UTEX 2973 we want to change just that.
 +
                  <br>
 +
<br>
 +
                  <div class="wrap-collabsible">
 +
                    <input id="UTEX text"
 +
                      class="toggle"
 +
                      type="checkbox">
 +
                    <label for="UTEX text"
 +
                      class="lbl-toggle">Comparison to the well-studied organism <i>Synechococcus
 +
                        elongatus </i> PCC 7942</label>
 +
                    <div class="collapsible-content">
 +
                      <div class="content-inner">
 +
                        <p>
 +
                          Genome sequencing has proven that our strain is 99.8% identical to the much better
 +
                          studied strain <i>Synechococcus elongatus</i> PCC 7942, which is surprising since both
 +
                          strains were isolated from completely different locations. While UTEX 2973 tolerates
 +
                          high light intensities, PCC 7942 is photoinhibited by light intensities of less than
 +
                          half of those which UTEX 2973 can withstand. In electron microscopic examinations
 +
                          carboxysomes and polyphosphate bodies were found in both strains. Most conspicuous
 +
                          are the spherical, 30 nm sized electron-dense bodies in PCC 7942, which are not
 +
                          present in UTEX 2973. It is assumed that the bodies are carbon, which is stored in the form of
 +
                          glycogen. UTEX 2973 does not generate glycogen storage and uses the carbon directly
 +
                          for biomass production, resulting in faster growth.<br>
 +
                          Research has also proven that several changes in the photosynthetic apparatus cause
 +
                          decreased phycobilisomes but enhancement of the Photosystem I, cytochrome f and
 +
                          plastocyanin contents <a href="https://www.pnas.org/content/115/50/E11761.short?rss=1" target="_blank">
 +
                            (Ungerer <i>et al.</i>, 2018) </a> .<br>
 +
                          The most notable advantage is UTEX 2973' unprecedented doubling time. PCC 7942 takes more
 +
                          than twice as long, while only producing a third of its biomass. In an experiment
 +
                          under the same initial conditions, the dry weight of UTEX 2973 also increased to
 +
                          0.87 mg/ml, compared to only 0.33 mg/ml in PCC 7942 <a
 +
                            href="https://www.nature.com/articles/srep08132" target="_blank"> (Yu <i>et al.</i>, 2015) </a>. Unlike UTEX
 +
                          2973, PCC 7942 is naturally competent due to its porin-like proteins. These proteins
 +
                          are encoded on the inverted region in the genome so that the inversion in UTEX 2973 can
 +
                          be reversed.<br>
 +
                          <br>
 +
                          <u> But what allows UTEX 2973 to have such vital advantages? </u><br>
 +
                          When comparing both strains, one can observe that their content of amino acids
 +
                          varies greatly: the amount of amino acids in UTEX 2973 lies at 53% whereas in PCC
 +
                          7942 it is 40.9% <a href="https://www.nature.com/articles/srep41569" target="_blank"> (Mueller, Ungerer,
 +
                            Pakrasi & Maranas, 2017) </a>. This results in a
 +
                          different composition of the biomass, which is due to the discovered single
 +
                          nucleotide polymorphisms (SNP’s). Amongst other things, they cause an increased
 +
                          translation rate through a more efficient RNA polymerase.
 +
                        </p>
 +
                      </div>
 +
                    </div>
 +
                  </div>
 +
                  <p>
 +
                    <br>
 +
                    <u>Molecular aspect</u>
 +
                    <br>
 +
                    UTEX 2973 differs from PCC 7942 in 55 single nucleotide polymorphisms and insertion-deletions,
 +
                    as well as a 188.6 kb inversion and a six open reading frame deletion <a
 +
                      href="https://www.nature.com/articles/srep41569"> (Mueller, Ungerer, Pakrasi & Maranas, 2017)
 +
                    </a>. Thereby these mutations must contain the genetic determinant for UTEX’ rapid growth rate.<br>
 +
                    Three genes have been discovered as potentially being involved in better growth. AtpA encodes
 +
                    for the alpha subunit of an ATP-synthase with an apparent higher specific activity. The
 +
                    difference results in a substitution of one amino acid (Cys in PCC 7942 to Tyr in UTEX 2973).
 +
                    Another significant difference lies in the ppnK encoded NAD+-kinase. Glutamin acid in PCC 7942
 +
                    substitutes into aspartic acid in UTEX 2973, which affects improved enzyme kinetics. Another
 +
                    important gene is rpaA, which improves the circadian response regulator. These adjustments
 +
                    relieve a photosynthetic bottleneck, increasing the capacity for photosynthetic electron flow.
 +
                    This ensures the usage of higher light intensities while producing more ATP and NADPH to fix
 +
                    CO<sub>2</sub>. All this ultimately leads to better growth of UTEX 2973. In this experiment, the
 +
                    SNP’s in
 +
                    UTEX 2973 were inserted into PCC 7942, thereby significantly improving its growth rate.<br>
 +
                    Thus, these minimal genetic changes cause a huge impact in growth rate and CO<sub>2</sub>
 +
                    absorption, which
 +
                    proves UTEX 2973 to be second to nothing, photorespiration and the synthesis of glyoxylate, a
 +
                    precursor of several amino acids. Some SNPs alter kinetic parameters of metabolic enzymes and
 +
                    increase the production of biomass components. Most striking is the difference in the rate of
 +
                    carbon uptake and its allocation in biomass. UTEX 2973 absorbs CO<sub>2</sub> 2.06 times more
 +
                    efficiently
 +
                    than PCC 7942.<br>
 +
                    <br>
 +
 
 +
                    <u>Field of application</u>
 +
                    <br>
 +
                    <i>Synechococcus elongatus </i> UTEX 2973 has the potential to change paradigms in Synthetic
 +
                    Biology:<br>
 +
                    With its incredibly low doubling time for phototroph standards, UTEX 2973 is eligible for rapid
 +
                    prototyping.<br>
 +
                    We need good innovations to accelerate feasible photosynthetic research. Phototrophic organisms
 +
                    such as plants are simply too slow inhibiting innovative progress. With our organism UTEX 2973
 +
                    it is possible to test different parts and plasmids quickly, inexpensively and easily.<br>
 +
                    Cloning is a time-consuming process, especially when you have hundreds of parts in a collection.
 +
                    You can quickly test all the parts in UTEX 2973 and then test the working assemblies in your
 +
                    actual organism, so UTEX acts as a technical prototype to accelerate the design build test
 +
                    cycle.<br>
 +
                    <figure style="text-align:center">
 +
                      <img style="height: 400px"
 +
                        src="https://static.igem.org/mediawiki/2019/a/a2/T--marburg--DesignBuildTestLearn.jpg
 +
                                  "
 +
                        alt="design build test cycle">
 +
                      <figcaption style="max-width: 2400px; text-align: center">
 +
                        Fig.1: Design-Build-Test cycle
 +
                      </figcaption>
 +
                    </figure>
 +
                    <br>
 +
                    <p>
 +
                      If an assembly didn't work, it's easy to locate the error, optimize the construct design and get
 +
                      the desired result quickly.<br>
 +
                      As a photoautotrophic prokaryote, UTEX 2973 is a simple organism that is easy to work with.
 +
                      Plants as eukaryotes are much more complicated, so the work and research become more
 +
                      complex.<br>
 +
                      So if you want to advance photosynthetic research, you can, for example, analyze and modify
 +
                      pathways on this prokaryot without much effort. UTEX 2973 is perfect to design engineering and
 +
                      principles in an easy chassis and afterwards apply it all to a higher organism.<br>
 +
                      UTEX 2973 can also be used to significantly enhance the process of characterization and
 +
                      standardization of cyanobacteria and their biological “parts-list”.<br>
 +
                      We have already advanced this aspect and established a reproducible “parts-list” so it is
 +
                      already possible to easily work with it.<br>
 +
                      <br>
 +
                    </p>
 +
                    <p>
 +
                      In "Green biotechnology” our chassis can be used to sustainably produce carbon neutral platform
 +
                      chemicals without fossil fuels. These platform chemicals can be used to produce biofuels and
 +
                      bioplastics or carbohydrate feedstocks <a
 +
                        href="https://www.ncbi.nlm.nih.gov/pubmed/27079574">(Song, Tan, Liang, & Lu, 2016) </a>.
 +
                      Innovations like these
 +
                      are needed to propel the development of a sustainable, fossil fuel independent industry of
 +
                      tomorrow.
 +
                      Many secondary metabolites have pharmaceutical benefits, such as amino acids, fatty acids,
 +
                      macrolides, lipopeptides and amides <a href="https://www.nature.com/articles/srep08132"> (Yu et
 +
                        al., 2015)</a>. The cyanobacteria strain <i>Synechocystis
 +
                        sp. </i> PCC 6803 already serves as a brilliant example for the application of cyanobacteria: it
 +
                      has
 +
                      been genetically modified to secrete fatty acids and thus to avoid costly biomass recovery in
 +
                      the production of photosynthetically produced, sustainable biofuels
 +
                      <a href="https://www.ncbi.nlm.nih.gov/pubmed/21482809"> (Liu, Sheng, & Curtiss, 2011) </a>.
 +
                      <br> <br>
 +
                      Establishing UTEX 2973 with its versatile capabilities could pave the way to making industrial
 +
                      biotechnology more sustainable and thus be a solution to combating climate change, one of the
 +
                      most horrific challenges humanity has ever faced. UTEX 2973 embodies progress and innovation on
 +
                      the highest level.<br>
 +
                      <br>
 +
 
