Difference between revisions of "Team:Marburg/Description"

Line 816: Line 816:
  
 
                 Cambray, G., Guimaraes, J. C., Mutalik, V. K., Lam, C., Mai, Q.-A., Thimmaiah, T., Carothers J. M., Arkin A. P., Endy, D. (2013). Measurement and modeling of intrinsic transcription terminators. Nucleic Acids Research, 41(9), 5139–5148. (https://doi.org/10.1093/nar/gkt163)<br>  
 
                 Cambray, G., Guimaraes, J. C., Mutalik, V. K., Lam, C., Mai, Q.-A., Thimmaiah, T., Carothers J. M., Arkin A. P., Endy, D. (2013). Measurement and modeling of intrinsic transcription terminators. Nucleic Acids Research, 41(9), 5139–5148. (https://doi.org/10.1093/nar/gkt163)<br>  
<br>Haiyao Huang (2008). Design and Characterization of Artificial Transcriptional Terminators. Massachusetts Institute of Technology, Boston. Retrieved from https://core.ac.uk/download/pdf/4410463.pdf <br>
+
<br>Haiyao Huang (2008). Design and Characterization of Artificial Transcriptional Terminators. Massachusetts Institute of Technology, Boston. Retrieved from https://core.ac.uk/download/pdf/4410463.pdf <br><br>
Help: Terminators/Measurement. Retrieved from https://parts.igem.org/Help:Terminators/Measurement  
+
Help: Terminators/Measurement. Retrieved from https://parts.igem.org/Help:Terminators/Measurement<br>
<br>Chen, Y., Taton, A., Go, M., London, R. E., Pieper, L. M., Golden, S. S., & Golden, J. W. (2016). Self-replicating shuttle vectors based on pANS, a small endogenous plasmid of the unicellular cyanobacterium Synechococcus elongatus PCC 7942. Microbiology (Reading, England), 162(12), 2029–2041. (https://doi.org/10.1099/mic.0.000377)
+
<br>Chen, Y., Taton, A., Go, M., London, R. E., Pieper, L. M., Golden, S. S., & Golden, J. W. (2016). Self-replicating shuttle vectors based on pANS, a small endogenous plasmid of the unicellular cyanobacterium Synechococcus elongatus PCC 7942. Microbiology (Reading, England), 162(12), 2029–2041. (https://doi.org/10.1099/mic.0.000377)<br>
<br>Mueller, T. J., Ungerer, J. L., Pakrasi, H. B., & Maranas, C. D. (2017). Identifying the Metabolic Differences of a Fast-Growth Phenotype in Synechococcus UTEX 2973. Scientific Reports, 7, 41569. https://doi.org/10.1038/srep41569
+
<br>Mueller, T. J., Ungerer, J. L., Pakrasi, H. B., & Maranas, C. D. (2017). Identifying the Metabolic Differences of a Fast-Growth Phenotype in Synechococcus UTEX 2973. Scientific Reports, 7, 41569. (https://doi.org/10.1038/srep41569)<br>
<br>Song, K., Tan, X., Liang, Y., & Lu, X. (2016). The potential of Synechococcus elongatus UTEX 2973 for sugar feedstock production. Applied Microbiology and Biotechnology, 100(18), 7865–7875. https://doi.org/10.1007/s00253-016-7510-z
+
<br>Song, K., Tan, X., Liang, Y., & Lu, X. (2016). The potential of Synechococcus elongatus UTEX 2973 for sugar feedstock production. Applied Microbiology and Biotechnology, 100(18), 7865–7875. (https://doi.org/10.1007/s00253-016-7510-z)<br>
<br>Ungerer, J., & Pakrasi, H. B. (2016). Cpf1 Is A Versatile Tool for CRISPR Genome Editing Across Diverse Species of Cyanobacteria. Scientific Reports, 6, 39681. https://doi.org/10.1038/srep39681
+
<br>Ungerer, J., & Pakrasi, H. B. (2016). Cpf1 Is A Versatile Tool for CRISPR Genome Editing Across Diverse Species of Cyanobacteria. Scientific Reports, 6, 39681. (https://doi.org/10.1038/srep39681)<br>
<br>Ungerer, J., Wendt, K. E., Hendry, J. I., Maranas, C. D., & Pakrasi, H. B. (2018). Comparative genomics reveals the molecular determinants of rapid growth of the cyanobacterium Synechococcus elongatus UTEX 2973. Proceedings of the National Academy of Sciences of the United States of America, 115(50), E11761-E11770. https://doi.org/10.1073/pnas.1814912115
+
<br>Ungerer, J., Wendt, K. E., Hendry, J. I., Maranas, C. D., & Pakrasi, H. B. (2018). Comparative genomics reveals the molecular determinants of rapid growth of the cyanobacterium Synechococcus elongatus UTEX 2973. Proceedings of the National Academy of Sciences of the United States of America, 115(50), E11761-E11770. (https://doi.org/10.1073/pnas.1814912115)<br>
<br>Wendt, K. E., Ungerer, J., Cobb, R. E., Zhao, H., & Pakrasi, H. B. (2016). Crispr/cas9 mediated targeted mutagenesis of the fast growing cyanobacterium Synechococcus elongatus UTEX 2973. Microbial Cell Factories, 15(1), 115. https://doi.org/10.1186/s12934-016-0514-7
