Difference between revisions of "Team:NCKU Tainan/Demonstrate"

 
(38 intermediate revisions by 5 users not shown)
Line 29: Line 29:
 
                 </div>
 
                 </div>
 
                 <section>
 
                 <section>
                     <p>    After months of hard work and effort, iGEM NCKU Tainan 2019 is proud to reveal that ‘Oh My Gut’ is now complete! Our team has spared no effort in giving their all to ensure that our project goes smoothly. With this project, we hope to achieve our vision of providing a comprehensive solution to chronic kidney disease, and also spreading awareness on the significance of <i>p</i>-Cresol on human health.</p>
+
                     <p>    After months of hard work and effort, iGEM NCKU Tainan 2019 is proud to reveal that "Oh My Gut" is now complete! Our team has spared no effort in giving their all to ensure that our project goes smoothly. With this project, we hope to achieve our vision of providing a comprehensive solution to chronic kidney disease, and also spreading awareness on the significance of <i>p</i>-Cresol on human health.</p>
 
                 </section>
 
                 </section>
 
                 <section>
 
                 <section>
Line 37: Line 37:
 
                             <div class="col-lg-8">
 
                             <div class="col-lg-8">
 
                                 <!--where you put the text-->
 
                                 <!--where you put the text-->
 +
                                <br><br>
 
                                 <div class="container-fluid p-0">
 
                                 <div class="container-fluid p-0">
 
                                     <div class="row no-gutters">
 
                                     <div class="row no-gutters">
Line 42: Line 43:
 
                                             <figure class="d-flex flex-column justify-content-center align-items-center px-lg-3">
 
                                             <figure class="d-flex flex-column justify-content-center align-items-center px-lg-3">
 
                                                 <!-- put link in href & src , width in a can adjust-->
 
                                                 <!-- put link in href & src , width in a can adjust-->
                                                 <a href="https://static.igem.org/mediawiki/2019/f/f1/T--NCKU_Tainan--Hardware_Casing.jpeg" target="_blank" style="width:90%"><img src="https://static.igem.org/mediawiki/2019/f/f1/T--NCKU_Tainan--Hardware_Casing.jpeg" alt="" title="" style="width:100%"></a>
+
                                                 <a href="https://static.igem.org/mediawiki/2019/f/f1/T--NCKU_Tainan--Hardware_Casing.jpeg" target="_blank" style="width:97%"><img src="https://static.igem.org/mediawiki/2019/f/f1/T--NCKU_Tainan--Hardware_Casing.jpeg" alt="" title="" style="width:100%"></a>
 +
                                                <figcaption>Fig. 1. <b>CreSense</b> final product.</figcaption>
 
                                             </figure>
 
                                             </figure>
 
                                         </div>
 
                                         </div>
 
                                     </div>
 
                                     </div>
 
                                 </div>
 
                                 </div>
                                 <p>    Our device, <b>CreSense</b> consists of three major parts: a centrifugal platform for blood plasma separation, a fluorescence intensity reader and a WiFi-module to monitor the fluorescence intensity online. In this section, we will demonstrate how our blood <i>p</i>-Cresol reader works.</p>
+
                                <br><br>
                                 <p>    Whole blood is injected into our <a href="https://2019.igem.org/Team:NCKU_Tainan/Hardware#Subtitle3" target="_blank">microfluidic chip</a>. All the user needs to do is to press a button to start the blood centrifugation. After approximately 15 minutes, the blood will be separated into two layers. The blood plasma will flow into the reaction chamber and react with our <i>p</i>-Cresol sensing bacteria. Then, the <a href="https://2019.igem.org/Team:NCKU_Tainan/Hardware#Subtitle4" target="_blank">reader</a> will show the real time fluorescence intensity reading on the LCD screen and simultaneously send it to an <a href="https://2019.igem.org/Team:NCKU_Tainan/Hardware#Database" target="_blank">online database</a>.</p>
+
                                 <p>    Our device, <b>CreSense</b> consists of three major parts: a centrifugal platform for plasma separation, a fluorescence intensity reader and a WiFi-module to monitor the fluorescence intensity online. In this section, we will demonstrate how our blood <i>p</i>-Cresol reader works.</p>
 +
                                 <p>    Whole blood is injected into our <a href="https://2019.igem.org/Team:NCKU_Tainan/Hardware#Subtitle3" target="_blank">microfluidic chip</a>. All the user needs to do is to press a button to start the blood centrifugation. After approximately 15 minutes, the blood will be separated into two layers. Plasma will flow into the reaction chamber and react with our <i>p</i>-Cresol sensing bacteria. Then, the <a href="https://2019.igem.org/Team:NCKU_Tainan/Hardware#Subtitle4" target="_blank">reader</a> will show the real time fluorescence intensity reading on the LCD screen and simultaneously uploaded to an <a href="https://2019.igem.org/Team:NCKU_Tainan/Hardware#Database" target="_blank">online database</a>.</p>
 
