Difference between revisions of "Team:Marburg/Design"

Line 1: Line 1:
 
{{Marburg}}
 
{{Marburg}}
 
<html>
 
<html>
 +
<style>
 +
    .box-dark {
 +
      background-color: #3d404d;
 +
      min-height: 30vh;
 +
      box-shadow: 1px 1px 40px black;
 +
      margin-left: -10vw;
 +
      width: 120vw;
 +
      position: relative;
 +
      z-index: 2;
 +
      display: flex;
 +
      flex-direction: column;
 +
      align-items: center;
 +
      transform: rotate(355deg);
 +
      justify-content: center;
 +
      margin-top: -12vh;
 +
    }
  
<html style="overflow: hidden">
+
    .heading {
<head>
+
      color: #f5f5f5;
  <link rel="stylesheet" type="text/css" href="./styles.css">
+
      text-align: center;
  <script type="text/javascript" src="./scripts.js"></script>
+
      font-size: 1.75em;
  <script type="text/javascript" src="https://code.jquery.com/jquery-2.2.4.min.js"></script>
+
      width: fit-content;
  <link rel="stylesheet" href="https://cdnjs.cloudflare.com/ajax/libs/bulma/0.7.5/css/bulma.min.css">
+
      margin-top: 25px;
</head>
+
      margin-bottom: unset !important;
 +
      transform: rotate(-355deg);
 +
    }
  
<body style="overflow: auto; max-height: 100vh;">
+
    .line {
 +
      border-top: 2px solid #f5f5f5;
 +
      background-color: #f5f5f5;
 +
      border-width: 2px;
 +
      display: block;
 +
      width: 100px;
 +
      margin-top: 25px;
 +
      margin-bottom: unset;
 +
      transform: rotate(-355deg);
 +
    }
  
 +
    .logo {
 +
      width: 100px;
 +
      height: 100px;
 +
      position: absolute;
 +
      bottom: -50px;
 +
      transform: rotate(-355deg);
 +
      margin-left: -10px;
 +
    }
  
<p><b>Design</b><br>
+
    .main {
<i>“Always plan ahead. It wasn’t raining when Noah build the ark”</i> - <b>Richard Cushing</b><br>
+
      overflow-x: hidden;
 +
    }
  
What does expanding the golden gate based Marburg Collection, automating time consuming lab work and establishing the CRISPR/Cpf1 system in Synechococcus elongatus UTEX 2973 have in common?<br>
+
    @media (max-width: 810px) {
To achieve these objectives, it is always necessary to have a comprehensive theoretical preparation. It all starts with literature research, summarizing the current state of the art and based on this developing own ideas. To have the theoretical background settled before the lab work starts is a key point of every project and consumes many hours. <br>
+
Because in the near future phototrophic organisms will get more and more relevance for biotechnological applications, we want to establish the use of Synechococcus elongatus as a phototrophic organism for synthetic biology. Following the principles of synthetic biology to simplify the process of engineering of biological systems, we set it our goal to establish Synechococcus elongatus UTEX 2973 as the fastest and most accessible phototrophic chassis to date, providing it as a wind tunnel for phototrophic organisms with user friendly and standardized workflows.<br>
+
In order to achieve these goals, a lot of effort has been put into designing, building, testing, evaluating and learning. Further, these steps had to be iterated over and over again to elaborate our standardized designs. By providing you our theoretical background we want to give you an insight in our decision-making.<br>
+
  
 +
      .logo,
 +
      .line,
 +
      .heading {
 +
        margin-left: -30px;
 +
      }
  
Establishing the fastest phototrophic organism.<br>
+
      .line {
We want to provide a fast growing and easy to handle chassis for applied research. By optimizing the cultivation conditions we worked towards the absolute maximum of growth speed.<br>
+
        margin: 1.5rem 0 !important;
<br>
+
        margin-left: -40px !important;
<br>
+
      }
 +
    }
  