 +
                      <u>Genetic amenability</u>
 +
                      <br>
 +
                      In recent years, the CRISPR system has enabled precise gene editing. Gene editing is well
 +
                      feasible in UTEX 2973 with the CRISPR technology and an alternative nuclease Cas12a from the
 +
                      organism <i>Francisella novicida</i> as Cas9 is toxic to cyanobacteria <a
 +
                        hre="https://www.nature.com/articles/srep39681"> (Ungerer & Pakrasi, 2016)</a>.<br>
 +
                      Despite the loss of its natural competence, UTEX 2973 is a suitable candidate for genetic
 +
                      engineering.
 +
                      DNA can be easily introduced into UTEX 2973 trough triparental conjugation via <i>E. coli </i> and
 +
                      the
 +
                      self-replicating vector pANS. Shuttle vectors are of great interest as they lead to higher gene
 +
                      expression compared to genome integration. In addition, they retain large DNA inserts in the
 +
                      organism even without selection pressure and are easy to transform <a
 +
                        hre="https://www.ncbi.nlm.nih.gov/pubmed/27902432"> (Chen et al., 2016)</a>.
 +
                      We developed facile-transforming shuttle-vectors and thus, we were able to extend the genetic
 +
                      toolbox and simplify genetic engineering.<br>
 +
                    </p>
 +
                  </p>
 +
 
 +
                </p>
 +
                <br>
 +
                <br>
 +
              </section>
 +
            </div>
 +
          </div>
 +
        </div>
 +
        <div class="sub"
 +
          onclick="popup('strain_engineering')">
 +
          <div class="sub-header">
 +
            <h1>
 +
              S T R A I N<br>E N G I N E E R I N G
 +
            </h1>
 +
            <hr>
 +
          </div>
 +
          <div class="sub-content">
 +
            <div>
 +
              Here we show the results of our Strain Engineering project to tame our "wolf".
 +
            </div>
 +
          </div>
 +
        </div>
 +
        <div id="strain_engineering"
 +
          class="popup">
 +
          <div class="popup-container">
 +
            <div class="popup-header">
 +
              <h1 class="title">Strain engineering</h1>
 +
              <button type="button"
 +
                onclick="hide('strain_engineering')">X</button>
 +
            </div>
 +
            <div class="popup-content"
 +
              style="text-align: justify;">
 +
              <p>
 +
                <u>Natural Competence</u></p>
 +
              <p>One of the most important aspects when engineering an organism is the actual modification of its
 +
                genetic code.
 +
                The introduction of exogenous DNA can be done in multiple ways - through electroporation, conjugation,
 +
                heat shock or
 +
                via natural competence.<br>
 +
                Electroporation is a method in which an electrical field is applied to cells, in order to increase the
 +
                permeability of
 +
                the membrane, enabling DNA uptake not just in prokaryotic
 +
                <a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC210424/">(Thiel and Poo, 1989)</a>,
 +
                but also eukaryotic cells
 +
                <a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2975437/">(Potter and Heller, 2010)</a>.
 +
                Although relatively simple to perform, this technique is not ideal, as the success rate is rather low
 +
                and many precautions
 +
                have to be taken: salt concentration and field strength highly effect the outcome and secreted
 +
                endonucleases can degrade the
 +
                DNA beforehand <a href="https://www.sciencedirect.com/science/article/pii/S0717345818300083">(Zeaiter et
 +
                  al., 2018)</a>.<br>
 +
                Conjugation is a more complicated and laborious method where cell to cell contact is needed. Pili are
 +
                formed to transfer DNA
 +
                from one cell to another - but not all DNA can be transferred, as the plasmid that is to be conjugated
 +
                needs to harbour a
 +
                mobilization sequence <a
 +
                  href="https://www.sciencedirect.com/science/article/pii/B9780323074476000119?via%3Dihub">(Actor,
 +
                  2012)</a>.
 +
                This method is more popular in cyanobacterial research, as it overcomes the above mentioned problems
 +
                that come with
 +
                electroporation <a href="https://www.sciencedirect.com/science/article/pii/S0717345818300083">(Zeaiter
 +
                  et al., 2018)</a>.</p><br>
 +
 
 +
              <p>And what is natural competence?</p><br>
 +
 
 +
              <p>Natural competence was first discovered by Frederick Griffith in 1928
 +
                <a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2167760/">(Griffith et al., 1928)</a>
 +
                by studying different <i>Streptococcus pneumoniae</i> strains - a virulent and a non-virulent one.
 +
                Although he did not know
 +
                the biological processes behind it, he realized that genetic information can be passed on from one
 +
                bacterium to another,
 +
                as previously non-virulent strains could be transformed to virulent ones. In comparison to other types
 +
                of competence that
 +
                can e.g. be chemically induced, natural competence is the ability of cells to take up extracellular DNA
 +
                from their
 +
                environment under natural conditions.</p><br>
 +
 
 +
              <p>Natural competence is found in different kinds of bacteria - also in cyanobacteria. Despite the fact
 +
                that there is
 +
                still much to uncover about the exact mechanisms of natural DNA uptake in cyanobacteria, previous
 +
                efforts by
 +
                <a href="https://www.frontiersin.org/articles/10.3389/fmicb.2019.01259/full#B26">Schuergers and Wilde,
 +
                  2015</a>,
 +
                <a href="https://academic.oup.com/pcp/article/42/1/63/1851484">Yoshihara et al., 2001</a>,
 +
                <a href="https://onlinelibrary.wiley.com/doi/full/10.1046/j.1365-2958.2000.02068.x">Bhaya et al., 2002
 +
                </a>
 +
                and many more have led to the construction of a preliminary model of the type IV-like pilus responsible
 +
                for natural
 +
                transformation in <i>Synechocystis sp.</i> PCC 6803
 +
                <a href="https://www.frontiersin.org/articles/10.3389/fmicb.2019.01259/full">(Wendt and Pakrasi,
 +
                  2019)</a>,
 +
                which can be seen in <i>Figure 1</i>.<br>
 +
 
 +
                <figure style="text-align:center">
 +
                  <img style="height: 393px; width: 450px;"
 +
                    src="https://static.igem.org/mediawiki/2019/4/4c/T--Marburg--T4-Pilus.svg"
 +
                    alt="Preliminary model of the cyanobacterial transformation pilus (Type4 Pilli).">
 +
                  <figcaption style="max-width: 2400px; text-align: center">
 +
                    Fig.1 - Preliminary model of the cyanobacterial transformation pilus (Type4 Pilli). Figure after <a
 +
                      href="https://www.frontiersin.org/articles/10.3389/fmicb.2019.01259/full">Wendt and Pakrasi,
 +
                      2019</a>.
 +
                  </figcaption>
 +
                </figure>
 +
 
 +
                <br>
 +
<p>
 +
                In order to take up extracellular DNA several steps seem to be necessary: The double stranded DNA has to
 +
                be picked up
 +
                by the type IV-like pilus and transported through an outer membrane pore comprised of PilQ subunits
 +
                <a href="https://onlinelibrary.wiley.com/doi/full/10.1046/j.1365-2958.2000.02068.x">(Bhaya et al.,
 +
                  2002)</a>
 +
                and is then converted to single stranded DNA by a certain nuclease before being passed through an
 +
                inner membrane pore composed of ComE subunits
 +
                <a href="https://academic.oup.com/pcp/article/42/1/63/1851484">(Yoshihara et al., 2001)</a>.
 +
              </p><br>
 +
 
 +
              <p>Early studies have tried to identify cyanobacterial strains capable of natural transformation, from
 +
                which just a few
 +
                species have been frequently chosen to serve as model organisms, including <i>Synechococcus sp.</i> PCC
 +
                7002,
 +
                <i>Synechococcus sp.</i> PCC 6803, <i>Synechococcus elongatus</i> PCC 7942
 +
                <a href="https://www.frontiersin.org/articles/10.3389/fmicb.2019.01259/full#B13">(Koksharova and Wolk,
 +
                  2002)</a>.<br>
 +
                Cyanobacterial species are known to be naturally competent, yet have been shown they have at least one
 +
                complete set of the
 +
                genes identified in the above mentioned model
 +
                <a href="https://www.frontiersin.org/articles/10.3389/fmicb.2019.01259/full">(Wendt and Pakrasi,
 +
                  2019)</a>
 +
                - one of them being <i>Synechococcus elongatus</i> PCC 7942.
 +
                This strain is closely related to <i>Synechococcus elongatus</i> UTEX 2973, in fact genome comparisons
 +
                show just 55
 +
                single nucleotide polymorphisms and indels
 +
                <a href="https://www.nature.com/articles/srep08132">(Yu et al., 2015)</a>.
 +
                Previous studies have suggested that a single point mutation in the pilN gene is responsible for the
 +
                loss of
 +
                natural competence in <i>S. elongatus</i> UTEX 2973
 +
                <a href="https://www.sciencedirect.com/science/article/pii/S1096717618301757?via%3Dihub">(Li et al.,
 +
                  2018)</a>,
 +
                so in an effort to reintroduce natural competence into this strain, intact versions of the pilN gene
 +
                from
 +
                <i>S.elongatus</i> PCC 7942 have been successfully introduced into one of the neutral sites in the
 +
                genome
 +
                of UTEX 2973 via homologous recombination
 +
                <a href="https://www.sciencedirect.com/science/article/pii/S1096717618301757?via%3Dihub">(Li et al.,
 +
                  2018)</a>,
 +
                showing that natural competence can be achieved in this strain. </p><br>
 +
 