                                 <p>    This device is meant to be placed in the diagnostic center and other healthcare service providers. However, this device is not limited to just patients who take our live therapeutic. Patients who are concerned about their health or is at a high risk of developing chronic kidney disease may also use this device as a preventative measure.</p>
 
                                 <p>    This device is meant to be placed in the diagnostic center and other healthcare service providers. However, this device is not limited to just patients who take our live therapeutic. Patients who are concerned about their health or is at a high risk of developing chronic kidney disease may also use this device as a preventative measure.</p>
 
                                 <p>    To demonstrate our engineered system works, we have made a video to explain each part of <b>CreSense</b> and the operating process.</p>
 
                                 <p>    To demonstrate our engineered system works, we have made a video to explain each part of <b>CreSense</b> and the operating process.</p>
Line 56: Line 59:
 
                                     <!-- put link in href & src-->
 
                                     <!-- put link in href & src-->
 
                                     <a href="https://static.igem.org/mediawiki/2019/0/07/T--NCKU_Tainan--Demonstrate_Step.png" target="_blank"><img src="https://static.igem.org/mediawiki/2019/0/07/T--NCKU_Tainan--Demonstrate_Step.png" alt="" title="" style="width:90%"></a>
 
                                     <a href="https://static.igem.org/mediawiki/2019/0/07/T--NCKU_Tainan--Demonstrate_Step.png" target="_blank"><img src="https://static.igem.org/mediawiki/2019/0/07/T--NCKU_Tainan--Demonstrate_Step.png" alt="" title="" style="width:90%"></a>
 +
                                    <br>
 +
                                    <figcaption>Fig. 2. <b>CreSense</b> operation.</figcaption>
 
                                 </figure>
 
                                 </figure>
 
                             </div>
 
                             </div>
Line 65: Line 70:
 
                             Your browser doesn't support the video tag.
 
                             Your browser doesn't support the video tag.
 
                         </video>
 
                         </video>
                     </div>  
+
                     </div>
 +
                    <br><br>
 +
                    <p style="text-shadow: 1px .9px #767676;"> &#x25b6; <a href="https://youtu.be/b4z8PO-e8Bg" target="_blank" style="text-decoration: none; font-size: 1.3rem;">For HD video with subtitles, check out our YouTube channel!</a></p>
 
                 </section>
 
                 </section>
 
                 <!--divider-->
 
                 <!--divider-->
Line 71: Line 78:
 
                 <section>
 
                 <section>
 
                     <h2 id ="Subtitle2">Alternative Tyrosine Fermentation Pathway</h2>
 
                     <h2 id ="Subtitle2">Alternative Tyrosine Fermentation Pathway</h2>
                    <p>    iGEM NCKU Tainan 2019 engineered <i>E. coli</i> Nissle and introduced an alternative pathway for tyrosine in the gut by adding <a href="https://2019.igem.org/Team:NCKU_Tainan/Design#TAL" target="_blank">Tyrosine Ammonia Lyase</a>. It converts tyrosine into a beneficial product, <i>p</i>-Coumaric acid. We improved the <i>p</i>-Coumaric acid production by <a href="http://parts.igem.org/Part:BBa_K2997009" target="_blank">changing the ribosome binding sites</a> by from Native to B0034, the conversion of tyrosine into <i>p</i>-Coumaric acid increase by 1.73-fold.</p>
 