+
<br>Wendt, K. E., Ungerer, J., Cobb, R. E., Zhao, H., & Pakrasi, H. B. (2016). Crispr/cas9 mediated targeted mutagenesis of the fast growing cyanobacterium Synechococcus elongatus UTEX 2973. Microbial Cell Factories, 15(1), 115. (https://doi.org/10.1186/s12934-016-0514-7)<br>
<br>Yu, J., Liberton, M., Cliften, P. F., Head, R. D., Jacobs, J. M., Smith, R. D., . . . Pakrasi, H. B. (2015). Synechococcus elongatus UTEX 2973, a fast growing cyanobacterial chassis for biosynthesis using light and CO2. Scientific Reports, 5(1), 742. https://doi.org/10.1038/srep08132
+
<br>Yu, J., Liberton, M., Cliften, P. F., Head, R. D., Jacobs, J. M., Smith, R. D., . . . Pakrasi, H. B. (2015). Synechococcus elongatus UTEX 2973, a fast growing cyanobacterial chassis for biosynthesis using light and CO2. Scientific Reports, 5(1), 742. (https://doi.org/10.1038/srep08132)<br>
<br>Liu, X., Sheng, J., & Curtiss, R. (2011). Fatty acid production in genetically modified cyanobacteria. Proceedings of the National Academy of Sciences of the United States of America, 108(17), 6899–6904. https://doi.org/10.1073/pnas.1103014108     
+
<br>Liu, X., Sheng, J., & Curtiss, R. (2011). Fatty acid production in genetically modified cyanobacteria. Proceedings of the National Academy of Sciences of the United States of America, 108(17), 6899–6904. (https://doi.org/10.1073/pnas.1103014108)<br>      
<br>Tan, X., Hou, S., Song, K., Georg, J., Klähn, S., Lu, X., & Hess, W. R. (2018). The primary transcriptome of the fast-growing cyanobacterium Synechococcus elongatus UTEX 2973. Biotechnology for Biofuels, 11(1), 218. https://doi.org/10.1186/s13068-018-1215-8       
+
<br>Tan, X., Hou, S., Song, K., Georg, J., Klähn, S., Lu, X., & Hess, W. R. (2018). The primary transcriptome of the fast-growing cyanobacterium Synechococcus elongatus UTEX 2973. Biotechnology for Biofuels, 11(1), 218. (https://doi.org/10.1186/s13068-018-1215-8)<br>        
<br>Bayes, T. (1763). LII. An essay towards solving a problem in the doctrine of chances. By the late Rev. Mr. Bayes, F. R. S. communicated by Mr. Price, in a letter to John  
+
<br>Bayes, T. (1763). LII. An essay towards solving a problem in the doctrine of chances. By the late Rev. Mr. Bayes, F. R. S. communicated by Mr. Price, in a letter to John <br>
<br>Canton, A. M. F. R. S. Philosophical Transactions of the Royal Society of London, 53, 370–418. https://doi.org/10.1098/rstl.1763.0053
+
<br>Canton, A. M. F. R. S. Philosophical Transactions of the Royal Society of London, 53, 370–418. (https://doi.org/10.1098/rstl.1763.0053)<br>
<br>Lecun, Y., Bottou, L., Bengio, Y., & Haffner, P. (1998). Gradient-based learning applied to document recognition. Proceedings of the IEEE, 86(11), 2278–2324. https://doi.org/10.1109/5.726791
+
<br>Lecun, Y., Bottou, L., Bengio, Y., & Haffner, P. (1998). Gradient-based learning applied to document recognition. Proceedings of the IEEE, 86(11), 2278–2324. (https://doi.org/10.1109/5.726791)<br>
<br>Ren, S., He, K., Girshick, R., & Sun, J. (2017). Faster R-CNN: Towards Real-Time Object Detection with Region Proposal Networks. IEEE Transactions on Pattern Analysis and Machine Intelligence, 39(6), 1137–1149. https://doi.org/10.1109/TPAMI.2016.2577031
+
<br>Ren, S., He, K., Girshick, R., & Sun, J. (2017). Faster R-CNN: Towards Real-Time Object Detection with Region Proposal Networks. IEEE Transactions on Pattern Analysis and Machine Intelligence, 39(6), 1137–1149. (https://doi.org/10.1109/TPAMI.2016.2577031)<br>
<br>Samuel, A. L. (1959). Some Studies in Machine Learning Using the Game of Checkers. IBM Journal of Research and Development, 3(3), 210–229. https://doi.org/10.1147/rd.33.0210
+
<br>Samuel, A. L. (1959). Some Studies in Machine Learning Using the Game of Checkers. IBM Journal of Research and Development, 3(3), 210–229. (https://doi.org/10.1147/rd.33.0210)<br>
<br>Avery, O. T., MacLeod, C. M., & McCarty, M. (1944). Studies on the Chemical Nature of the Substance Inducing Transformation of Pneumococcal Types: Induction of Transformation by a Desoxyribonucleic Acid Fraction Isolated from Pneumococcus Type Iii. Journal of Experimental Medicine, 79(2), 137–158. https://doi.org/10.1084/jem.79.2.137
+