 +
              <p>As natural competence is the easiest and often most efficient way to incorporate exogenous DNA into an
 +
                organism,
 +
                this is a crucial feature that comes in handy for every chassis.<br>
 +
                For this reason we planned to restore the natural competence of <i>S.elongatus</i> UTEX 2973 - what
 +
                approaches we took
 +
                and how we planned all of it through can be found in our <a
 +
                  href="https://2019.igem.org/Team:Marburg/Design">design</a> section. </p><br>
 +
              <p><u>CRISPR gene editing</u></p>
 +
              <p>Clustered regularly interspaced short palindromic repeats / CRISPR associated protein (CRISPR/Cas)
 +
                systems are adaptive
 +
                immune systems in bacteria and archaea that provide sequence-specific targeting of genetic sequences, in
 +
                order to cut
 +
                exogenous DNA <a href="https://science.sciencemag.org/content/315/5819/1709">(Barrangou et al.,
 +
                  2007)</a>.<br>
 +
                Simplified systems have been a rising interest for use in genetic engineering approaches, as they can be
 +
                used as powerful
 +
                tools for precise genome alteration not just in prokaryotic, but also eukaryotic cells. This includes
 +
                integration of whole
 +
                genes, alteration of single nucleotides, knock-outs of whole genetic regions, as well as the use of the
 +
                DNA-binding property
 +
                in a multitude of applications through so called deadCas systems, where the Cas protein does not exhibit
 +
                nuclease activity
 +
                <a href="https://www.cell.com/action/showPdf?pii=S0092-8674%2814%2900604-7">(Hsu et al., 2014)</a>.</p>
 +
              <br>
 +
 
 +
              <p>These adaptive systems incorporate invading DNA sequences, so called protospacers, into their CRISPR
 +
                array, meaning
 +
                that short sequences of DNA can be stored between identical repeat sequences. This whole array is
 +
                transcribed into a
 +
                long precursor CRISPR RNA (pre-crRNA) that is then processed into mature crRNAs that carry spacers which
 +
                serve as guides,
 +
                leading the Cas protein to their recognition sequence, where it can then exhibit nuclease activity
 +
                <a href="https://royalsocietypublishing.org/doi/10.1098/rstb.2015.0496">(Hille and Charpentier,
 +
                  2016)</a>.
 +
                Maturation of crRNAs differs in different CRISPR/Cas systems. CRISPR/Cas9 systems that are widely used
 +
                in genetic
 +
                engineering approaches need an additional transactivating crRNA (tracrRNA) for crRNA maturation, while
 +
                in CRISPR/Cas12a
 +
                (also called CRISPR/Cpf1) only the crRNA is necessary for precise targeting
 +
                <a href="https://www.nature.com/articles/cr201688">(Gao et al., 2016)</a>.<br>
 +
                Another crucial factor of these systems are the protospacer adjacent motifs (PAM). In order for the Cas
 +
                protein to
 +
                effectively bind the targeted DNA sequence, it has to be next to a PAM sequence, proving that the PAM is
 +
                an invaluable
 +
                targeting component that allows the cell to distinguish between self and non-self DNA, as the PAM
 +
                sequences cannot be
 +
                found in the CRISPR array itself, preventing the Cas protein to cut inside of it
 +
                <a href="https://www.nature.com/articles/nmeth.2649">(Mali et al., 2013)</a>.<br></p><br>
 +
 
 +
              <p>As mentioned before, different CRISPR/Cas systems are available for genetic engineering of a large
 +
                number of organisms.
 +
                The most commonly used system is the CRISPR/Cas9 system, but another attractive system is CRISPR/Cas12a,
 +
                also called
 +
                CRISPR/Cas12a. The main differences are that Cas9 introduces blunt ends when cutting DNA, while Cas12a
 +
                produces sticky ends
 +
                and that Cas9 requires a tracrRNA for crRNA maturation, while Cas12a only needs the crRNA as a guide. In
 +
                Cas9 systems the
 +
                crRNA:tracrRNA duplex can be linked to form a single guided RNA (sgRNA), which is usually ~100nt long -
 +
                in comparison
 +
                the Cas12a crRNA is only ~43nt long
 +
                <a href="https://onlinelibrary.wiley.com/doi/full/10.1002/wrna.1481">(Swarts and Jinek, 2018)</a>.</p>
 +
              <br>
 +
 
 +
              <figure style="text-align:center">
 +
                <img style="height: 500px; width: 500px;"
 +
                  src="https://static.igem.org/mediawiki/2019/4/43/T--Marburg--StrainEng_Cas9vsCas12a.svg"
 +
                  alt="GM crops 2018">
 +
                <figcaption style="max-width: 2400px; text-align: center">
 +
                  Fig 2: Comparison of Cas12a and Cas9.
 +
                </figcaption>
 +
              </figure>
 +
              <br>
 +
 
 +
              <p>Both systems are of particular interest for genetic toolboxes, as they enable highly accurate genome
 +
                engineering
 +
                with a wide application range - including multiplexed alterations.</p><br>
 +
 
 +
              <p><u>Cyanobacterial shuttle vectors</u></p>
 +
              <p>Cyanobacteria are known to contain multiple copy numbers of their chromosome, the unicellular
 +
                cyanobacteria
 +
                <i>Synechococcus elongatus</i> reportedly contains 3-5
 +
                <a href="https://onlinelibrary.wiley.com/doi/full/10.1111/j.1574-6968.2011.02368.x?sid=nlm%3Apubmed">(Griese
 +
                  et al., 2011)</a>, 2-10
 +
                <a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4558043/">(Watanabe et al., 2015)</a> or 1-10
 +
                <a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3480399/">(Chen et al., 2012)</a> chromosomes per
 +
                cell,
 +
                more recent studies have counted eight chromosomes per cell
 +
                <a href="https://www.microbiologyresearch.org/content/journal/micro/10.1099/mic.0.000377">(Yu et al.,
 +
                  2016)</a>.<br>
 +
                <i>S. elongatus</i> PCC 7942 furthermore hosts two endogenous plasmids. The 46,4 kb pANL
 +
                <a href="https://www.ncbi.nlm.nih.gov/pubmed/18353436">(Chen et al., 2008)</a> which is essential and
 +
                the 7,8 kb pANS
 +
                <a href="https://www.ncbi.nlm.nih.gov/pubmed/1552863">(Van der Plas et al., 1992)</a>
 +
                which is not essential for the strain and can easily be cured
 +
                <a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC218494/">(Lau & Doolittle, 1979)</a>.</p><br>
 +
 
 +
              <p>In Synthetic Biology multiple approaches can be chosen to introduce exogenous DNA into an organism.
 +
                Typically this
 +
                is done by integrating the DNA into the host genome or by transforming plasmids that contain the genes
 +
                of interest.<br>
 +
                As we learned above, the copy number of the chromosomes can be highly variable, which is a huge downside
 +
                when trying to
 +
                engineer such organisms, as genome integrations have to be introduced into every single copy.<br>
 +
                Shuttle vectors on the other hand can be stably maintained in the cells and are typically found in
 +
                higher copy numbers,
 +
                resulting in higher gene expression rates as genomic integrations
 +
                <a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3480399/">(Chen et al., 2012)</a>.<br>
 +
                Vectors that can be used in cyanobacteria are scarcely available, the few existing ones are mostly based
 +
                on the
 +
                RSF1010 plasmid that shows a broad host range and can be maintained in multiple cyanobacterial species,
 +
                although for
 +
                unknown reasons it is not present in high copy numbers
 +
                <a href="https://link.springer.com/article/10.1007%2FBF01568955">(Mermet-Bouvier et al., 1993)</a>.
 +
                The only shuttle vectors available that contain a native replication element of a cyanobacterial species
 +
                are those that
 +
                have been constructed from the previously mentioned pANS plasmid
 +
                <a href="https://www.sciencedirect.com/science/article/pii/0076687987530543?via%3Dihub">(Kuhlemeier &
 +
                  van Arkel, 1987</a>;
 +
                <a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC217787/">Golden & Sherman, 1983)</a>.
 +
                Recent studies have shown that pANS-based shuttle vectors are present in a higher copy number than
 +
                RSF1010- or pDU1-based
 +
                vectors in cyanobacteria, clearly indicating the advantages of native replication elements. The same
 +
                study has also proven
 +
                that gene expression levels are higher when genes are expressed on the pANS-based vectors, than on pANL
 +
                or the chromosome
 +
                of <i>S. elongatus</i> <a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3480399/">(Chen et al.,
 +
                  2012)</a>.<br>
 +
                In spite of these apparent advantages, many still prefer integrating DNA into the chromosome, which is
 +
                why we
 +
                incorporated parts for homologous recombination into our <a
 +
                  href="https://2019.igem.org/Team:Marburg/Design ">toolbox</a>
 +
                and successfully identified <a href="https://2019.igem.org/Team:Marburg/Parts">new neutral side for
 +
                  integration</a>.
 +
                providing invaluable tools for the community.</p><br>
 +
 