 
                     <div class="container-fluid p-0" >
 
                     <div class="container-fluid p-0" >
 
                         <div class="row no-gutters">
 
                         <div class="row no-gutters">
                             <div class="col-lg-6">
+
                             <div class="col-lg-7">
 
                                 <!--where you put the text-->
 
                                 <!--where you put the text-->
                                 <p>    We then further improved the conversion of tyrosine into <i>p</i>-Coumaric acid by adding a <a href="http://parts.igem.org/Part:BBa_K2997000" target="_blank">tyrosine transporter</a> (BBa_K2997000). As seen in Fig 7., when BBa_K2997000 is added, the production of <i>p</i>-Coumaric acid is significantly higher than when BBa_K2998000 is not added. When tyrosine transporter is introduced into <i>E. coli</i> Nissle containing BBa_K2997009 and BBa_K2997010, conversion of tyrosine into <i>p</i>-Coumaric acid is increased by 1.44-fold and 1.31-fold respectively.</p>
+
                                <br><br>
 +
                                <p>    iGEM NCKU Tainan 2019 engineered <i>E. coli</i> Nissle and introduced an alternative pathway for tyrosine in the gut by adding <a href="https://2019.igem.org/Team:NCKU_Tainan/Design#TAL" target="_blank">Tyrosine Ammonia Lyase</a>. It converts tyrosine into a beneficial product, <i>p</i>-Coumaric acid. We improved the <i>p</i>-Coumaric acid production by <a href="http://parts.igem.org/Part:BBa_K2997009" target="_blank">changing the ribosome binding sites</a> from Native to B0034, the conversion of tyrosine into <i>p</i>-Coumaric acid increase by 1.73-fold.</p>
 +
                                 <p>    We then further improved the conversion of tyrosine into <i>p</i>-Coumaric acid by adding a <a href="http://parts.igem.org/Part:BBa_K2997000" target="_blank">tyrosine transporter</a> (BBa_K2997000). As seen in Fig. 3, when BBa_K2997000 is added, the production of <i>p</i>-Coumaric acid is significantly higher than when BBa_K2998000 is not added. When tyrosine transporter is introduced into <i>E. coli</i> Nissle containing BBa_K2997009 and BBa_K2997010, conversion of tyrosine into <i>p</i>-Coumaric acid is increased by 1.44-fold and 1.31-fold respectively.</p>
 
                             </div>
 
                             </div>
                             <div class="col-lg-6 d-flex justify-content-center align-items-center">
+
                             <div class="col-lg-5 d-flex justify-content-center align-items-center">
 
                                 <figure class="d-flex flex-column justify-content-center align-items-center px-lg-3">
 
                                 <figure class="d-flex flex-column justify-content-center align-items-center px-lg-3">
 
                                     <!-- put link in href & src-->
 
                                     <!-- put link in href & src-->
 
                                     <a href="https://static.igem.org/mediawiki/2019/d/d3/T--NCKU_Tainan--Results_tyrosine_to_pCA%2C_RBS_improve.png" target="_blank" style="width:90%"><img src="https://static.igem.org/mediawiki/2019/d/d3/T--NCKU_Tainan--Results_tyrosine_to_pCA%2C_RBS_improve.png" alt="" title="" style="width:100%"></a>
 
                                     <a href="https://static.igem.org/mediawiki/2019/d/d3/T--NCKU_Tainan--Results_tyrosine_to_pCA%2C_RBS_improve.png" target="_blank" style="width:90%"><img src="https://static.igem.org/mediawiki/2019/d/d3/T--NCKU_Tainan--Results_tyrosine_to_pCA%2C_RBS_improve.png" alt="" title="" style="width:100%"></a>
                                     <figcaption>Fig7. <i>p</i>-Coumaric acid/OD<sub>600</sub> levels of <i>E. coli</i> Nissle with TAL and tyrP in LB + 1mM tyrosine</figcaption>
+
                                     <figcaption>Fig. 3. <i>p</i>-Coumaric acid/OD<sub>600</sub> levels of <i>E. coli</i> Nissle with TAL and <i>tyrP</i> in LB + 1 mM tyrosine</figcaption>
 