<br>Avery, O. T., MacLeod, C. M., & McCarty, M. (1944). Studies on the Chemical Nature of the Substance Inducing Transformation of Pneumococcal Types: Induction of Transformation by a Desoxyribonucleic Acid Fraction Isolated from Pneumococcus Type Iii. Journal of Experimental Medicine, 79(2), 137–158. (https://doi.org/10.1084/jem.79.2.137)<br>
<br>Bawa, A. S., & Anilakumar, K. R. (2013). Genetically modified foods: Safety, risks and public concerns—a review. Journal of Food Science and Technology, 50(6), 1035–1046. https://doi.org/10.1007/s13197-012-0899-1
+
<br>Bawa, A. S., & Anilakumar, K. R. (2013). Genetically modified foods: Safety, risks and public concerns—a review. Journal of Food Science and Technology, 50(6), 1035–1046. (https://doi.org/10.1007/s13197-012-0899-1)<br>
<br>Bevan, M. W., & Chilton, M. D. (1982). Multiple transcripts of T-DNA detected in nopaline crown gall tumors. Journal of Molecular and Applied Genetics, 1(6), 539–546.
+
<br>Bevan, M. W., & Chilton, M. D. (1982). Multiple transcripts of T-DNA detected in nopaline crown gall tumors. Journal of Molecular and Applied Genetics, 1(6), 539–546.<br>
<br>Black, R. E., Allen, L. H., Bhutta, Z. A., Caulfield, L. E., de Onis, M., Ezzati, M., … Maternal and Child Undernutrition Study Group. (2008). Maternal and child undernutrition: Global and regional exposures and health consequences. Lancet (London, England), 371(9608), 243–260. https://doi.org/10.1016/S0140-6736(07)61690-0
+
<br>Black, R. E., Allen, L. H., Bhutta, Z. A., Caulfield, L. E., de Onis, M., Ezzati, M., … Maternal and Child Undernutrition Study Group. (2008). Maternal and child undernutrition: Global and regional exposures and health consequences. Lancet (London, England), 371(9608), 243–260. (https://doi.org/10.1016/S0140-6736(07)61690-0)<br>
<br>Bravo, A., Gill, S. S., & Soberón, M. (2007). Mode of action of Bacillus thuringiensis Cry and Cyt toxins and their potential for insect control. Toxicon, 49(4), 423–435. https://doi.org/10.1016/j.toxicon.2006.11.022
+
<br>Bravo, A., Gill, S. S., & Soberón, M. (2007). Mode of action of Bacillus thuringiensis Cry and Cyt toxins and their potential for insect control. Toxicon, 49(4), 423–435. (https://doi.org/10.1016/j.toxicon.2006.11.022)<br>
<br>Cohen, S. N., Chang, A. C. Y., Boyer, H. W., & Helling, R. B. (1973). Construction of Biologically Functional Bacterial Plasmids In Vitro. Proceedings of the National Academy of Sciences, 70(11), 3240–3244. https://doi.org/10.1073/pnas.70.11.3240
+
<br>Cohen, S. N., Chang, A. C. Y., Boyer, H. W., & Helling, R. B. (1973). Construction of Biologically Functional Bacterial Plasmids In Vitro. Proceedings of the National Academy of Sciences, 70(11), 3240–3244. (https://doi.org/10.1073/pnas.70.11.3240)<br>
<br>Cong, L., Ran, F. A., Cox, D., Lin, S., Barretto, R., Habib, N., … Zhang, F. (2013). Multiplex Genome Engineering Using CRISPR/Cas Systems. Science, 339(6121), 819–823. https://doi.org/10.1126/science.1231143
+
<br>Cong, L., Ran, F. A., Cox, D., Lin, S., Barretto, R., Habib, N., … Zhang, F. (2013). Multiplex Genome Engineering Using CRISPR/Cas Systems. Science, 339(6121), 819–823. (https://doi.org/10.1126/science.1231143)<br>
<br>Crick, F. H. C., Watson, J. D., & Bragg, W. L. (1954). The complementary structure of deoxyribonucleic acid. Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences, 223(1152), 80–96. https://doi.org/10.1098/rspa.1954.0101
+
<br>Crick, F. H. C., Watson, J. D., & Bragg, W. L. (1954). The complementary structure of deoxyribonucleic acid. Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences, 223(1152), 80–96. (https://doi.org/10.1098/rspa.1954.0101)<br>
<br>DeMayo, F. J., & Spencer, T. E. (2014). CRISPR Bacon: A Sizzling Technique to Generate Genetically Engineered Pigs. Biology of Reproduction, 91(3). https://doi.org/10.1095/biolreprod.114.123935
+
<br>DeMayo, F. J., & Spencer, T. E. (2014). CRISPR Bacon: A Sizzling Technique to Generate Genetically Engineered Pigs. Biology of Reproduction, 91(3). (https://doi.org/10.1095/biolreprod.114.123935)<br>
<br>Evolution of Corn. (n.d.). Retrieved 21 October 2019, from https://learn.genetics.utah.edu/content/evolution/corn/
+
<br>Evolution of Corn. (n.d.). Retrieved 21 October 2019 from https://learn.genetics.utah.edu/content/evolution/corn/ <br>
