Difference between revisions of "Team:Marburg/Results"

Line 262: Line 262:
 
                   not yet been widely used in cyanobacterial research, which is why we set out to implement such a
 
                   not yet been widely used in cyanobacterial research, which is why we set out to implement such a
 
                   system, based
 
                   system, based
                   on CRISPR/Cas12a, into our Green Expansion of the Marburg Collection <b>[Link to
+
                   on CRISPR/Cas12a, into our <a href="https://2019.igem.org/Team:Marburg/Part_Collection" target="_blank">Green Expansion</a> of the Marburg Collection.
                    MarburgCollection]</b>.
+
 
                   <br>
 
                   <br>
 
                   As CRISPR/Cas12a has already been reported to work in <i> S.elongatus</i> UTEX 2973 <a
 
                   As CRISPR/Cas12a has already been reported to work in <i> S.elongatus</i> UTEX 2973 <a
                     href=https://www.nature.com/articles/srep39681> Ungerer and Pakrasi, 2016 </a>, we were sure that it
+
                     href=https://www.nature.com/articles/srep39681> (Ungerer and Pakrasi, 2016)</a>, we were sure that it
 
                     could be transformed into a Golden Gate Assembly compatible version, allowing for more flexible
 
                     could be transformed into a Golden Gate Assembly compatible version, allowing for more flexible
                     design considerations <b></b>[Link to Design of CRISPR ]</b>.
+
                     <a href="https://2019.igem.org/Team:Marburg/Design#strain_engineering" target="_blank">design</a> considerations.
 
                     While we started the cloning processes needed to change the existing vector into the phytobrick
 
                     While we started the cloning processes needed to change the existing vector into the phytobrick
 
                     standard, we
 
                     standard, we
Line 280: Line 279:
 
                     the
 
                     the
 
                     desired
 
                     desired
                     edit - more on this approach can be found in the Natural Competence section of our results.
+
                     edit - more on this approach can be found in the natural competence section of our results.
 
                     <br>
 
                     <br>
 
                     In order to modularize this system we built different parts for our genetic toolbox. First of all
 
                     In order to modularize this system we built different parts for our genetic toolbox. First of all
Line 289: Line 288:
 
                     overhangs
 
                     overhangs
 
                     that
 
                     that
                     enabled us to clone the PCR product into a lvl 0 acceptor vector
+
                     enabled us to clone the PCR product into a lvl0 acceptor vector.
  
 
                     <figure Style="text-align:center">
 
                     <figure Style="text-align:center">
Line 308: Line 307:
 
                         src=https://static.igem.org/mediawiki/2019/a/ae/T--Marburg--Cas12a_CDS_lvl0.png alt="map">
 
                         src=https://static.igem.org/mediawiki/2019/a/ae/T--Marburg--Cas12a_CDS_lvl0.png alt="map">
 
                       <figcaption>
 
                       <figcaption>
                         Fig. 6: caption: sequencing result of the coding sequence of the Cas12a protein.
+
                         Fig. 6: Sequencing result of the coding sequence of the Cas12a protein.
 
                       </figcaption>
 
                       </figcaption>
 
                     </figure>
 
                     </figure>
Line 334: Line 333:
 
                       <img style="height: 40ex; width: 90ex"
 
                       <img style="height: 40ex; width: 90ex"
 
                         src=https://static.igem.org/mediawiki/2019/7/7e/T--Marburg--Cas12a_crRNA_lvl0.png
 
                         src=https://static.igem.org/mediawiki/2019/7/7e/T--Marburg--Cas12a_crRNA_lvl0.png
                         alt="m[Fig XX plasmid map of crRNA lvl0]. Through sequencingap">
+
                         alt="crRNA lvl0">
 
                       <figcaption>
 
                       <figcaption>
                         Fig. 8: lvl0 design for the crRNA. The spacer can be exchanged with even more gRNAs to allow
+
                         Fig. 8: lvl0 design for the crRNA. The spacers can be exchanged with even more gRNAs to allow
 
                         for
 
                         for
 
                         multiplex genome editing.
 