<hr>
+
 +
  
 
+
 
+
<b>Strain Engineering</b><br>
+
  </style>
In Strain Engineering we modified <i>Synechococcus elongatus</i> UTEX 2973 to establish the CRISPR/Cpf1 system in our organism. <br>(Further we tailored strains that the organism suits to several experimental setups and domesticated a wild type plasmid for further genetic manipulation.)
+
  <div>
<br>
+
    <div class="box-dark">
 
+
      <h1 class="heading">
<hr>
+
        <Design>
<b>Design of the Marburg Collection 2.0</b><br>
+
      </h1>
We expanded last years Marburg Collection 1.0, a golden-gate based cloning toolbox, to the Marbrug Collection 2.0, consisting of 190 parts and made the parts suittable for <i>Synechococcus elongatus</i> UTEX 2973. “Here we describe the design of all relevant features of this toolbox. We provide instruction on how to use the connectors and the thought behind the selection of specific fusion sites.<br>
+
      <hr class="line">
 +
      <img src="https://static.igem.org/mediawiki/2019/a/ac/T--Marburg--logo.svg"
 +
        class="logo"
 +
        alt="Syntex Logo">
 +
    </div>
 +
    <section style="margin-top: 11vh;">
 +
      <p><b>Design</b><br>
 +
<i>“Always plan ahead. It wasn’t raining when Noah build the ark”</i> - <b>Richard Cushing</b><br>
 +
<p>
 +
What does expanding the golden gate based Marburg Collection, automating time consuming lab work and establishing the  
 +
CRISPR/Cpf1 system in <i>Synechococcus elongatus</i> UTEX 2973 have in common?<br>
 +
To achieve these objectives, it is always necessary to have a comprehensive theoretical preparation. It all starts with
 +
literature research, summarizing the current state of the art and based on this developing own ideas. To have the theoretical
 +
background settled before the lab work starts is a key point of every project and consumes many hours. <br>
 +
Because in the near future phototrophic organisms will get more and more relevance for biotechnological applications,
 +
we want to establish the use of <i>Synechococcus elongatus</i> as a phototrophic organism for synthetic biology. Following the  
 +
principles of synthetic biology to simplify the process of engineering of biological systems, we set it our goal to establish
 +
<i>Synechococcus elongatus</i> UTEX 2973 as the fastest and most accessible phototrophic chassis to date, providing it as a
 +
wind tunnel for phototrophic organisms with user friendly and standardized workflows.<br>
 +
In order to achieve these goals, a lot of effort has been put into designing, building, testing, evaluating and learning.
 +
Further, these steps had to be iterated over and over again to elaborate our standardized designs. By providing you our
 +
theoretical background we want to give you an insight in our decision-making.<br>
 
</p>
 
</p>
 +
    </section>
 +
    <hr>
 +
    <section class="section grid">
 +
      <div class="sub"
 +
        onclick="popup('model1')">
 +
        <div class="sub-header">
 +
          <h1>
 +
            Strain Engineering
 +
          </h1>
 +
          <hr>
 +
        </div>
 +
        <div class="sub-content">
 +
In Strain Engineering we modified <i>Synechococcus elongatus</i> UTEX 2973 to establish the CRISPR/Cpf1
 +
system in our organism. <br>(Further we tailored strains that the organism suits to several experimental
 +
setups and domesticated a wild type plasmid for further genetic manipulation.)
 
<br>
 
<br>
<br>
+
        </div>
<hr>
+
      </div>
 
+
      <div id="model1"
+
        class="popup">
    <p><b>Natural competence</b></p>
+
        <div class="popup-container">
    <p>  
+
          <div class="popup-header">
 