<br>Fraley, RobertT. (1983). Liposome-mediated delivery of tobacco mosaic virus RNA into petunia protoplast: Improved conditions for liposome-protoplast incubations. Plant Molecular Biology, 2(1). https://doi.org/10.1007/BF00187570
+
<br>Fraley, RobertT. (1983). Liposome-mediated delivery of tobacco mosaic virus RNA into petunia protoplast: Improved conditions for liposome-protoplast incubations. Plant Molecular Biology, 2(1). (https://doi.org/10.1007/BF00187570)<br>
<br>Genetically Engineered Crops: Experiences and Prospects. (n.d.). https://doi.org/10.17226/23395
+
<br>Genetically Engineered Crops: Experiences and Prospects. (n.d.). (https://doi.org/10.17226/23395)<br>
<br>Gentechnik: Was genau ist das? (n.d.). Retrieved 21 October 2019, from Bundesministerium für Ernährung und Landwirtschaft website: https://www.bmel.de/DE/Landwirtschaft/Pflanzenbau/Gentechnik/_Texte/Gentechnik_Wasgenauistdas.html
+
<br>Gentechnik: Was genau ist das? (n.d.). Retrieved 21 October 2019, from Bundesministerium für Ernährung und Landwirtschaft website: https://www.bmel.de/DE/Landwirtschaft/Pflanzenbau/Gentechnik/_Texte/Gentechnik_Wasgenauistdas.html <br>
<br>Gilbert, N. (2013). Case studies: A hard look at GM crops. Nature News, 497(7447), 24. https://doi.org/10.1038/497024a
+
<br>Gilbert, N. (2013). Case studies: A hard look at GM crops. Nature News, 497(7447), 24. (https://doi.org/10.1038/497024a)<br>
<br>GM Crops List—GM Approval Database | ISAAA.org. (n.d.). Retrieved 21 October 2019, from http://www.isaaa.org/gmapprovaldatabase/cropslist/default.asp
+
<br>GM Crops List—GM Approval Database | ISAAA.org. (n.d.). Retrieved 21 October 2019, from http://www.isaaa.org/gmapprovaldatabase/cropslist/default.asp <br>
<br>Herrera‐Estrella, L., Block, M. D., Messens, E., Hernalsteens, J.-P., Montagu, M. V., & Schell, J. (1983). Chimeric genes as dominant selectable markers in plant cells. The EMBO Journal, 2(6), 987–995. https://doi.org/10.1002/j.1460-2075.1983.tb01532.x
+
<br>Herrera‐Estrella, L., Block, M. D., Messens, E., Hernalsteens, J.-P., Montagu, M. V., & Schell, J. (1983). Chimeric genes as dominant selectable markers in plant cells. The EMBO Journal, 2(6), 987–995. (https://doi.org/10.1002/j.1460-2075.1983.tb01532.x)<br>
<br>Hilbeck, A., Binimelis, R., Defarge, N., Steinbrecher, R., Székács, A., Wickson, F., … Wynne, B. (2015). No scientific consensus on GMO safety. Environmental Sciences Europe, 27(1), 4. https://doi.org/10.1186/s12302-014-0034-1
+
<br>Hilbeck, A., Binimelis, R., Defarge, N., Steinbrecher, R., Székács, A., Wickson, F., … Wynne, B. (2015). No scientific consensus on GMO safety. Environmental Sciences Europe, 27(1), 4. (https://doi.org/10.1186/s12302-014-0034-1)<br>
<br>Humphrey, J. H., West, K. P., & Sommer, A. (1992). Vitamin A deficiency and attributable mortality among under-5-year-olds. Bulletin of the World Health Organization, 70(2), 225–232.
+
<br>Humphrey, J. H., West, K. P., & Sommer, A. (1992). Vitamin A deficiency and attributable mortality among under-5-year-olds. Bulletin of the World Health Organization, 70(2), 225–232.<br>
<br>Insecticidal Plants: The Tech and Safety of GM Bt Crops. (2015, August 10). Retrieved 21 October 2019, from Science in the News website: http://sitn.hms.harvard.edu/flash/2015/insecticidal-plants/
+
<br>Insecticidal Plants: The Tech and Safety of GM Bt Crops. (2015, August 10). Retrieved 21 October 2019, from Science in the News website: http://sitn.hms.harvard.edu/flash/2015/insecticidal-plants/ <br>
<br>Is it safe to eat GM crops? | Royal Society. (n.d.). Retrieved 21 October 2019, from https://royalsociety.org/topics-policy/projects/gm-plants/is-it-safe-to-eat-gm-crops/
+
<br>Is it safe to eat GM crops? | Royal Society. (n.d.). Retrieved 21 October 2019, from https://royalsociety.org/topics-policy/projects/gm-plants/is-it-safe-to-eat-gm-crops/ <br><br>
ISAAA Brief 54-2018: Executive Summary | ISAAA.org. (n.d.). Retrieved 21 October 2019, from https://www.isaaa.org/resources/publications/briefs/54/executivesummary/default.asp
+
ISAAA Brief 54-2018: Executive Summary | ISAAA.org. (n.d.). Retrieved 21 October 2019, from https://www.isaaa.org/resources/publications/briefs/54/executivesummary/default.asp <br>
<br>Marris, C. (2001). Public views on GMOs: Deconstructing the myths. EMBO Reports, 2(7), 545–548. https://doi.org/10.1093/embo-reports/kve142