 +
              <p>As we are certain that self replicating vectors are essential for many workflows, especially if rapid
 +
                prototyping
 +
                is to be done in an organism, we set out to construct the world's first MoClo compatible shuttle vector
 +
                for cyanobacteria
 +
                based on the modular Golden Gate Assembly method, allowing for flexible cloning into a reliable
 +
                self-replicating system.
 +
                With our constructs there is no need for tedious selection processes that come with genomic
 +
                integrations.</p>
 +
              </p>
 +
              <br>
 +
              <br>
 +
            </div>
 +
          </div>
 +
        </div>
 +
        <div class="sub"
 +
          onclick="popup('marburg_collection')">
 +
          <div class="sub-header">
 +
            <h1>
 +
              M A R B U R G<br>C O L L E C T I O N &ensp; 2.0
 +
            </h1>
 +
            <hr>
 +
          </div>
 +
          <div class="sub-content">
 +
            <div>
 +
 
 +
              We present to you the Marburg Collection 2.0, an extensive addition to the previosly established part
 +
              collection that focuses around cyanobacteria.
 +
            </div>
 +
          </div>
 +
        </div>
 +
        <div id="marburg_collection"
 +
          class="popup">
 +
          <div class="popup-container">
 +
            <div class="popup-header">
 +
              <h1 class="title">Marburg collection 2.0</h1>
 +
              <button type="button"
 +
                onclick="hide('marburg_collection')">X</button>
 +
            </div>
 +
            <div class="popup-content"
 +
              style="text-align: justify;">
 +
              <p>
 +
                <u>Golden Gate Cloning and Modular Cloning: A historical review</u>
 +
              </p>
 +
              <p>Golden Gate assembly is a novel cloning method. It is at the heart of
 +
                Synthetic Biology as it reflects the philosophy behind this area more
 +
                than anything else. To really understand the mechanics and philosophy
 +
                behind it, one has to look not only at the molecular basics but also at
 +
                its history. This cloning strategy is based on Type IIS restriction
 +
                enzymes. These enzymes have the uncommon property to cut next to their
 +
                recognition sites, allowing the user to generate short DNA overhangs of
 +
                their choice. This allows to seamlessly fuse DNA molecules together <a
 +
                  href="https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0003647">(Engler <i>et
 +
                    al.</i>, 2008)</a>
 +
                . Another advantage is that the restriction sites
 +
                can either remain or be completely cut off after restriction, based on
 +
                the way the user decides to integrate a restriction site. This for
 +
                example makes it possible to digest a fragment and ligate it in the same
 +
                reaction without a chance that the fragment can be cut out again. This
 +
                simultaneous restriction and ligation process is frequently termed
 +
                „Golden Gate reaction” <a
 +
                  href="https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0005553">(Engler <i>et
 +
                    al.</i>, 2009)</a>.</p>
 +
              <figure style="text-align:center">
 +
                <img style="height: 500px; "
 +
                  src="https://static.igem.org/mediawiki/2019/9/99/T--Marburg--Toolbox_EcoRIvsBsaI.svg
 +
                                  "
 +
                  alt="design build test cycle">
 +
                <figcaption style="max-width: 2400px; text-align: center">
 +
                  Fig.1: Type II vs. Type IIS.
 +
                </figcaption>
 +
              </figure>
 +
              <br>
 +
              <p>Pioneers in the field started to use these advancements to introduce a
 +
                syntax into cloning procedures: while researchers were previously bound
 +
                to use a variety of restriction enzymes, they can now break it down to
 +
                two enzymes usually. By standardizing at which state of a cloning
 +
                procedure which specific enzyme in conjunction with a specific entry
 +
                vector is to be used, the process of cloning becomes more streamlined
 +
                and researchers are given more time to focus on the vital questions of
 +
                their endeavor rather than the particularities of cloning. The ability
 +
                to produce overhangs of choice gave rise to the idea to standardize
 +
                these overhangs based on the function of a genetic device. Early on,
 +
                synthetic biologist saw how such a syntax complies with their philosophy
 +
                of understanding genetic components as devices and soon they started
 +
                standardizing overhangs for sequences like promoter, ribosomal binding
 +
                sites and other part “types” <a
 +
                  href="https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0016765 ">(Weber <i>et
 +
                    al.</i>, 2011)</a>. In this way, parts of
 +
                different genes could be fused together effortlessly. It essentially
 +
                allowed the cross compatibility of any genetic device in any organism,
 +
                even across laboratories as international standards started to be become
 +
                popular very soon. Singular devices like promoters were called “Parts”
 +
                in analogy to machine components in engineering, further rooting the
 +
                philosophy of Synthetic Biology in this cloning strategy. This type of
 +
                modular assembly of parts via Golden Gate cloning is nowadays coined as
 +
                “Modular Cloning” <a
 +
                  href="https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0016765 ">(Weber <i>et
 +
                    al.</i>, 2011)</a>.
 +
                Many part collections were published across the years, giving users full
 +
                access to a big amount of parts characterized in their promoter
 +
                strength, isolative capabilities and so on. Applicants were able to
 +
                create vectors from scratch using DNA parts in conjunction with a
 +
                complete data set on the activity of the parts to custom design the
 +
                plasmids they need for their specific application.
 +
                So many great thinkers advanced the progress in Modular Cloning and all
 +
                of their works were vital to carry us to the point at which we stand
 +
                these days. Here we present those that have influenced the design of our
 +
                Part Collection, the Marburg Collection, the most.</p>
 +
              <br>
 +
              <br>
 +
              <p>
 +
                <u>Modular Cloning (MoClo) by <a
 +
                    href="https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0016765 ">Weber <i>et
 +
                      al.</i> (2011)</a></u>
 +
              </p>
 +
              <p>The modular cloning system was the first proposing a standard for Golden
 +
                Gate based assembly. This toolbox offers five types of modules designed
 +
                mainly for eukaryotes. The modules are stored in level 0 acceptor
 +
                plasmids derived from the pUC19 backbone with a spectinomycin resistance
 +
                and a LacZα cassette as dropout for blue/white screening. Custom level 0
 +
                plasmids are assembled by flanking the sequences with BpiI recognition
 +
                sites and setting a single restriction-ligation-reaction with the
 +
                correspondent plasmid. Up to five level 0 modules are assembled in an
 +
                acceptor plasmid with ampicillin resistance and a LacZα-dropout by
 +
                restriction with BsaI to transcription units. Six transcription units can
 +
                be assembled using BpiI into level 2 multigene constructs containing a
 +
                kanamycin resistance and a Cred-dropout. Alternatively Esp3I can be used
 +
                to transfer the constructs to intermediary levels to reach higher levels
 +
                for assembly of bigger constructs. This toolbox is best for constructs
 +
                up to level 2 plasmids. Higher levels can be reached through
 +
                intermediary levels but need two restriction enzymes for the assembly.
 +
                Furthermore, it is important to know in which level the current
 +
                constructs stand to avoid messing up the acceptor plasmids for
 +
                subsequent levels.
 +
 