                                 </figure>
 
                                 </figure>
 
                             </div>
 
                             </div>
Line 89: Line 97:
 
                     <div class="container-fluid p-0" >
 
                     <div class="container-fluid p-0" >
 
                         <div class="row no-gutters">
 
                         <div class="row no-gutters">
                             <div class="col-lg-4 d-flex justify-content-center align-items-center">
+
                             <div class="col-lg-6 d-flex justify-content-center align-items-center">
 
                                 <figure class="d-flex flex-column justify-content-center align-items-center px-lg-3">
 
                                 <figure class="d-flex flex-column justify-content-center align-items-center px-lg-3">
 
                                     <!-- put link in href & src-->
 
                                     <!-- put link in href & src-->
 
                                     <a href="https://static.igem.org/mediawiki/2019/6/61/T--NCKU_Tainan--Results_pCA_dose_responding.png" target="_blank" style="width:75%"><img src="https://static.igem.org/mediawiki/2019/6/61/T--NCKU_Tainan--Results_pCA_dose_responding.png" alt="" title="" style="width:100%"></a>
 
                                     <a href="https://static.igem.org/mediawiki/2019/6/61/T--NCKU_Tainan--Results_pCA_dose_responding.png" target="_blank" style="width:75%"><img src="https://static.igem.org/mediawiki/2019/6/61/T--NCKU_Tainan--Results_pCA_dose_responding.png" alt="" title="" style="width:100%"></a>
                                     <figcaption>Fig8. <i>p</i>-Coumaric acid/OD<sub>600</sub> levels of <i>E. coli</i> Nissle with tyrP+ TAL w/34 in LB with different concentration of tyrosine</figcaption>
+
                                     <figcaption>Fig. 4. <i>p</i>-Coumaric acid/OD<sub>600</sub> levels of <i>E. coli</i> Nissle with <i>tyrP</i>+ TAL w/34 in LB with different concentration of tyrosine</figcaption>
 
                                 </figure>
 
                                 </figure>
 
                             </div>
 
                             </div>
                             <div class="col-lg-8">
+
                             <div class="col-lg-6">
 
                                 <!--where you put the text-->
 
                                 <!--where you put the text-->
                                 <p>    By culturing <i>E. coli</i> Nissle with dual plasmids containing TAL (BBa_K2997010) and tyrP (BBa_K2997009) in LB medium with different concentrations of tyrosine, we are able to prove that the TAL enzyme can specifically use tyrosine as its substrate. As seen in Fig. 8, although no significance in p-Couramic acid production in culture supplemented with 0.5mM and 1.0mM tyrosine, there was however an increasing trend. Furthermore, there was a significant increase  when comparing culture supplemented with 1.0mM and 2.0mM tyrosine. We speculate that there was indeed a dose-dependent effect, but due to the limit of n-octanol extraction method was apparent.</p>
+
                                <br><br><br>
 +
                                 <p>    By culturing <i>E. coli</i> Nissle with dual plasmids containing TAL (BBa_K2997010) and <i>tyrP</i> (BBa_K2997009) in LB medium with different concentrations of tyrosine, we are able to prove that the TAL enzyme can specifically use tyrosine as its substrate. As seen in Fig. 4, although no significance in <i>p</i>-Couramic acid production in culture supplemented with 0.5 mM and 1.0 mM tyrosine, there was however an increasing trend. Furthermore, there was a significant increase  when comparing culture supplemented with 1.0 mM and 2.0 mM tyrosine. We speculate that there was indeed a dose-dependent effect, but due to the limit of n-octanol extraction method was apparent.</p>
 
                             </div>
 
                             </div>
 
 
                         </div>
 
                         </div>
 
                     </div>                     
 
                     </div>                     
Line 108: Line 116:
 