+
<br>Marris, C. (2001). Public views on GMOs: Deconstructing the myths. EMBO Reports, 2(7), 545–548. (https://doi.org/10.1093/embo-reports/kve142)<br>
<br>Mutant  Variety Database. (n.d.). Retrieved 21 October 2019, from https://mvd.iaea.org/#!Search?page=1&size=500&sortby=Name&sort=ASC
+
<br>Mutant  Variety Database. (n.d.). Retrieved 21 October 2019, from https://mvd.iaea.org/#!Search?page=1&size=500&sortby=Name&sort=ASC <br>
<br>Nicolia, A., Manzo, A., Veronesi, F., & Rosellini, D. (2014). An overview of the last 10 years of genetically engineered crop safety research. Critical Reviews in Biotechnology, 34(1), 77–88. https://doi.org/10.3109/07388551.2013.823595
+
<br>Nicolia, A., Manzo, A., Veronesi, F., & Rosellini, D. (2014). An overview of the last 10 years of genetically engineered crop safety research. Critical Reviews in Biotechnology, 34(1), 77–88. (https://doi.org/10.3109/07388551.2013.823595) <br>
<br>Nirenberg, M. W., Matthaei, J. H., Jones, O. W., Martin, R. G., & Barondes, S. H. (1963). Approximation of genetic code via cell-free protein synthesis directed by template RNA. Federation Proceedings, 22, 55–61.
+
<br>Nirenberg, M. W., Matthaei, J. H., Jones, O. W., Martin, R. G., & Barondes, S. H. (1963). Approximation of genetic code via cell-free protein synthesis directed by template RNA. Federation Proceedings, 22, 55–61.<br>
<br>Oladosu, Y., Rafii, M. Y., Abdullah, N., Hussin, G., Ramli, A., Rahim, H. A., Usman, M. (2016). Principle and application of plant mutagenesis in crop improvement: A review. Biotechnology & Biotechnological Equipment, 30(1), 1–16. https://doi.org/10.1080/13102818.2015.1087333
+
<br>Oladosu, Y., Rafii, M. Y., Abdullah, N., Hussin, G., Ramli, A., Rahim, H. A., Usman, M. (2016). Principle and application of plant mutagenesis in crop improvement: A review. Biotechnology & Biotechnological Equipment, 30(1), 1–16. (https://doi.org/10.1080/13102818.2015.1087333)<br>
<br>Publications Office of the European Union. (2010, November 11). A decade of EU-funded GMO research (2001-2010). [Website]. Retrieved 21 October 2019, from https://op.europa.eu:443/en/publication-detail/-/publication/d1be9ff9-f3fa-4f3c-86a5-beb0882e0e65
+
<br>Publications Office of the European Union. (2010, November 11). A decade of EU-funded GMO research (2001-2010). [Website]. Retrieved 21 October 2019, from https://op.europa.eu:443/en/publication-detail/-/publication/d1be9ff9-f3fa-4f3c-86a5-beb0882e0e65 <br>
<br>Ran, F. A., Hsu, P. D., Wright, J., Agarwala, V., Scott, D. A., & Zhang, F. (2013). Genome engineering using the CRISPR-Cas9 system. Nature Protocols, 8(11), 2281–2308. https://doi.org/10.1038/nprot.2013.143
+
<br>Ran, F. A., Hsu, P. D., Wright, J., Agarwala, V., Scott, D. A., & Zhang, F. (2013). Genome engineering using the CRISPR-Cas9 system. Nature Protocols, 8(11), 2281–2308. (https://doi.org/10.1038/nprot.2013.143)<br>
<br>Sanchis, V. (2011). From microbial sprays to insect-resistant transgenic plants: History of the biospesticide <Emphasis Type="Italic">Bacillus thuringiensis</Emphasis>. A review. Agronomy for Sustainable Development, 31(1), 217–231. https://doi.org/10.1051/agro/2010027
+
<br>Sanchis, V. (2011). From microbial sprays to insect-resistant transgenic plants: History of the biospesticide <Emphasis Type="Italic">Bacillus thuringiensis</Emphasis>. A review. Agronomy for Sustainable Development, 31(1), 217–231. (https://doi.org/10.1051/agro/2010027) <br>
<br>Sanford, J. C. (1990). Biolistic plant transformation. Physiologia Plantarum, 79(1), 206–209. https://doi.org/10.1111/j.1399-3054.1990.tb05888.x
+
<br>Sanford, J. C. (1990). Biolistic plant transformation. Physiologia Plantarum, 79(1), 206–209. (https://doi.org/10.1111/j.1399-3054.1990.tb05888.x)<br>
<br>Schouten, H. J., Krens, F. A., & Jacobsen, E. (2006). Cisgenic plants are similar to traditionally bred plants: International regulations for genetically modified organisms should be altered to exempt cisgenesis. EMBO Reports, 7(8), 750–753. https://doi.org/10.1038/sj.embor.7400769
+
<br>Schouten, H. J., Krens, F. A., & Jacobsen, E. (2006). Cisgenic plants are similar to traditionally bred plants: International regulations for genetically modified organisms should be altered to exempt cisgenesis. EMBO Reports, 7(8), 750–753. (https://doi.org/10.1038/sj.embor.7400769)<br>