 +
 
 +
                One of the (in our opinion) best executions of a Modular Cloning system
 +
                is the yeast toolkit, also known as the Dueber toolbox <a
 +
                  href="https://www.ncbi.nlm.nih.gov/pubmed/25871405 ">(Lee <i>et al.</i>
 +
                  2015)</a>. It offers a Golden Gate based system adapted for yeast. The basic
 +
                level 0 parts are classified in eight types with optional subtypes. New
 +
                basic parts are assembled into entry plasmids by restriction with BsmBI.
 +
                For building level 1 cassettes at least eight parts are assembled by a
 +
                restriction-ligation step using BsaI. The innovation of this toolkit
 +
                compared to the previous is the use of connector sequences for level 1
 +
                and higher assembly steps. This way plasmids for yeast can be build de
 +
                novo without the need of a defined backbone. Furthermore, they integrated
 +
                a method for simple chromosomal integration by linearization of the
 +
                plasmids with NotI. On top of this the connectors can be used as
 +
                homology sequences e.g. for ligation-independent cloning, Gibson
 +
                assembly, ligase cycling reaction or yeast in vivo assembly.</p>
 +
              <br>
 +
              <br>
 +
              <p>
 +
                <u>The PhytoBrick standard: The Syntax of Syntex</u>
 +
              </p>
 +
              <p>Another significant milestone is the PhytoBrick <a
 +
                  href="https://www.ncbi.nlm.nih.gov/pubmed/26171760">(Patron <i>et al.</i>, 2015)</a>
 +
                standardization. It offers a wide standard compatible with popular
 +
                systems like MoClo aiming to create a standard focused primary on plant
 +
                engineering efforts. The iGEM competition already accepted it as an
 +
                standard and offers support for building parts designed for plants,
 +
                yeast and bacteria. This system proposes twelve defined fusion sites
 +
                applicable for the different genetic modules. The fusion sites are
 +
                divided into three major classes for promoter parts, transcribed regions
 +
                and terminator parts. These classes are divided into subclasses giving
 +
                the flexibility to use optional modules like tags, promoter, regulators
 +
                and enhancer regions. The system also proposes two types of universal
 +
                acceptor plasmids (UAPs) derived from the pSB1C3 plasmid where level 0
 +
                modules can be inserted by a single restriction-ligation step with BpiI
 +
                or BsmBI respectively. </p>
 +
              <br>
 +
              <br>
 +
              <p>
 +
                <u> Marburg Collection 2.0: The green expansion</u>
 +
              </p>
 +
              <p> We expanded on the Marburg Collection, a toolbox established by iGEM
 +
                Marburg in 2018. Thanks to its broad host range design inspired by the
 +
                “Dueber toolbox” from <a href="https://www.ncbi.nlm.nih.gov/pubmed/25871405 ">Lee <i>et al.</i>
 +
                  2015</a> we were able to apply it to our
 +
                new chassis <i>Synechococcus elongatus</i> UTEX2973. The design is extremely
 +
                simple: LVL 0 parts are the basic foundation, they contain one promoter,
 +
                ribosomal binding site or terminator etc. Up to eight LVL 0 parts are used
 +
                to create a LVL1 plasmid with a single transcription unit. The Marburg
 +
                Collection 2.0 presents a set of new parts adding several new functions,
 +
                expanding the range of hosts to use our parts on over the genera of
 +
                cyanobacteria as well as supporting new design options such as
 +
                Placeholder assemblies and vectors for genomic integrations.</p>
 +
              <br>
 +
              <br>
 +
              <p>
 +
                <u>Enabling high throughput assembly with flexible placeholder parts</u>
 +
              </p>
 +
              <p>Some applications require the construction of an array of higher LVL
 +
                parts that only differ in one part. We ourselves encountered this when
 +
                we screened the promoters of the Marburg Collection in our new chassis:
 +
                These plasmids all were the same except for a different promoter.
 +
                A “placeholder” is a part that gets assembled in a LVL1 construct just
 +
                like any other part. Internal cutting sites however make it possible to
 +
                cut this part out in a second cloning cycle in order to replace it with a
 +
                non-placeholder part of the same type. The advantages of using
 +
                placeholder in high throughput assemblies are clear: A seven part
 +
                assembly usually requires to screen multiple colonies before you find
 +
                the right one, meaning that a lot of test digesting or sequencing is
 +
                involved. This is feasible if you want to construct only a few parts.
 +
                For high throughput assemblies, however, the cost and time does not
 +
                scale well enough. A two part assembly however has an extremely high
 +
                success rate, meaning that in most cases it is sufficient to just pick
 +
                one colony to get correct sequencing results. </p>
 +
              <center>
 +
                <figure>
 +
                  <img style="height: 600px;"
 +
                    src="https://static.igem.org/mediawiki/2019/4/4e/T--Marburg--Toolbox_Promotorlibrary.svg"
 +
                    alt="Placeholder image">
 +
                  <figcaption>
 +
                    <b>Fig. 2</b> Schematic workflow for creating the promoter library.
 +
                  </figcaption>
 +
                </figure>
 +
              </center>
 +
              <br>
 +
              <p> This two step assembly heavily cuts down the invested workload and the
 +
                cost per sample. We designed these placeholders so they could aid us in
 +
                our assemblies. By removing limiting cost and time factors with a smart
 +
                design option we managed to close a big bottle neck on the way to
 +
                upscaling Modular cloning.
 +
                Aside from a use in screening, these parts can also be utilized to find
 +
                new sequences with a function: A set of mixed together defined
 +
                oligonucleotides with randomized bases can be
 +
                inserted into a test vector containing a placeholder. This library of
 +
                test vectors is introduced into a host to test the biological
 +
                characteristics of that sequence. A fluorescence reporter on the vector
 +
                can be used to sort out cells with the intended characteristic, for
 +
                example in an adequate high throughput screening method like FACS. This
 +
                massively accelerates the search for parts with a desired quality. Such
 +
                brute force approaches are becoming very popular in recent Synthetic
 +
                Biology <a href="https://www.ncbi.nlm.nih.gov/pubmed/25419741 ">(Smanski et al., 2014)</a>.</p>
 +
              <br><br>
 +
 
 +
              <p>
 +
                <u>A small part in our Collection, a big application for the future</u>
 +
              </p>
 +
 
 +
              <p> Just until recently Synthetic Biology was lacking a genetic platform for
 +
                cyanobacterial hosts: The introduction of the panS based
 +
                self-replicating shuttle vector marks the first useable plasmid <a
 +
                  href="https://www.ncbi.nlm.nih.gov/pubmed/27902432 ">(Chen
 +
                  <i>et al.</i>, 2016)</a>, however it is not MoClo compatible. Therefore <a
 +
                  href="http://parts.igem.org/Part:BBa_K3228069">BBa_K3228069</a>
 +
                is in our eyes the most important addition to our Marburg
 +
                Collection 2.0. This part contains the minimal replication region of
 +
                panS for cyanobacteria and a spectinomycin cassette; additionally the
 +
                ColE1 origin of replication can be used for cloning in <i>E. coli</i> and <i>V.
 +
                  natriegens</i>. A second version with different flanks and a kanamycin
 +
                resistance enables the construction of LVL 2 plasmids that can contain
 +
                up to seven genes. We utilized the broad host-range flexibility of the
 +
                Marburg Collection to add a full set of organisms to its list of
 +
                applicable hosts.
 +
                These parts are the heart piece of the green expansion as they describe
 +
                the world's first MoClo compatible shuttle vector for cyanobacteria.
 +
 
 +
                <figure style="text-align:center">
 +
                  <img style="height: 500px;"
 +
                    src="https://static.igem.org/mediawiki/2019/d/d3/T--Marburg--Toolbox_Shuttle_Lvl1.svg
 +
                                  "
 +
                    alt="design build test cycle">
 +
                  <figcaption style="max-width: 2400px; text-align: center">
 +
                    <b> Fig.3</b>: MoClo compatible shuttle vector for cyanobacteria.
 +
                  </figcaption>
 +
                </figure>
 +
              </p>
 +
              <br><br>
 +
              <p>
 +
                <u>Characterizing parts for our new chassis</u>
 +
              </p>
 +
              <p> To make sure that scientists are able to use our toolbox as convenient
 +
                as they do now with <i>Vibrio natriegens</i>, it is necessary to characterize
 +
                our part collection for our new chassis.
 +
                We established a workflow suited to cyanobacteria to characterize all
 +
                our parts in a consistent way. We realized that with a phototrophic
 +
                chassis we needed to rethink some common procedures to respect species
 +
                specific requirements.
 +
                Before the actual measurements many pretests such as establishing growth
 +
                conditions in well plates had to be done. We evaluated many
 +
                possibilities regarding growth of precultures and measuring procedures
 +
                and present you the best way to measure activities in UTEX 2973.</p>
 +
              <br>
 +
              <br>
 +
              <p>
 +
                <u>Modular Engineering of Genome Areas (M.E.G.A.)</u>
 +
              </p>
 +
 