                 <section>
 
                 <section>
 
                     <h2 id ="Subtitle3">Biosafety: <i><i>can</i></i> Gene Knock Out</h2>
 
                     <h2 id ="Subtitle3">Biosafety: <i><i>can</i></i> Gene Knock Out</h2>
                     <p>    To confirm the <a href="https://2019.igem.org/Team:NCKU_Tainan/Safety" target="_blank">biosafety</a> measurement of <i>E. coli</i> Nissle, we did a phenotype test by streaking out the <i>can</i> gene mutant bacteria on different plates and placing them in different conditions. </p>
+
                     <p>    To ensure the <a href="https://2019.igem.org/Team:NCKU_Tainan/Safety" target="_blank">biosafety</a> of our engineered <i>E. coli</i> Nissle, we did a phenotype test by streaking out the <i>can</i> gene mutant bacteria on different plates and placing them in different conditions. </p>
 
                     <div class="container-fluid p-0">
 
                     <div class="container-fluid p-0">
 
                         <div class="row no-gutters">
 
                         <div class="row no-gutters">
Line 114: Line 122:
 
                                 <figure class="d-flex flex-column justify-content-center align-items-center px-lg-3">
 
                                 <figure class="d-flex flex-column justify-content-center align-items-center px-lg-3">
 
                                     <!-- put link in href & src , width in a can adjust-->
 
                                     <!-- put link in href & src , width in a can adjust-->
                                     <a href="https://static.igem.org/mediawiki/2019/5/50/T--NCKU_Tainan--Safety_canKO.png" target="_blank" style="width:90%"><img src="https://static.igem.org/mediawiki/2019/5/50/T--NCKU_Tainan--Safety_canKO.png" alt="" title="" style="width:100%"></a>
+
                                     <a href="https://static.igem.org/mediawiki/2019/archive/e/ec/20191021144634%21T--NCKU_Tainan--can-plate.png" target="_blank" style="width:90%"><img src="https://static.igem.org/mediawiki/2019/archive/e/ec/20191021144634%21T--NCKU_Tainan--can-plate.png" alt="" title="" style="width:100%"></a>
                                     <figcaption>Fig9. Confirmation of <i>can</i> knockout in <i>E. coli</i> Nissle. <i>E. coli</i> Nissle and other strains were streaked onto agar plates and placed in (A) 0.04% CO<sub>2</sub>; (B) 5% CO<sub>2</sub>; (C) 5% CO<sub>2</sub> and contains Chloramphenicol (Cm) for phenotyping. </figcaption>
+
                                     <figcaption>Fig. 5. Confirmation of <i>can</i> knockout in <i>E. coli</i> Nissle. <i>E. coli</i> Nissle and other strains were streaked onto agar plates and placed in (A) 0.04% CO<sub>2</sub>; (B) 5% CO<sub>2</sub> conditions for phenotyping. </figcaption>
 
                                 </figure>
 
                                 </figure>
 
                             </div>
 
                             </div>
 
                         </div>
 
                         </div>
 
                     </div>
 
                     </div>
                     <p>    As seen in Fig 9., Δ<i>can</i>::CmR and Δ<i>can</i>::FRT requires a higher CO<sub>2</sub> level to survive. When streaked on Cm plates, Δ<i>can</i>::CmR is still able to grow while Δ<i>can</i>::FRT is unable to grow, thus proving that we have succeeded in knocking out the <i>can</i> gene and replacing it with CmR cassette and FRT sites respectively. </p>                 
+
                     <p>    As seen in Fig. 5, Δ<i>can</i>::CmR and Δ<i>can</i>::FRT requires a higher CO<sub>2</sub> level to survive. In doing so, we have proved that we have successfully knocked out the <i>can</i> gene. </p>                 
 +
                    <br><br><br><br>
 
                 </section>
 
                 </section>
                <section class="ref">
 
                    <h2>References</h2>
 
                    <ol>
 
                        <!--id name must corespond -->
 
                        <li id="ref1"></li>
 
                        <li id="ref2"></li>
 
                    </ol>
 
                </section>               
 
 
             </main>
 
             </main>
 
         </div>
 
         </div>
Line 144: Line 145:
 
</body>
 
</body>
 
</html>
 
</html>
 +
{{Template:NCKU_Tainan/gotop}}
 
{{Template:NCKU_Tainan/footer}}
 
{{Template:NCKU_Tainan/footer}}
 +
 +
<!-- Made with LOVE, by iGEM NCKU Tainan 2019. -->

Latest revision as of 10:56, 13 December 2019

>

Demonstrate

After months of hard work and effort, iGEM NCKU Tainan 2019 is proud to reveal that "Oh My Gut" is now complete! Our team has spared no effort in giving their all to ensure that our project goes smoothly. With this project, we hope to achieve our vision of providing a comprehensive solution to chronic kidney disease, and also spreading awareness on the significance of p-Cresol on human health.