<br>Snell, C., Bernheim, A., Bergé, J.-B., Kuntz, M., Pascal, G., Paris, A., & Ricroch, A. E. (2012). Assessment of the health impact of GM plant diets in long-term and multigenerational animal feeding trials: A literature review. Food and Chemical Toxicology, 50(3), 1134–1148. https://doi.org/10.1016/j.fct.2011.11.048
+
<br>Snell, C., Bernheim, A., Bergé, J.-B., Kuntz, M., Pascal, G., Paris, A., & Ricroch, A. E. (2012). Assessment of the health impact of GM plant diets in long-term and multigenerational animal feeding trials: A literature review. Food and Chemical Toxicology, 50(3), 1134–1148. (https://doi.org/10.1016/j.fct.2011.11.048)<br>
<br>Snow, A. A., & Palma, P. M. (1997). Commercialization of Transgenic Plants: Potential Ecological Risks. BioScience, 47(2), 86–96. https://doi.org/10.2307/1313019
+
<br>Snow, A. A., & Palma, P. M. (1997). Commercialization of Transgenic Plants: Potential Ecological Risks. BioScience, 47(2), 86–96. (https://doi.org/10.2307/1313019)<br>
<br>Tabashnik, B. E. (1994). Evolution of Resistance to Bacillus Thuringiensis. Annual Review of Entomology, 39(1), 47–79. https://doi.org/10.1146/annurev.en.39.010194.000403
+
<br>Tabashnik, B. E. (1994). Evolution of Resistance to Bacillus Thuringiensis. Annual Review of Entomology, 39(1), 47–79. (https://doi.org/10.1146/annurev.en.39.010194.000403)<br>
<br>Time to call out the anti-GMO conspiracy theory – Mark Lynas. (n.d.). Retrieved 21 October 2019, from http://www.marklynas.org/2013/04/time-to-call-out-the-anti-gmo-conspiracy-theory/
+
<br>Time to call out the anti-GMO conspiracy theory – Mark Lynas. (n.d.). Retrieved 21 October 2019, from (http://www.marklynas.org/2013/04/time-to-call-out-the-anti-gmo-conspiracy-theory/)<br>
<br>Werth, J., Boucher, L., Thornby, D., Walker, S., & Charles, G. (2013). Changes in weed species since the introduction of glyphosate-resistant cotton. Crop and Pasture Science, 64(8), 791–798. https://doi.org/10.1071/CP13167
+
<br>Werth, J., Boucher, L., Thornby, D., Walker, S., & Charles, G. (2013). Changes in weed species since the introduction of glyphosate-resistant cotton. Crop and Pasture Science, 64(8), 791–798. (https://doi.org/10.1071/CP13167)<br>
<br>e, X., Al-Babili, S., Klöti, A., Zhang, J., Lucca, P., Beyer, P., & Potrykus, I. (2000). Engineering the Provitamin A (β-Carotene) Biosynthetic Pathway into (Carotenoid-Free) Rice Endosperm. Science, 287(5451), 303–305. https://doi.org/10.1126/science.287.5451.303
+
<br>e, X., Al-Babili, S., Klöti, A., Zhang, J., Lucca, P., Beyer, P., & Potrykus, I. (2000). Engineering the Provitamin A (β-Carotene) Biosynthetic Pathway into (Carotenoid-Free) Rice Endosperm. Science, 287(5451), 303–305. (https://doi.org/10.1126/science.287.5451.303)<br>
<br>Zhang, C., Wohlhueter, R., & Zhang, H. (2016). Genetically modified foods: A critical review of their promise and problems. Food Science and Human Wellness, 5(3), 116–123. https://doi.org/10.1016/j.fshw.2016.04.002
+
<br>Zhang, C., Wohlhueter, R., & Zhang, H. (2016). Genetically modified foods: A critical review of their promise and problems. Food Science and Human Wellness, 5(3), 116–123. (https://doi.org/10.1016/j.fshw.2016.04.002)<br>
<br>Zimmer, C. (2013, May 16). From Fearsome Predator to Man’s Best Friend. The New York Times. Retrieved from https://www.nytimes.com/2013/05/16/science/dogs-from-fearsome-predator-to-mans-best-friend.html
+
<br>Zimmer, C. (2013, May 16). From Fearsome Predator to Man’s Best Friend. The New York Times. Retrieved from https://www.nytimes.com/2013/05/16/science/dogs-from-fearsome-predator-to-mans-best-friend.html <br>
<br>Goedhart, J., von Stetten, D., Noirclerc-Savoye, M., Lelimousin, M., Joosen, L., Hink, M. A., Royant, A. (2012). Structure-guided evolution of cyan fluorescent proteins towards a quantum yield of 93%. Nature Communications, 3, 751. https://doi.org/10.1038/ncomms1738
+
<br>Goedhart, J., von Stetten, D., Noirclerc-Savoye, M., Lelimousin, M., Joosen, L., Hink, M. A., Royant, A. (2012). Structure-guided evolution of cyan fluorescent proteins towards a quantum yield of 93%. Nature Communications, 3, 751. (https://doi.org/10.1038/ncomms1738)<br>