 +
              <p>While a plasmid based introduction of genes is the most common way to
 +
                introduce genes into a species, genomic integrations are also a highly
 +
                demanded application. Often genes develop a very different phenotype in
 +
                genomic contexts due to a lower copy number and interactions with
 +
                neighbouring regions. The knockout of a gene by inserting a sequence in
 +
                its position is also a well approved way to study genetic interactions
 +
                in an organism.
 +
                Our M.E.G.A. expansion enables the user to design vectors that can
 +
                insert one or more genes into an integration site on the target genome.
 +
                Next to three conventional integration sites for cyanobacteria (NSI to
 +
                NSIII) that are used worldwide <a href="https://www.ncbi.nlm.nih.gov/pubmed/16303742">(Holtman <i>et
 +
                    al.</i>, 2005)</a> we used a rational
 +
                design approach to create two new ones (artificial neutral integration
 +
                site options, aNSo I and aNSo II) that, according to RNA-sequencing data
 +
                <a href="https://2019.igem.org/Team:Marburg/Model#anso">(See: design of integration sites in
 +
                  modelling)</a>, don’t show any
 +
                transcriptional activity from neighboring genes. Therefore they are
 +
                perfect candidates for a stable expression independent from cellular
 +
                contexts.</p>
 +
              <figure style="text-align:center">
 +
                <img style="height: 400px;"
 +
                  src="https://static.igem.org/mediawiki/2019/d/d4/T--Marburg--Toolbox_GenomintegrationANSO.svg
 +
                                  "
 +
                  alt="design build test cycle">
 +
                <figcaption style="max-width: 2400px; text-align: center">
 +
                  <b>Fig.4</b>: Integration into the genome.
 +
                </figcaption>
 +
              </figure>
 +
              <br>
 +
              <p>Using
 +
                the input from our bioinformatical analysis we can now provide the
 +
                tools to engineer the genome of many cyanobacterial strains in a
 +
                modulated fashion. Thanks to this expansion nothing stands in the way of
 +
                tailoring custom strains to specific demands, be it of academical
 +
                nature for Synthetic Biology and foundational research on photosynthesis
 +
                or for industrial applications such as the design of producer strains
 +
                for biotechnological processes.
 +
              </p>
 +
              <br>
 +
              <br>
 +
              <p>
 +
                <u> Presenting a broad range arsenal of reporters for the green expansion </u>
 +
              </p>
 +
              <p>Reporters are an essential basic tool of Synthetic Biology. We present a
 +
                set of reporters for a broad range of applications:
 +
                From cyanobacteria specific well established reporters like sYFP to
 +
                mTurqoise, an alternative than be used in conjunction with YFP for a
 +
                dual fluorescent reporter system <a href="https://2019.igem.org/Team:Marburg/Composite_Part">(best
 +
                  composite part)</a> we offer a variety of fluorescence based
 +
                reporters for part characterizations.
 +
                To harness the incredible potential of novel findings in luminescence,
 +
                we also provide a set of luminescence reporters based on NanoLuc, that
 +
                strike out as completely cell independent, orthogonal reporters: The
 +
                mutated version teLuc is especially well suited for cyanobacteria as it
 +
                bypasses the natural absorption of cyanobacterial photopigments and
 +
                Antares2 uses a FRET system that makes it possible to combine it with
 +
                NanoLuc as a dual luminescence reporter system.
 +
                Additionally we provide two reporters that have the ability to sense two
 +
                very crucial cellular parameters in cyanobacteria: Phluorin2 for the
 +
                detection of intracellular pH values that are crucial for rapid growth
 +
                and rxYFP for the detection of the redox status, that can have crippling
 +
                effects on cellular effects by damaging DNA, lipids and proteins
 +
                through reactive oxygen species (ROS).
 +
              </p>
 +
              </p>
 +
            </div>
 +
          </div>
 +
        </div>
 +
        <div class="sub"
 +
          onclick="popup('project_inspiration')">
 +
          <div class="sub-header">
 +
            <h1>
 +
              P R O J E C T<br>I N S P I R A T I O N
 +
            </h1>
 +
            <hr>
 +
          </div>
 +
          <div class="sub-content">
 +
            <div> The inspiration for our project.
 +
            </div>
 +
          </div>
 +
        </div>
 +
        <div id="project_inspiration"
 +
          class="popup">
 +
          <div class="popup-container">
 +
            <div class="popup-header">
 +
              <h1 class="title"> Project Inspiration</h1>
 +
              <button type="button"
 +
                onclick="hide('project_inspiration')">X</button>
 +
            </div>
 +
            <div class="popup-content">
 +
              <p>
 +
                With rising atmospheric CO<sub>2</sub> concentrations and declining oil reserves, it is painfully
 +
                obvious that the worldwide effort to change from petroleum-based industry to carbon neutral industry
 +
                needs to accelerate drastically. One of the most promising key technologies right now is the use of
 +
                phototrophic organisms for biotechnological applications.
 +
                Hence, we decided quite early this year to devote ourselves to a project revolving around phototrophic
 +
                organisms. During the design phase, we looked at different potential chassis like the model moss <i>
 +
                  Physcomitrella patens </i>, but soon stumbled upon many common obstacles that are characteristic for
 +
                phototrophic chassis: time intensive culturing and complicated techniques to perform basic molecular
 +
                biological methods.
 +
                This showed us why every year, only very few iGEM teams decide to use a phototrophic chassis. As
 +
                research on phototrophs is key to deeply understand and better engineer autotrophic organisms that offer
 +
                powerful possibilities for a more sustainable future, we saw a need to tackle these issues.
 +
                Inspired by the fundamental goal of Synthetic Biology to simplify the process of engineering biological
 +
                systems we submerged into the world of cyanobacteria, soon realizing that one of the underlying aspects
 +
                of engineering seemed to be missing: standardization.
 +
                This process is vital to create reproducible results and achieve better compatibility and
 +
                interoperability throughout the scientific community. Fueled by the discovery of this missing piece in
 +
                cyanobacterial research we ventured out to establish<i> Synechococcus elongatus </i> UTEX 2973 as the
 +
                fastest and most accessible phototrophic chassis to date, streamlining workflows wherever possible.
 +
              </p>
 +
            </div>
 +
          </div>
 +
        </div>
 +
        <div class="sub"
 +
          onclick="popup('references')">
 +
          <div class="sub-header">
 +
            <h1>
 +
              R E F E R E N C E S
 +
            </h1>
 +
            <hr>
 +
          </div>
 +
          <div class="sub-content">
 +
            <div>
 +
              Here we list up our references.
 +
            </div>
 +
          </div>
 +
        </div>
 +
        <div id="references"
 +
          class="popup">
 +
          <div class="popup-container">
 +
            <div class="popup-header">
 +
              <h1 class="title">References</h1>
 +
              <button type="button"
 +
                onclick="hide('references')">X</button>
 +
            </div>
 +
            <div class="popup-content"
 +
              style="text-align: justify;">
 +
              <p>
 +
                Cambray, G., Guimaraes, J. C., Mutalik, V. K., Lam, C., Mai, Q.-A., Thimmaiah, T., Carothers J. M.,
 +
                Arkin A. P., Endy, D. (2013). Measurement and modeling of intrinsic transcription terminators. Nucleic
 +
                Acids Research, 41(9), 5139–5148. (https://doi.org/10.1093/nar/gkt163)<br>
 +
                <br>Haiyao Huang (2008). Design and Characterization of Artificial Transcriptional Terminators.
 +
                Massachusetts Institute of Technology, Boston. Retrieved from
 +
                https://core.ac.uk/download/pdf/4410463.pdf <br><br>
 +
                Help: Terminators/Measurement. Retrieved from https://parts.igem.org/Help:Terminators/Measurement<br>
 +
                <br>Chen, Y., Taton, A., Go, M., London, R. E., Pieper, L. M., Golden, S. S., & Golden, J. W. (2016).
 +
                Self-replicating shuttle vectors based on pANS, a small endogenous plasmid of the unicellular
 +
                cyanobacterium Synechococcus elongatus PCC 7942. Microbiology (Reading, England), 162(12), 2029–2041.
 +
                (https://doi.org/10.1099/mic.0.000377)<br>
 +
                <br>Mueller, T. J., Ungerer, J. L., Pakrasi, H. B., & Maranas, C. D. (2017). Identifying the Metabolic
 +
                Differences of a Fast-Growth Phenotype in Synechococcus UTEX 2973. Scientific Reports, 7, 41569.
 +
                (https://doi.org/10.1038/srep41569)<br>
 +
                <br>Song, K., Tan, X., Liang, Y., & Lu, X. (2016). The potential of Synechococcus elongatus UTEX 2973
 +
                for sugar feedstock production. Applied Microbiology and Biotechnology, 100(18), 7865–7875.