+
            <h1 class="title">
        As mentioned in our <a href="https://2019.igem.org/Team:Marburg/Description">description</a>, <i>Synechococcus elongatus </i>UTEX 2973 is no
+
              Strain Engineering
 +
            </h1>
 +
            <button type="button"
 +
              onclick="hide('model1')">X</button>
 +
          </div>
 +
          <div class="popup-content"
 +
            style="text-align: justify;">
 +
            <section class="section">
 +
              <div class="wrap-collabsible">
 +
<input id="collapsible1" class="toggle" type="checkbox">
 +
<label for="collapsible1" class="lbl-toggle">Natural Competence</label>
 +
<div class="collapsible-content">
 +
<div class="content-inner">
 +
<p>
 +
<u>Natural Competence</u><br>
 +
As mentioned in our <a href="https://2019.igem.org/Team:Marburg/Description">description</a>, <i>Synechococcus elongatus </i>UTEX 2973 is no
 
         longer
 
         longer
 
         naturally
 
         naturally
Line 172: Line 263:
 
                                 <br>
 
                                 <br>
 
     </p>
 
     </p>
<br>
+
<div class="wrap-collabsible">
<br>
+
<input id="collapsible2" class="toggle" type="checkbox">
<hr>
+
<label for="collapsible2" class="lbl-toggle">CRISPR gene editing</label>
 
+
<div class="collapsible-content">
    <p><b>CRISPR gene editing</b></p>
+
<div class="content-inner">
+
<p>
    <p>
+
<u>CRISPR gene editing)</u><br>
 
+
CRISPR/Cas systems are powerful tools that have gained a lot of popularity in the recent years.
        CRISPR/Cas systems are powerful tools that have gained a lot of popularity in the recent years.
+
 
         As they can be used for a wide array of applications - like the integration of whole genes, alteration of single
 
         As they can be used for a wide array of applications - like the integration of whole genes, alteration of single
 
         nucleotides, knock-outs of whole genetic regions, as well as the use of the DNA-binding property in a multitude
 
         nucleotides, knock-outs of whole genetic regions, as well as the use of the DNA-binding property in a multitude
Line 237: Line 327:
 
                     this way the amount of crRNA/Cas12a can be controlled by choosing promoters with different
 
                     this way the amount of crRNA/Cas12a can be controlled by choosing promoters with different
 
                     strengths.
 
                     strengths.
                     <figure Style="text-align:center">
+
                      
                        <img style="height: 40ex; width:40ex" src=AbbildungVinca alt="blub">
+
                        <figcaption>
+
                            Abbildung von Geneious -> VINCA !
+
                        </figcaption>
+
                    </figure>
+
 
                     Our initial plan was to synthesize the crRNA with the desired overhangs, but as the sequence
 
                     Our initial plan was to synthesize the crRNA with the desired overhangs, but as the sequence
 
                     contains multiple direct repeats, it was not possible for providers to synthesize this
 
                     contains multiple direct repeats, it was not possible for providers to synthesize this
Line 251: Line 336:
 
                     level 1 assembly Golden Gate reaction. The cloning of the level 2 part with this crRNA part
 
                     level 1 assembly Golden Gate reaction. The cloning of the level 2 part with this crRNA part
 
                     was done by ending with a ligation step to make sure the GFP dropout remains in the vector.
 
                     was done by ending with a ligation step to make sure the GFP dropout remains in the vector.
     </p>  
+
     </p>
    <br>
+
<br>
+
<br>
<hr>
+
</p>
    <b><p>Cyanobacterial shuttle vectors</b></p>
+
</div>
    <p> Following our dream to create the most versatile, MoClo compatible shuttle vector for cyanobacteria we made sure
+
</div>
 +
</div>
 +
<div class="wrap-collabsible">
 +
<input id="collapsible3" class="toggle" type="checkbox">
 +
<label for="collapsible3" class="lbl-toggle">Cyanobacterial shuttle vectors</label>
 +
<div class="collapsible-content">
 +
<div class="content-inner">
 +
<p>
 +
<u>Cyanobacterial shuttle vectors</u><br>
 +
<p> Following our dream to create the most versatile, MoClo compatible shuttle vector for cyanobacteria we made sure
 
         to pay attention to detail.
 
         to pay attention to detail.
 