<br>Kukolka, F., & M. Niemeyer, C. (2004). Synthesis of fluorescent oligonucleotide –EYFP conjugate: Towards supramolecular construction of semisynthetic biomolecular antennae. Organic & Biomolecular Chemistry, 2(15), 2203–2206. https://doi.org/10.1039/B406492E
+
<br>Kukolka, F., & M. Niemeyer, C. (2004). Synthesis of fluorescent oligonucleotide –EYFP conjugate: Towards supramolecular construction of semisynthetic biomolecular antennae. Organic & Biomolecular Chemistry, 2(15), 2203–2206. (https://doi.org/10.1039/B406492E)<br>
<br>Lambert, T. (o. J.). PHluorin2 at FPbase. Abgerufen 21. Oktober 2019, von FPbase website: https://www.fpbase.org/protein/phluorin2/
+
<br>Lambert, T. (o. J.). PHluorin2 at FPbase. Abgerufen 21. Oktober 2019, von FPbase website: https://www.fpbase.org/protein/phluorin2/ <br>
<br>Mahon, M. J. (2011). pHluorin2: An enhanced, ratiometric, pH-sensitive green florescent protein. Advances in bioscience and biotechnology (Print), 2(3), 132–137. https://doi.org/10.4236/abb.2011.23021
+
<br>Mahon, M. J. (2011). pHluorin2: An enhanced, ratiometric, pH-sensitive green florescent protein. Advances in bioscience and biotechnology (Print), 2(3), 132–137. (https://doi.org/10.4236/abb.2011.23021)<br>
<br>Lee, M. E., DeLoache, W. C., Cervantes, B., & Dueber, J. E. (2015). A Highly Characterized Yeast Toolkit for Modular, Multipart Assembly. ACS synthetic biology, 4(9), 975–986.
+
<br>Lee, M. E., DeLoache, W. C., Cervantes, B., & Dueber, J. E. (2015). A Highly Characterized Yeast Toolkit for Modular, Multipart Assembly. ACS synthetic biology, 4(9), 975–986.<br>
<br>Chen, J., Morita, T., & Gottesman, S. (2019). Regulation of Transcription Termination of Small RNAs and by Small RNAs: Molecular Mechanisms and Biological Functions. Frontiers in Cellular and Infection Microbiology, 9. https://doi.org/10.3389/fcimb.2019.00201
+
<br>Chen, J., Morita, T., & Gottesman, S. (2019). Regulation of Transcription Termination of Small RNAs and by Small RNAs: Molecular Mechanisms and Biological Functions. Frontiers in Cellular and Infection Microbiology, 9. (https://doi.org/10.3389/fcimb.2019.00201)<br><br>
de Hoon, M. J. L., Makita, Y., Nakai, K., & Miyano, S. (2005). Prediction of Transcriptional Terminators in Bacillus subtilis and Related Species. PLoS Computational Biology, 1(3), e25. https://doi.org/10.1371/journal.pcbi.0010025
+
de Hoon, M. J. L., Makita, Y., Nakai, K., & Miyano, S. (2005). Prediction of Transcriptional Terminators in Bacillus subtilis and Related Species. PLoS Computational Biology, 1(3), e25. (https://doi.org/10.1371/journal.pcbi.0010025)<br>
<br>Krebs, J., Lewin, B., Kilpatrick, S. & Goldstein, E. (2014). Lewin's genes XI. Burlington, Mass: Jones & Bartlett Learning.
+
<br>Krebs, J., Lewin, B., Kilpatrick, S. & Goldstein, E. (2014). Lewin's genes XI. Burlington, Mass: Jones & Bartlett Learning.<br>
<br>Gautheret D, Lambert A. (2001) Direct RNA Motif Definition and Identification from Multiple Sequence Alignments using Secondary Structure Profiles. J Mol Biol. 313:1003–11 (abstract).
+
<br>Gautheret D, Lambert A. (2001) Direct RNA Motif Definition and Identification from Multiple Sequence Alignments using Secondary Structure Profiles. J Mol Biol. 313:1003–11 (abstract).<br>
<br>Macke T, Ecker D, Gutell R, Gautheret D, Case DA and Sampath R. (2001) RNAMotif – A new RNA secondary structure definition and discovery algorithm. Nucleic Acids Res. 29:4724–4735 (abstract).
+
<br>Macke T, Ecker D, Gutell R, Gautheret D, Case DA and Sampath R. (2001) RNAMotif – A new RNA secondary structure definition and discovery algorithm. Nucleic Acids Res. 29:4724–4735 (abstract).<br>
<br>Kingsford, C. L., Ayanbule, K., & Salzberg, S. L. (2007). Rapid, accurate, computational discovery of Rho-independent transcription terminators illuminates their relationship to DNA uptake. Genome Biology, 8(2), R22. https://doi.org/10.1186/gb-2007-8-2-r22
+
<br>Kingsford, C. L., Ayanbule, K., & Salzberg, S. L. (2007). Rapid, accurate, computational discovery of Rho-independent transcription terminators illuminates their relationship to DNA uptake. Genome Biology, 8(2), R22. (https://doi.org/10.1186/gb-2007-8-2-r22)<br>
<br>V. Solovyev, A Salamov (2011) Automatic Annotation of Microbial Genomes and Metagenomic Sequences. In Metagenomics and its Applications in Agriculture, Biomedicine and Environmental Studies (Ed. R.W. Li), Nova Science Publishers, p. 61-78