 +
                (https://doi.org/10.1007/s00253-016-7510-z)<br>
 +
                <br>Ungerer, J., & Pakrasi, H. B. (2016). Cpf1 Is A Versatile Tool for CRISPR Genome Editing Across
 +
                Diverse Species of Cyanobacteria. Scientific Reports, 6, 39681. (https://doi.org/10.1038/srep39681)<br>
 +
                <br>Ungerer, J., Wendt, K. E., Hendry, J. I., Maranas, C. D., & Pakrasi, H. B. (2018). Comparative
 +
                genomics reveals the molecular determinants of rapid growth of the cyanobacterium Synechococcus
 +
                elongatus UTEX 2973. Proceedings of the National Academy of Sciences of the United States of America,
 +
                115(50), E11761-E11770. (https://doi.org/10.1073/pnas.1814912115)<br>
 +
                <br>Wendt, K. E., Ungerer, J., Cobb, R. E., Zhao, H., & Pakrasi, H. B. (2016). Crispr/cas9 mediated
 +
                targeted mutagenesis of the fast growing cyanobacterium Synechococcus elongatus UTEX 2973. Microbial
 +
                Cell Factories, 15(1), 115. (https://doi.org/10.1186/s12934-016-0514-7)<br>
 +
                <br>Yu, J., Liberton, M., Cliften, P. F., Head, R. D., Jacobs, J. M., Smith, R. D., . . . Pakrasi, H. B.
 +
                (2015). Synechococcus elongatus UTEX 2973, a fast growing cyanobacterial chassis for biosynthesis using
 +
                light and CO2. Scientific Reports, 5(1), 742. (https://doi.org/10.1038/srep08132)<br>
 +
                <br>Liu, X., Sheng, J., & Curtiss, R. (2011). Fatty acid production in genetically modified
 +
                cyanobacteria. Proceedings of the National Academy of Sciences of the United States of America, 108(17),
 +
                6899–6904. (https://doi.org/10.1073/pnas.1103014108)<br>
 +
                <br>Tan, X., Hou, S., Song, K., Georg, J., Klähn, S., Lu, X., & Hess, W. R. (2018). The primary
 +
                transcriptome of the fast-growing cyanobacterium Synechococcus elongatus UTEX 2973. Biotechnology for
 +
                Biofuels, 11(1), 218. (https://doi.org/10.1186/s13068-018-1215-8)<br>
 +
                <br>Bayes, T. (1763). LII. An essay towards solving a problem in the doctrine of chances. By the late
 +
                Rev. Mr. Bayes, F. R. S. communicated by Mr. Price, in a letter to John <br>
 +
                <br>Canton, A. M. F. R. S. Philosophical Transactions of the Royal Society of London, 53, 370–418.
 +
                (https://doi.org/10.1098/rstl.1763.0053)<br>
 +
                <br>Lecun, Y., Bottou, L., Bengio, Y., & Haffner, P. (1998). Gradient-based learning applied to document
 +
                recognition. Proceedings of the IEEE, 86(11), 2278–2324. (https://doi.org/10.1109/5.726791)<br>
 +
                <br>Ren, S., He, K., Girshick, R., & Sun, J. (2017). Faster R-CNN: Towards Real-Time Object Detection
 +
                with Region Proposal Networks. IEEE Transactions on Pattern Analysis and Machine Intelligence, 39(6),
 +
                1137–1149. (https://doi.org/10.1109/TPAMI.2016.2577031)<br>
 +
                <br>Samuel, A. L. (1959). Some Studies in Machine Learning Using the Game of Checkers. IBM Journal of
 +
                Research and Development, 3(3), 210–229. (https://doi.org/10.1147/rd.33.0210)<br>
 +
                <br>Avery, O. T., MacLeod, C. M., & McCarty, M. (1944). Studies on the Chemical Nature of the Substance
 +
                Inducing Transformation of Pneumococcal Types: Induction of Transformation by a Desoxyribonucleic Acid
 +
                Fraction Isolated from Pneumococcus Type Iii. Journal of Experimental Medicine, 79(2), 137–158.
 +
                (https://doi.org/10.1084/jem.79.2.137)<br>
 +
                <br>Bawa, A. S., & Anilakumar, K. R. (2013). Genetically modified foods: Safety, risks and public
 +
                concerns—a review. Journal of Food Science and Technology, 50(6), 1035–1046.
 +
                (https://doi.org/10.1007/s13197-012-0899-1)<br>
 +
                <br>Bevan, M. W., & Chilton, M. D. (1982). Multiple transcripts of T-DNA detected in nopaline crown gall
 +
                tumors. Journal of Molecular and Applied Genetics, 1(6), 539–546.<br>
 +
                <br>Black, R. E., Allen, L. H., Bhutta, Z. A., Caulfield, L. E., de Onis, M., Ezzati, M., … Maternal and
 +
                Child Undernutrition Study Group. (2008). Maternal and child undernutrition: Global and regional
 +
                exposures and health consequences. Lancet (London, England), 371(9608), 243–260.
 +
                (https://doi.org/10.1016/S0140-6736(07)61690-0)<br>
 +
                <br>Bravo, A., Gill, S. S., & Soberón, M. (2007). Mode of action of Bacillus thuringiensis Cry and Cyt
 +
                toxins and their potential for insect control. Toxicon, 49(4), 423–435.
 +
                (https://doi.org/10.1016/j.toxicon.2006.11.022)<br>
 +
                <br>Cohen, S. N., Chang, A. C. Y., Boyer, H. W., & Helling, R. B. (1973). Construction of Biologically
 +
                Functional Bacterial Plasmids In Vitro. Proceedings of the National Academy of Sciences, 70(11),
 +
                3240–3244. (https://doi.org/10.1073/pnas.70.11.3240)<br>
 +
                <br>Cong, L., Ran, F. A., Cox, D., Lin, S., Barretto, R., Habib, N., … Zhang, F. (2013). Multiplex
 +
                Genome Engineering Using CRISPR/Cas Systems. Science, 339(6121), 819–823.
 +
                (https://doi.org/10.1126/science.1231143)<br>
 +
                <br>Crick, F. H. C., Watson, J. D., & Bragg, W. L. (1954). The complementary structure of
 +
                deoxyribonucleic acid. Proceedings of the Royal Society of London. Series A. Mathematical and Physical
 +
                Sciences, 223(1152), 80–96. (https://doi.org/10.1098/rspa.1954.0101)<br>
 +
                <br>DeMayo, F. J., & Spencer, T. E. (2014). CRISPR Bacon: A Sizzling Technique to Generate Genetically
 +
                Engineered Pigs. Biology of Reproduction, 91(3). (https://doi.org/10.1095/biolreprod.114.123935)<br>
 +
                <br>Evolution of Corn. (n.d.). Retrieved 21 October 2019 from
 +
                https://learn.genetics.utah.edu/content/evolution/corn/ <br>
 +
                <br>Fraley, RobertT. (1983). Liposome-mediated delivery of tobacco mosaic virus RNA into petunia
 +
                protoplast: Improved conditions for liposome-protoplast incubations. Plant Molecular Biology, 2(1).
 +
                (https://doi.org/10.1007/BF00187570)<br>
 +
                <br>Genetically Engineered Crops: Experiences and Prospects. (n.d.).
 +
                (https://doi.org/10.17226/23395)<br>
 +
                <br>Gentechnik: Was genau ist das? (n.d.). Retrieved 21 October 2019, from Bundesministerium für
 +
                Ernährung und Landwirtschaft website:
 +
                https://www.bmel.de/DE/Landwirtschaft/Pflanzenbau/Gentechnik/_Texte/Gentechnik_Wasgenauistdas.html <br>
 +
                <br>Gilbert, N. (2013). Case studies: A hard look at GM crops. Nature News, 497(7447), 24.
 +
                (https://doi.org/10.1038/497024a)<br>
 +
                <br>GM Crops List—GM Approval Database | ISAAA.org. (n.d.). Retrieved 21 October 2019, from
 +
                http://www.isaaa.org/gmapprovaldatabase/cropslist/default.asp <br>
 +
                <br>Herrera‐Estrella, L., Block, M. D., Messens, E., Hernalsteens, J.-P., Montagu, M. V., & Schell, J.
 +
                (1983). Chimeric genes as dominant selectable markers in plant cells. The EMBO Journal, 2(6), 987–995.
 +
                (https://doi.org/10.1002/j.1460-2075.1983.tb01532.x)<br>
 +
                <br>Hilbeck, A., Binimelis, R., Defarge, N., Steinbrecher, R., Székács, A., Wickson, F., … Wynne, B.
 +
                (2015). No scientific consensus on GMO safety. Environmental Sciences Europe, 27(1), 4.
 +
                (https://doi.org/10.1186/s12302-014-0034-1)<br>
 +
                <br>Humphrey, J. H., West, K. P., & Sommer, A. (1992). Vitamin A deficiency and attributable mortality
 +
                among under-5-year-olds. Bulletin of the World Health Organization, 70(2), 225–232.<br>
 +
                <br>Insecticidal Plants: The Tech and Safety of GM Bt Crops. (2015, August 10). Retrieved 21 October
 +
                2019, from Science in the News website: http://sitn.hms.harvard.edu/flash/2015/insecticidal-plants/ <br>
 +
                <br>Is it safe to eat GM crops? | Royal Society. (n.d.). Retrieved 21 October 2019, from
 +
                https://royalsociety.org/topics-policy/projects/gm-plants/is-it-safe-to-eat-gm-crops/ <br><br>
 +
                ISAAA Brief 54-2018: Executive Summary | ISAAA.org. (n.d.). Retrieved 21 October 2019, from
 +
                https://www.isaaa.org/resources/publications/briefs/54/executivesummary/default.asp <br>
 +
                <br>Marris, C. (2001). Public views on GMOs: Deconstructing the myths. EMBO Reports, 2(7), 545–548.
 +
                (https://doi.org/10.1093/embo-reports/kve142)<br>
 +
                <br>Mutant Variety Database. (n.d.). Retrieved 21 October 2019, from
 +
                https://mvd.iaea.org/#!Search?page=1&size=500&sortby=Name&sort=ASC <br>
 +
                <br>Nicolia, A., Manzo, A., Veronesi, F., & Rosellini, D. (2014). An overview of the last 10 years of
 +
                genetically engineered crop safety research. Critical Reviews in Biotechnology, 34(1), 77–88.
 +
                (https://doi.org/10.3109/07388551.2013.823595) <br>
 +
                <br>Nirenberg, M. W., Matthaei, J. H., Jones, O. W., Martin, R. G., & Barondes, S. H. (1963).
 +
                Approximation of genetic code via cell-free protein synthesis directed by template RNA. Federation
 +
                Proceedings, 22, 55–61.<br>
 +
                <br>Oladosu, Y., Rafii, M. Y., Abdullah, N., Hussin, G., Ramli, A., Rahim, H. A., Usman, M. (2016).
 +
                Principle and application of plant mutagenesis in crop improvement: A review. Biotechnology &
 +
                Biotechnological Equipment, 30(1), 1–16. (https://doi.org/10.1080/13102818.2015.1087333)<br>
 +