         When creating new shuttle vectors, one of the most important points to consider is the replication element that
 
         When creating new shuttle vectors, one of the most important points to consider is the replication element that
Line 331: Line 425:
  
 
     </p>
 
     </p>
 +
<br>
 +
</p>
 +
</div>
 +
</div>
 +
</div>
 +
 +
<br>
 +
</p>
 +
</div>
 +
</div>
 +
</div>
 +
            </section>
 +
          </div>
 +
        </div>
 +
      </div>
 +
      <div class="sub"
 +
        onclick="popup('model2')">
 +
        <div class="sub-header">
 +
          <h1>
 +
            Toolbox
 +
          </h1>
 +
          <hr>
 +
        </div>
 +
        <div class="sub-content">
 +
          <p>We expanded last years Marburg Collection 1.0, a golden-gate based cloning toolbox, to the Marbrug
 +
  Collection 2.0,  consisting of 190 parts and made the parts suittable for <i>Synechococcus elongatus</i>
 +
  UTEX 2973.  “Here we describe the design of all relevant features of this toolbox. We provide instruction on
 +
  how to use the connectors and the thought behind the selection of specific fusion sites.”<br>
 
</p>
 
</p>
<br>
+
        </div>
<br>
+
      </div>
<hr>
+
      <div id="model2"
 
+
        class="popup">
 
+
        <div class="popup-container">
<p><b> The Marburg Collection: a recap</b></p>
+
          <div class="popup-header">
 +
            <h1 class="title">
 +
              Toolbox>
 +
            </h1>
 +
            <button type="button"
 +
              onclick="hide('model2')">X</button>
 +
          </div>
 +
          <div class="popup-content"
 +
            style="text-align: justify;">
 +
            <section class="section">
 +
             
 +
  <div class="wrap-collabsible">
 +
<input id="collapsible2" class="toggle" type="checkbox">
 +
<label for="collapsible2" class="lbl-toggle">The Marburg Collection: a recap</label>
 +
<div class="collapsible-content">
 +
<div class="content-inner">
 +
<p>
 +
<u>The Marburg Collection: a recap</u><br>
 +
 
<p>The Marburg Collection is a toolbox from last year’s iGEM Marburg team for the rational design of metabolic pathways and  
 
<p>The Marburg Collection is a toolbox from last year’s iGEM Marburg team for the rational design of metabolic pathways and  
 
genetic circuits or any other DNA construct. Thanks to its flexible design based on the ‘Dueber toolbox’ design from  
 
genetic circuits or any other DNA construct. Thanks to its flexible design based on the ‘Dueber toolbox’ design from  
Line 355: Line 495:
 
   </figure><br>
 
   </figure><br>
 
<br>
 
<br>
    
+
   <div class="wrap-collabsible">
  <p><b> Design of placeholders </b></p>
+
<input id="collapsiblebla2" class="toggle" type="checkbox">
 +
<label for="collapsiblebla2" class="lbl-toggle">Design of placeholders</label>
 +
<div class="collapsible-content">
 +
<div class="content-inner">
 +
<p>
 +
<u>Design of placeholders</u>
 +
 
  <p>Here we present a new feature of the Marburg Collection 2.0: Placeholders. These parts make it possible to construct  
 
  <p>Here we present a new feature of the Marburg Collection 2.0: Placeholders. These parts make it possible to construct  
 
  plasmids with a placeholder, which can be later on exchanged with any part of the same type.<br> A key feature in our  
 
  plasmids with a placeholder, which can be later on exchanged with any part of the same type.<br> A key feature in our  
Line 363: Line 509:
 
  it contains a GFP cassette and reversed BsaI cutting sites. This allows BsaI cleavage and removal of the GFP cassette even  
 
  it contains a GFP cassette and reversed BsaI cutting sites. This allows BsaI cleavage and removal of the GFP cassette even  
 
  after assembly, due to the fact that the BsaI recognition site is not removed from the placeholder.  
 
  after assembly, due to the fact that the BsaI recognition site is not removed from the placeholder.  
  </p><br>
+
  </p><br><p>After that any promoter of choice can be inserted at that position. After ligation, no BsaI cutting sites remain on  
 