+
<br>V. Solovyev, A Salamov (2011) Automatic Annotation of Microbial Genomes and Metagenomic Sequences. In Metagenomics and its Applications in Agriculture, Biomedicine and Environmental Studies (Ed. R.W. Li), Nova Science Publishers, p. 61-78 <br>
<br>Chen, Y.-J., Liu, P., Nielsen, A. A. K., Brophy, J. A. N., Clancy, K., Peterson, T., & Voigt, C. A. (2013). Characterization of 582 natural and synthetic terminators and quantification of their design constraints. Nature Methods, 10(7), 659–664. https://doi.org/10.1038/nmeth.2515
+
<br>Chen, Y.-J., Liu, P., Nielsen, A. A. K., Brophy, J. A. N., Clancy, K., Peterson, T., & Voigt, C. A. (2013). Characterization of 582 natural and synthetic terminators and quantification of their design constraints. Nature Methods, 10(7), 659–664. (https://doi.org/10.1038/nmeth.2515)<br>
<br>Vijayan, V., Jain, I. H., & O’Shea, E. K. (2011). A high resolution map of a cyanobacterial transcriptome. Genome Biology, 12(5), R47. https://doi.org/10.1186/gb-2011-12-5-r47
+
<br>Vijayan, V., Jain, I. H., & O’Shea, E. K. (2011). A high resolution map of a cyanobacterial transcriptome. Genome Biology, 12(5), R47. (https://doi.org/10.1186/gb-2011-12-5-r47)<br>
<br>Creecy, J. P., & Conway, T. (2015). Quantitative bacterial transcriptomics with RNA-seq. Current Opinion in Microbiology, 23, 133–140. https://doi.org/10.1016/j.mib.2014.11.011
+
<br>Creecy, J. P., & Conway, T. (2015). Quantitative bacterial transcriptomics with RNA-seq. Current Opinion in Microbiology, 23, 133–140. (https://doi.org/10.1016/j.mib.2014.11.011)<br>
<br>Sugimoto, N., Nakano, S. -i., Yoneyama, M., & Honda, K. -i. (1996). Improved Thermodynamic Parameters and Helix Initiation Factor to Predict Stability of DNA Duplexes. Nucleic Acids Research, 24(22), 4501–4505. https://doi.org/10.1093/nar/24.22.4501  
+
<br>Sugimoto, N., Nakano, S. -i., Yoneyama, M., & Honda, K. -i. (1996). Improved Thermodynamic Parameters and Helix Initiation Factor to Predict Stability of DNA Duplexes. Nucleic Acids Research, 24(22), 4501–4505. (https://doi.org/10.1093/nar/24.22.4501)<br>
<br>Russo, D. A., Zedler, J. A. Z., Wittmann, D. N., Möllers, B., Singh, R. K., Batth, T. S., ... & Jensen, P. E. (2019). Expression and secretion of a lytic polysaccharide monooxygenase by a fast-growing cyanobacterium. Biotechnology for biofuels, 12(1), 74.
+
<br>Russo, D. A., Zedler, J. A. Z., Wittmann, D. N., Möllers, B., Singh, R. K., Batth, T. S., ... & Jensen, P. E. (2019). Expression and secretion of a lytic polysaccharide monooxygenase by a fast-growing cyanobacterium. Biotechnology for biofuels, 12(1), 74. <br>
<br>Casteljau, P. (1963). Surfaces à pôles, INPI
+
<br>Casteljau, P. (1963). Surfaces à pôles, INPI <br>
<br>Hoschek, J. & Lasser, D. (1993). Fundamentals of computer-aided geometric design. Wellesley, Mass: A.K. Peters.
+
<br>Hoschek, J. & Lasser, D. (1993). Fundamentals of computer-aided geometric design. Wellesley, Mass: A.K. Peters. <br>
<br>R., J., & de Boor, C. (1980). A Practical Guide to Splines. Mathematics of Computation, 34(149), 325.
+
<br>R., J., & de Boor, C. (1980). A Practical Guide to Splines. Mathematics of Computation, 34(149), 325. <br>
 
<br>Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., ... & Vanderplas, J. (2011). Scikit-learn: Machine learning in Python. Journal of machine learning research, 12(Oct), 2825-2830.  
 
<br>Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., ... & Vanderplas, J. (2011). Scikit-learn: Machine learning in Python. Journal of machine learning research, 12(Oct), 2825-2830.  
  

Revision as of 16:42, 7 December 2019

D E S C R I P T I O N


We proudly present our project SYNTEX. We are establishing the new chassis Synechocococcus elongatus UTEX 2973 for phototrophic Synthetic Biology.


SYNECHOCOCCUS
ELONGATUS


An extensive review on the history of our chassis, recent findings and its potential future.

STRAIN
ENGINEERING


Here we show the results of our Strain Engineering project to tame our "wolf".

MARBURG
COLLECTION 2.0


We present to you the Marburg Collection 2.0, an extensive addition to the previosly established part collection that focuses around cyanobacteria.

P R O J E C T
I N S P I R A T I O N


The inspiration for our project.

R E F E R E N C E S


Here we list up our references.