Difference between revisions of "Team:Marburg/Measurement"

Line 228: Line 228:
 
                
 
                
 
               <p>
 
               <p>
               Comparing flow cytometry measurements to optical density measurements we were able to find some striking differences.<br>
+
               Comparing flow cytometry measurements to optical density measurements we were able to find some striking differences.
               Using the exact same probes and paying very close attention to work carefully we created to growth curves which, although showing the same tendency, differ from one another. While in the optical density measurements the culture seems to shift towards the stationary phase [Fig 2: Growth of S.elongatus UTEX 2973 and PCC 7942 measured by optical density], the cell counts show us a still exponentially growing culture [Fig 3: Growth of S.elongatus UTEX 2973 and PCC 7942 measured by cell count]. <br>Calculating the doubling time between two exact same time points for both approaches we were again able to find a difference: while the OD730 measurements resulted in a calculated doubling time of 108 minutes for the UTEX 2973 strain, the calculation using cell counts resulted in a doubling time of 94 minutes - a difference of 14 minutes between two measurement methods for the exact same samples!
+
               Using the exact same probes and paying very close attention to work carefully we created to growth curves which, although showing the same tendency, differ from one another. While in the optical density measurements the culture seems to shift towards the stationary phase (Fig. 2), the cell counts show us a still exponentially growing culture (Fig. 3). Calculating the doubling time between two exact same time points for both approaches we were again able to find a difference: while the OD730 measurements resulted in a calculated doubling time of 108 minutes for the UTEX 2973 strain, the calculation using cell counts resulted in a doubling time of 94 minutes - a difference of 14 minutes between two measurement methods for the exact same samples!
 
               </p>
 
               </p>
 
               <figure>
 
               <figure>
Line 245: Line 245:
 
               </figure>
 
               </figure>
 
               <br><br>
 
               <br><br>
               <h2 class="subtitle">Cell cytometry to examine gene expression levels</h2>
+
               <h2 class="subtitle" style="font-size: 1.5rem !important" >Cell cytometry to examine gene expression levels</h2>
 
               <p>
 
               <p>
               In our project we chose to use flow cytometry as an accurate method, to analyse gene expression levels of genetic constructs. <br>
+
               In our project we chose to use flow cytometry as an accurate method, to analyse gene expression levels of genetic constructs.  
               In an extensive experiment we assessed the fluorescence of a transformed YFP-construct in our cured strain, showing that the shuttle vector with the minimal replication element can be maintained in S. elongatus UTEX 2973.<br>
+
               In an extensive experiment we assessed the fluorescence of a transformed YFP-construct in our cured strain, showing that the shuttle vector with the minimal replication element can be maintained in S. elongatus UTEX 2973.
               Using a similar setup as in our growth curve experiments, we analysed the strength of the fluorescence signal over time: <br><br>
+
               Using a similar setup as in our growth curve experiments, we analysed the strength of the fluorescence signal over time:  
 
               As expected, no YFP expressing cells could be counted in the wild type strain.
 
               As expected, no YFP expressing cells could be counted in the wild type strain.
 
               </p>
 
               </p>

Revision as of 10:18, 8 December 2019

M E A S U R E M E N T


Amplifying new standards in measurement

We entered this project as the first Marburg iGEM team working with Synechococcus elongatus UTEX 2973, the fastest phototrophic organism. Missing knowledge in handling and cultivation of UTEX 2973 left us in front of many problems and questions. Especially the usage of different media, light conditions and other cultivating and measurement parameters were one of the biggest problems we discovered in scientific papers. Many of these problems are reasoned in the ongoing optimization and development of methods and instruments. Therefore it is hard to hold on to special methods; nevertheless, standardization is paramount in synthetic microbiology in order to be able to compare results with other scientists and reproduce their data.

Because we wanted to establish Synechococcus elongatus as a new chassis for the iGEM community and scientists, we should show the best conditions for cultivation and the best measuring method for our parts in UTEX 2973. Therefore we analyzed a big variety of cultivating conditions in measuring growth curves, tried to find a standard in light measurement, evaluated different reporters, established a measurement method and compared it to a already known FACS measurement method.

At the beginning of our project we faced the first question: how to cultivate UTEX at 1500 μE? To answer this we had to measure the light conditions in our incubators and while doing this simple task the first part of standardization began. We discovered that nearly every paper is using different methods to measure their light conditions and that it is a really complex and important procedure. So we got in contact with Cyano and light measurement experts to confront this problem and standardize it. In the following popups we show different ways of measurement, their (dis-)advantages and different results depending on the measuring instrument.

Moreover, not only the light intensity but also a variety of other cultivating parameters needed to be analyzed. In literature and while talking with different experts, we recognized that small deviations of these parameters had a huge impact on the growth speed of Synechococcus elongatus. While establishing UTEX 2973 as a new chassis we evaluated this impact on the growth speed and were able to show combinations of parameters that lead to the fastest growth speed.

Another aspects were measuring the expression and characterizing our part. Different possibilities were discussed and after testing them we decided on two methods in our project. One approach was to measure the fluorescence/luminescence with a plate reader. Plate readers belong to standard equipment of every lab nowadays, and could deliver easy reproducible results. The second way was to measure the fluorescence by FACS (Fluorescence-Activated Cell Sorting). In contrast to a platerader a FACs device delivers results with high accuracy by measuring every cell by its own.

However, not every laboratory posses a FACS/device. So in the end we would like to offer a database - analyzed using these two methods - from our constructs for iGEM teams and research groups, who do not have access to a FACS and show the difference in measurement methods.

In the end of the project we were able to create a protocol how to handle Synechococcus elongatus UTEX 2973 and make a contribution to the cyano community by establishing essential/fixed standards in measurements.


L I G H T
M E A S U R E M E N T


Light measurements are a crucial aspect when working on phototrophic organisms - here’s how we tackled some issues we faced!

R E P O R T E R S


Fluorescence Reporters

F A C S


FACS Measurements

P A R T
M E A S U R E M E N T


Establishing a measurement workflow that is not only applicable to UTEX 2973 and other cyanobacteria with a high throughput.

G R O W T H
C U R V E S


Varying our growth conditions we were finally able to achieve doubling times of under 80 minutes.