+
+
<br>
+
<p>After that any promoter of choice can be inserted at that position. After ligation, no BsaI cutting sites remain on  
+
 
the vector, so in the end mainly the newly assembled remains. These steps also happen in a one pot one step reaction just  
 
the vector, so in the end mainly the newly assembled remains. These steps also happen in a one pot one step reaction just  
 
like any other Golden Gate assembly.</p><br>
 
like any other Golden Gate assembly.</p><br>
Line 381: Line 523:
 
   <p>White green selection under UV light can be used to determine the colonies with the right plasmid: green  
 
   <p>White green selection under UV light can be used to determine the colonies with the right plasmid: green  
 
   ones still contain the plasmid with a placeholder, white ones contain the desired vector. </p><br>
 
   ones still contain the plasmid with a placeholder, white ones contain the desired vector. </p><br>
 
+
<br>
  <p><b> Available Placeholders </b></p>
+
</p>
 +
</div>
 +
</div>
 +
</div>
 +
 +
<div class="wrap-collabsible">
 +
<input id="collapsible2na" class="toggle" type="checkbox">
 +
<label for="collapsible2na" class="lbl-toggle">Available Placeholders</label>
 +
<div class="collapsible-content">
 +
<div class="content-inner">
 +
<p>
 +
<u>Available Placeholders</u>
 +
 
   <p>Placeholders exist for every position from 1-6, but technically placeholders can also span multiple positions to  
 
   <p>Placeholders exist for every position from 1-6, but technically placeholders can also span multiple positions to  
 
   insert multiple parts at once. For example a placeholder for the position promoter and RBS could be replaced with any  
 
   insert multiple parts at once. For example a placeholder for the position promoter and RBS could be replaced with any  
Line 389: Line 543:
 
   design the construction of more placeholder is so simple that it can be done by the user himself with a single site  
 
   design the construction of more placeholder is so simple that it can be done by the user himself with a single site  
 
   directed mutagenesis of a flank.</p><br>
 
   directed mutagenesis of a flank.</p><br>
 
+
<br>
  <p><b> Design of the first panS based MoClo compatible shuttle vector </b></p>
+
</p>
  <p>The heart piece of green expansion is BBa_3228069, a LVL 0 part containing origins of replication for  
+
</div>
 +
</div>
 +
</div>
 +
 +
<div class="wrap-collabsible">
 +
<input id="collapsible2jkl" class="toggle" type="checkbox">
 +
<label for="collapsible2jkl" class="lbl-toggle">Design of the first panS based MoClo compatible shuttle vector</label>
 +
<div class="collapsible-content">
 +
<div class="content-inner">
 +
<p>
 +
<u>Design of the first panS based MoClo compatible shuttle vector</u><br>
 +
  <p>The heart piece of green expansion is BBa_3228069, a LVL 0 part containing origins of replication for  
 
   <i>E. coli</i> and <i>S. elongatus</i> as well as a spectinomycin cassette. It resembles a type 7+8  
 
   <i>E. coli</i> and <i>S. elongatus</i> as well as a spectinomycin cassette. It resembles a type 7+8  
 
   (antibiotic cassette + ori) composite part and can be seen as the cyanobacteria specific LVL1 entry vector.  
 
   (antibiotic cassette + ori) composite part and can be seen as the cyanobacteria specific LVL1 entry vector.  
Line 407: Line 572:
 
       </figcaption>
 
       </figcaption>
 
   </figure><br>
 
   </figure><br>
 
+
 
<p><b>Designing the characterization of BioBricks</b></p>
+
<br>
 +
</p>
 +
</div>
 +
</div>
 +
</div>
 +
 +
<div class="wrap-collabsible">
 +
<input id="collapsibleih2" class="toggle" type="checkbox">
 +
<label for="collapsibleih2" class="lbl-toggle">Designing the characterization of BioBricks</label>
 +
<div class="collapsible-content">
 +
<div class="content-inner">
 +
<p>
 +
<u>Designing the characterization of BioBricks</u>
 +
 
<p>Here we present the design of the plasmids and the workflow used to characterize BioBricks.<br>In order to  
 