                <br>Publications Office of the European Union. (2010, November 11). A decade of EU-funded GMO research
 +
                (2001-2010). [Website]. Retrieved 21 October 2019, from
 +
                https://op.europa.eu:443/en/publication-detail/-/publication/d1be9ff9-f3fa-4f3c-86a5-beb0882e0e65 <br>
 +
                <br>Ran, F. A., Hsu, P. D., Wright, J., Agarwala, V., Scott, D. A., & Zhang, F. (2013). Genome
 +
                engineering using the CRISPR-Cas9 system. Nature Protocols, 8(11), 2281–2308.
 +
                (https://doi.org/10.1038/nprot.2013.143)<br>
 +
                <br>Sanchis, V. (2011). From microbial sprays to insect-resistant transgenic plants: History of the
 +
                biospesticide <Emphasis Type="Italic">Bacillus thuringiensis</Emphasis>. A review. Agronomy for
 +
                Sustainable Development, 31(1), 217–231. (https://doi.org/10.1051/agro/2010027) <br>
 +
                <br>Sanford, J. C. (1990). Biolistic plant transformation. Physiologia Plantarum, 79(1), 206–209.
 +
                (https://doi.org/10.1111/j.1399-3054.1990.tb05888.x)<br>
 +
                <br>Schouten, H. J., Krens, F. A., & Jacobsen, E. (2006). Cisgenic plants are similar to traditionally
 +
                bred plants: International regulations for genetically modified organisms should be altered to exempt
 +
                cisgenesis. EMBO Reports, 7(8), 750–753. (https://doi.org/10.1038/sj.embor.7400769)<br>
 +
                <br>Snell, C., Bernheim, A., Bergé, J.-B., Kuntz, M., Pascal, G., Paris, A., & Ricroch, A. E. (2012).
 +
                Assessment of the health impact of GM plant diets in long-term and multigenerational animal feeding
 +
                trials: A literature review. Food and Chemical Toxicology, 50(3), 1134–1148.
 +
                (https://doi.org/10.1016/j.fct.2011.11.048)<br>
 +
                <br>Snow, A. A., & Palma, P. M. (1997). Commercialization of Transgenic Plants: Potential Ecological
 +
                Risks. BioScience, 47(2), 86–96. (https://doi.org/10.2307/1313019)<br>
 +
                <br>Tabashnik, B. E. (1994). Evolution of Resistance to Bacillus Thuringiensis. Annual Review of
 +
                Entomology, 39(1), 47–79. (https://doi.org/10.1146/annurev.en.39.010194.000403)<br>
 +
                <br>Time to call out the anti-GMO conspiracy theory – Mark Lynas. (n.d.). Retrieved 21 October 2019,
 +
                from (http://www.marklynas.org/2013/04/time-to-call-out-the-anti-gmo-conspiracy-theory/)<br>
 +
                <br>Werth, J., Boucher, L., Thornby, D., Walker, S., & Charles, G. (2013). Changes in weed species since
 +
                the introduction of glyphosate-resistant cotton. Crop and Pasture Science, 64(8), 791–798.
 +
                (https://doi.org/10.1071/CP13167)<br>
 +
                <br>e, X., Al-Babili, S., Klöti, A., Zhang, J., Lucca, P., Beyer, P., & Potrykus, I. (2000). Engineering
 +
                the Provitamin A (β-Carotene) Biosynthetic Pathway into (Carotenoid-Free) Rice Endosperm. Science,
 +
                287(5451), 303–305. (https://doi.org/10.1126/science.287.5451.303)<br>
 +
                <br>Zhang, C., Wohlhueter, R., & Zhang, H. (2016). Genetically modified foods: A critical review of
 +
                their promise and problems. Food Science and Human Wellness, 5(3), 116–123.
 +
                (https://doi.org/10.1016/j.fshw.2016.04.002)<br>
 +
                <br>Zimmer, C. (2013, May 16). From Fearsome Predator to Man’s Best Friend. The New York Times.
 +
                Retrieved from
 +
                https://www.nytimes.com/2013/05/16/science/dogs-from-fearsome-predator-to-mans-best-friend.html <br>
 +
                <br>Goedhart, J., von Stetten, D., Noirclerc-Savoye, M., Lelimousin, M., Joosen, L., Hink, M. A.,
 +
                Royant, A. (2012). Structure-guided evolution of cyan fluorescent proteins towards a quantum yield of
 +
                93%. Nature Communications, 3, 751. (https://doi.org/10.1038/ncomms1738)<br>
 +
                <br>Kukolka, F., & M. Niemeyer, C. (2004). Synthesis of fluorescent oligonucleotide –EYFP conjugate:
 +
                Towards supramolecular construction of semisynthetic biomolecular antennae. Organic & Biomolecular
 +
                Chemistry, 2(15), 2203–2206. (https://doi.org/10.1039/B406492E)<br>
 +
                <br>Lambert, T. (o. J.). PHluorin2 at FPbase. Abgerufen 21. Oktober 2019, von FPbase website:
 +
                https://www.fpbase.org/protein/phluorin2/ <br>
 +
                <br>Mahon, M. J. (2011). pHluorin2: An enhanced, ratiometric, pH-sensitive green florescent protein.
 +
                Advances in bioscience and biotechnology (Print), 2(3), 132–137.
 +
                (https://doi.org/10.4236/abb.2011.23021)<br>
 +
                <br>Lee, M. E., DeLoache, W. C., Cervantes, B., & Dueber, J. E. (2015). A Highly Characterized Yeast
 +
                Toolkit for Modular, Multipart Assembly. ACS Synthetic Biology, 4(9), 975–986.<br>
 +
                <br>Chen, J., Morita, T., & Gottesman, S. (2019). Regulation of Transcription Termination of Small RNAs
 +
                and by Small RNAs: Molecular Mechanisms and Biological Functions. Frontiers in Cellular and Infection
 +
                Microbiology, 9. (https://doi.org/10.3389/fcimb.2019.00201)<br><br>
 +
                de Hoon, M. J. L., Makita, Y., Nakai, K., & Miyano, S. (2005). Prediction of Transcriptional Terminators
 +
                in Bacillus subtilis and Related Species. PLoS Computational Biology, 1(3), e25.
 +
                (https://doi.org/10.1371/journal.pcbi.0010025)<br>
 +
                <br>Krebs, J., Lewin, B., Kilpatrick, S. & Goldstein, E. (2014). Lewin's genes XI. Burlington, Mass:
 +
                Jones & Bartlett Learning.<br>
 +
                <br>Gautheret D, Lambert A. (2001) Direct RNA Motif Definition and Identification from Multiple Sequence
 +
                Alignments using Secondary Structure Profiles. J Mol Biol. 313:1003–11 (abstract).<br>
 +
                <br>Macke T, Ecker D, Gutell R, Gautheret D, Case DA and Sampath R. (2001) RNAMotif – A new RNA
 +
                secondary structure definition and discovery algorithm. Nucleic Acids Res. 29:4724–4735 (abstract).<br>
 +
                <br>Kingsford, C. L., Ayanbule, K., & Salzberg, S. L. (2007). Rapid, accurate, computational discovery
 +
                of Rho-independent transcription terminators illuminates their relationship to DNA uptake. Genome
 +
                Biology, 8(2), R22. (https://doi.org/10.1186/gb-2007-8-2-r22)<br>
 +
                <br>V. Solovyev, A Salamov (2011) Automatic Annotation of Microbial Genomes and Metagenomic Sequences.
 +
                In Metagenomics and its Applications in Agriculture, Biomedicine and Environmental Studies (Ed. R.W.
 +
                Li), Nova Science Publishers, p. 61-78 <br>
 +
                <br>Chen, Y.-J., Liu, P., Nielsen, A. A. K., Brophy, J. A. N., Clancy, K., Peterson, T., & Voigt, C. A.
 +
                (2013). Characterization of 582 natural and synthetic terminators and quantification of their design
 +
                constraints. Nature Methods, 10(7), 659–664. (https://doi.org/10.1038/nmeth.2515)<br>
 +
                <br>Vijayan, V., Jain, I. H., & O’Shea, E. K. (2011). A high resolution map of a cyanobacterial
 +
                transcriptome. Genome Biology, 12(5), R47. (https://doi.org/10.1186/gb-2011-12-5-r47)<br>
 +
                <br>Creecy, J. P., & Conway, T. (2015). Quantitative bacterial transcriptomics with RNA-seq. Current
 +
                Opinion in Microbiology, 23, 133–140. (https://doi.org/10.1016/j.mib.2014.11.011)<br>
 +
                <br>Sugimoto, N., Nakano, S. -i., Yoneyama, M., & Honda, K. -i. (1996). Improved Thermodynamic
 +
                Parameters and Helix Initiation Factor to Predict Stability of DNA Duplexes. Nucleic Acids Research,
 +
                24(22), 4501–4505. (https://doi.org/10.1093/nar/24.22.4501)<br>
 +
                <br>Russo, D. A., Zedler, J. A. Z., Wittmann, D. N., Möllers, B., Singh, R. K., Batth, T. S., ... &
 +
                Jensen, P. E. (2019). Expression and secretion of a lytic polysaccharide monooxygenase by a fast-growing
 +
                cyanobacterium. Biotechnology for biofuels, 12(1), 74. <br>
 +
                <br>Casteljau, P. (1963). Surfaces à pôles, INPI <br>
 +
                <br>Hoschek, J. & Lasser, D. (1993). Fundamentals of computer-aided geometric design. Wellesley, Mass:
 +
                A.K. Peters. <br>
 +
                <br>R., J., & de Boor, C. (1980). A Practical Guide to Splines. Mathematics of Computation, 34(149),
 +
                325. <br>
 +
                <br>Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., ... & Vanderplas,
 +
                J. (2011). Scikit-learn: Machine learning in Python. Journal of machine learning research, 12(Oct),
 +
                2825-2830.
 +
<br><br>
 +
Yeh H.W., Karmach O., Ji A., Carter D., Martins-Green M.M., Ai H.W. (2017). Red-shifted luciferase-luciferin pairs for enhanced bioluminescence imaging, Nat Methods. 2017 Oct; 14(10): 971-974.
 +
              </p>
 +
            </div>
 +
          </div>
 +
        </div>
 +
    </div>
 
     </section>
 
     </section>
 
   </div>
 
   </div>
 
 
</html>
 
</html>
 
{{Marburg/footer}}
 
{{Marburg/footer}}

Latest revision as of 01:01, 14 December 2019

D E S C R I P T I O N


We proudly present our project SYNTEX. We are establishing the new chassis Synechocococcus elongatus UTEX 2973 for phototrophic Synthetic Biology.


S Y N E C H O C O C C U S
E L O N G A T U S


An extensive review on the history of our chassis, recent findings and its potential future.

S T R A I N
E N G I N E E R I N G


Here we show the results of our Strain Engineering project to tame our "wolf".

M A R B U R G
C O L L E C T I O N   2.0


We present to you the Marburg Collection 2.0, an extensive addition to the previosly established part collection that focuses around cyanobacteria.

P R O J E C T
I N S P I R A T I O N


The inspiration for our project.

R E F E R E N C E S


Here we list up our references.