                         multiplex genome editing.
Line 344: Line 343:
  
 
<p>
 
<p>
                     We could show the correct assembly of this part - everything was as we planned in our design
+
                     We could show the correct assembly of this part - everything was as we planned in our <a href="https://2019.igem.org/Team:Marburg/Design#strain_engineering" target="_blank">design</a>
                    <b>[Link to design of CRISPR]</b> meaning that we had all the parts in our MoClo standard. </p>
+
                    meaning that we had all the parts in our MoClo standard. </p>
 
                     <figure Style="text-align:center">
 
                     <figure Style="text-align:center">
 
                       <img style="height: 40ex; width: 80ex"
 
                       <img style="height: 40ex; width: 80ex"
Line 351: Line 350:
 
                         alt="[Fig XX seq results of crRNA lvl0],">
 
                         alt="[Fig XX seq results of crRNA lvl0],">
 
                       <figcaption>
 
                       <figcaption>
                         Fig. 9: sequencing result of the lvl0 construct of the crRNA
+
                         Fig. 9: Sequencing result of the lvl0 construct of the crRNA
 
                       </figcaption>
 
                       </figcaption>
 
                     </figure>
 
                     </figure>
Line 362: Line 361:
 
                     parts around the Cas12a and crRNA parts. This enables the use of different promoters, allowing for
 
                     parts around the Cas12a and crRNA parts. This enables the use of different promoters, allowing for
 
                     easy
 
                     easy
                     screening: Constructs with weaker promoters in front of the cas12a gene would lead to less gene
+
                     screening: Constructs with weaker promoters in front of the Cas12a gene would lead to less gene
 
                     expression
 
                     expression
 
                     and
 
                     and
Line 368: Line 367:
 
                     consequently be
 
                     consequently be
 
                     used
 
                     used
                     for the creation of a library in order to look for the perfectly fitting promoter for this system
+
                     for the creation of a library in order to look for the perfectly fitting promoter for this system.
  
  
Line 381: Line 380:
 
                     can be done in a single reaction, further simplifying the cloning process of CRISPR/Cas12a
 
                     can be done in a single reaction, further simplifying the cloning process of CRISPR/Cas12a
 
                     constructs.
 
                     constructs.
                     As shown <a href=https://2019.igem.org/Team:Marburg/Design> before</a> , the cloning process with
+
                     As shown <a href=https://2019.igem.org/Team:Marburg/Design#strain_engineering> before</a> , the cloning process with
 
                       the pSL2680 can take over a week, is tedious work and is accompanied by another couple of days
 
                       the pSL2680 can take over a week, is tedious work and is accompanied by another couple of days
 
                       waiting for colonies. In comparison, our system enables for efficient cloning in only four days:
 
                       waiting for colonies. In comparison, our system enables for efficient cloning in only four days:
 
                       On the first day the construct is assembled in a Golden Gate reaction, which is thereafter
 
                       On the first day the construct is assembled in a Golden Gate reaction, which is thereafter
                       transformed into E.coli. The next day colonies can be picked, inoculated and the construct can be
+
                       transformed into <i>E.coli</i>. The next day colonies can be picked, inoculated and the construct can be
 
                       extracted in the evening. On the third day it can be transformed into <i>
 
                       extracted in the evening. On the third day it can be transformed into <i>
 
                       S.elongatus</i> -
 
                       S.elongatus</i> -
Line 392: Line 391:
 
                       noticed
 
                       noticed
 
                       that
 
                       that
                       transformation of linear DNA fragments into <i> S.elongatus</i> is supposedly more efficient
+
                       transformation of linear DNA fragments into <i>S.elongatus</i> is supposedly more efficient
 
                       than
 
                       than
 
                       the
 
                       the
                       transformation of whole plasmids <a href=https://doi.org/10.1016/j.biori.2017.09.001> (Almeida et
+
                       transformation of whole plasmids <a href=https://doi.org/10.1016/j.biori.2017.09.001> (Almeida <i>et
                         al., 2017)</a> - and we were able to verify this fact in our own experiments [Fig XX linear
+
                         al.</i>, 2017)</a> - and we were able to verify this fact in our own experiments. This further simplifies our above mentioned workflow, as we are able
                        transformation plate pic]. This further simplifies our above mentioned workflow, as we are able
+
 