Blood p-Cresol Reader - CreSense



Fig. 1. CreSense final product.


Our device, CreSense consists of three major parts: a centrifugal platform for plasma separation, a fluorescence intensity reader and a WiFi-module to monitor the fluorescence intensity online. In this section, we will demonstrate how our blood p-Cresol reader works.

Whole blood is injected into our microfluidic chip. All the user needs to do is to press a button to start the blood centrifugation. After approximately 15 minutes, the blood will be separated into two layers. Plasma will flow into the reaction chamber and react with our p-Cresol sensing bacteria. Then, the reader will show the real time fluorescence intensity reading on the LCD screen and simultaneously uploaded to an online database.

This device is meant to be placed in the diagnostic center and other healthcare service providers. However, this device is not limited to just patients who take our live therapeutic. Patients who are concerned about their health or is at a high risk of developing chronic kidney disease may also use this device as a preventative measure.

To demonstrate our engineered system works, we have made a video to explain each part of CreSense and the operating process.


Fig. 2. CreSense operation.




For HD video with subtitles, check out our YouTube channel!


Alternative Tyrosine Fermentation Pathway



iGEM NCKU Tainan 2019 engineered E. coli Nissle and introduced an alternative pathway for tyrosine in the gut by adding Tyrosine Ammonia Lyase. It converts tyrosine into a beneficial product, p-Coumaric acid. We improved the p-Coumaric acid production by changing the ribosome binding sites from Native to B0034, the conversion of tyrosine into p-Coumaric acid increase by 1.73-fold.

We then further improved the conversion of tyrosine into p-Coumaric acid by adding a tyrosine transporter (BBa_K2997000). As seen in Fig. 3, when BBa_K2997000 is added, the production of p-Coumaric acid is significantly higher than when BBa_K2998000 is not added. When tyrosine transporter is introduced into E. coli Nissle containing BBa_K2997009 and BBa_K2997010, conversion of tyrosine into p-Coumaric acid is increased by 1.44-fold and 1.31-fold respectively.

Fig. 3. p-Coumaric acid/OD600 levels of E. coli Nissle with TAL and tyrP in LB + 1 mM tyrosine
Fig. 4. p-Coumaric acid/OD600 levels of E. coli Nissle with tyrP+ TAL w/34 in LB with different concentration of tyrosine



By culturing E. coli Nissle with dual plasmids containing TAL (BBa_K2997010) and tyrP (BBa_K2997009) in LB medium with different concentrations of tyrosine, we are able to prove that the TAL enzyme can specifically use tyrosine as its substrate. As seen in Fig. 4, although no significance in p-Couramic acid production in culture supplemented with 0.5 mM and 1.0 mM tyrosine, there was however an increasing trend. Furthermore, there was a significant increase when comparing culture supplemented with 1.0 mM and 2.0 mM tyrosine. We speculate that there was indeed a dose-dependent effect, but due to the limit of n-octanol extraction method was apparent.


Biosafety: can Gene Knock Out

To ensure the biosafety of our engineered E. coli Nissle, we did a phenotype test by streaking out the can gene mutant bacteria on different plates and placing them in different conditions.

Fig. 5. Confirmation of can knockout in E. coli Nissle. E. coli Nissle and other strains were streaked onto agar plates and placed in (A) 0.04% CO2; (B) 5% CO2 conditions for phenotyping.

As seen in Fig. 5, Δcan::CmR and Δcan::FRT requires a higher CO2 level to survive. In doing so, we have proved that we have successfully knocked out the can gene.