                         to simply PCR the needed repair template from a DNA sequence and use the PCR product for
 
                         to simply PCR the needed repair template from a DNA sequence and use the PCR product for
 
                         transformation into <i>
 
                         transformation into <i>
Line 425: Line 423:
 
                 <u>Cyanobacterial shuttle vectors </u>
 
                 <u>Cyanobacterial shuttle vectors </u>
 
</p>
 
</p>
                 <p>As we have already clarified in the description part, self replicating shuttle vectors are
+
                 <p>As we have already clarified in the <a href="https://2019.igem.org/Team:Marburg/Description#strain_engineering" target="_blank">description</a> part, self replicating shuttle vectors are
 
                   essential
 
                   essential
 
                   for
 
                   for
Line 440: Line 438:
 
                   as well as a
 
                   as well as a
 
                   YFP cassette
 
                   YFP cassette
                   <a href=https://www.microbiologyresearch.org/content/journal/micro/10.1099/mic.0.000377> (Chen et al.,
+
                   <a href=https://www.microbiologyresearch.org/content/journal/micro/10.1099/mic.0.000377> (Chen <i>et al.</i>,
                     2016)</a>. Due to plasmid incompatibility - explained here in our design section <b>[Link to
+
                     2016)</a>. Due to plasmid incompatibility - explained here in our <a href="https://2019.igem.org/Team:Marburg/Design#strain_engineering" target="_blank">design</a> section - and because antibiotic pressure is applied, the pANS plasmid was over time
                    shuttle
+
                    vector design]</b> - and because antibiotic pressure is applied, the pANS plasmid was over time
+
 
                     cured
 
                     cured
 
                     from the
 
                     from the
 
                     strain, which then just kept the pAM4787 plasmid. Transformation was done by conjugation with the
 
                     strain, which then just kept the pAM4787 plasmid. Transformation was done by conjugation with the
 
                     pRK2013 plasmid in
 
                     pRK2013 plasmid in
                     DH5ɑ and the pAM4787 in HB101. Both were grown to an OD600≈0.5, washed in LB and mixed with S.
+
                     DH5ɑ and the pAM4787 in HB101. Both were grown to an OD600≈0.5, washed in LB and mixed with <i>S.
                     elongatus which was
+
                     elongatus</i> which was
 
                     grown to late exponential phase and then washed in BG11.
 
                     grown to late exponential phase and then washed in BG11.
 
                     We could clearly show, that the conjugant strain bears the pAM4787 plasmid if selective pressure
 
                     We could clearly show, that the conjugant strain bears the pAM4787 plasmid if selective pressure
Line 504: Line 500:
  
 
                 <p>Our next step was the characterization of the cyanobacterial shuttle vector mentioned in our <a
 
                 <p>Our next step was the characterization of the cyanobacterial shuttle vector mentioned in our <a
                     href=https://2019.igem.org/Team:Marburg/Design> design </a> section. In an extensive flow cytometry
+
                     href="https://2019.igem.org/Team:Marburg/Design#strain_engineering" target="_blank"> design </a> section. In an extensive flow cytometry
 
                     experiment we assessed the fluorescence of a transformed YFP-construct in our cured strain, showing
 
                     experiment we assessed the fluorescence of a transformed YFP-construct in our cured strain, showing
 
                     that the shuttle vector with the minimal replication element can be maintained in<i>S. elongatus
 
                     that the shuttle vector with the minimal replication element can be maintained in<i>S. elongatus

Revision as of 17:57, 8 December 2019

R E S U L T S


The way to the results we demonstrate here was full of success and failure. Therefore, it was necessary to compare and revise our theoretical plans with the practical work and the associated results. After trying our best to implement our plans, we would like to show you on this page that we have managed to realize some of our goals and are able to show some achievements for every sub-group.


S T R A I N
E N G I N E E R I N G


By genetic modification of S. elongatus UTEX 2973 we succeeded the transformation of plasmids in UTEX 2973.

M A R B U R G
C O L L E C T I O N  2.0


We expanded the Marburg Collection by adding the Green expansion and the first MoClo compatible shuttle vector for Cyanobacteria.