<p>Here we present the design of the plasmids and the workflow used to characterize BioBricks.<br>In order to  
 
characterize BioBricks they need to be inserted into a measurement vector that is stably maintained in cyanobacteria.  
 
characterize BioBricks they need to be inserted into a measurement vector that is stably maintained in cyanobacteria.  
Line 474: Line 652:
 
   <a href="https://www.ncbi.nlm.nih.gov/pubmed/23868258">(Chen et al., 2013)</a>.<br>This way of calculating isolative  
 
   <a href="https://www.ncbi.nlm.nih.gov/pubmed/23868258">(Chen et al., 2013)</a>.<br>This way of calculating isolative  
 
   strength is also used in RNA-seq to determine the strength of terminators.</p><br>
 
   strength is also used in RNA-seq to determine the strength of terminators.</p><br>
 
+
<br>
  <p><b> Modular Engineering of Genome Areas (M.E.G.A.) </b></p>
+
</p>
 +
</div>
 +
</div>
 +
</div>
 +
 
 +
 
 +
 +
<br>
 +
<div class="wrap-collabsible">
 +
<input id="collapsiblenoo2" class="toggle" type="checkbox">
 +
<label for="collapsiblenoo2" class="lbl-toggle">Modular Engineering of Genome Areas (M.E.G.A.)</label>
 +
<div class="collapsible-content">
 +
<div class="content-inner">
 +
<p>
 +
<u>Modular Engineering of Genome Areas (M.E.G.A.)</u><br>
 +
 
   <p>Here we represent an expansion to the Marburg Collection 2.0: M.E.G.A. – a set of parts for the genomic integration  
 
   <p>Here we represent an expansion to the Marburg Collection 2.0: M.E.G.A. – a set of parts for the genomic integration  
 
   of genes in <i>Synechococcus elongatus</i> UTEX2973 and other cyanobacteria that can be easily extended to other chassis.  
 
   of genes in <i>Synechococcus elongatus</i> UTEX2973 and other cyanobacteria that can be easily extended to other chassis.  
 
   This set includes parts with homologous flanks for homologous recombination as well as a necessary set of new terminators  
 
   This set includes parts with homologous flanks for homologous recombination as well as a necessary set of new terminators  
 
   and antibiotic resistances.</p><br>
 
   and antibiotic resistances.</p><br>
 
+
<br>
  <p><b> Finding new artificial Neutral integration Site options (a.N.S.o.) </b></p>
+
</p>
  <p>Artificial neutral integration Site options (aNSo) for our purpose in <i>Synechococcus elongatus</i> needed to fulfil  
+
</div>
 +
</div>
 +
</div>
 +
 
 +
 
 +
 +
<br>
 +
<div class="wrap-collabsible">
 +
<input id="collapsibleroh2" class="toggle" type="checkbox">
 +
<label for="collapsibleroh2" class="lbl-toggle">Finding new artificial Neutral integration Site options (a.N.S.o.)</label>
 +
<div class="collapsible-content">
 +
<div class="content-inner">
 +
<p>
 +
<u>Finding new artificial Neutral integration Site options (a.N.S.o.)</u><br>
 +
  <p>Artificial neutral integration Site options (aNSo) for our purpose in <i>Synechococcus elongatus</i> needed to fulfil  
 
   three criteria, to be genuinely considered as potential candidates.<br>A highly precise algorithm was implemented in a  
 
   three criteria, to be genuinely considered as potential candidates.<br>A highly precise algorithm was implemented in a  
 
   Python script to find these potential candidates
 
   Python script to find these potential candidates
Line 508: Line 715:
 
       </figcaption>
 
       </figcaption>
 
   </figure><br>
 
   </figure><br>
 +
<br>
 +
</p>
 +
</div>
 +
</div>
 +
</div>
 +
 
 +
 +
 +
<br>
 
    
 
    
   <p><b> Design neutral integration sites </b></p>
+
    
 +
<div class="wrap-collabsible">
 +
<input id="collapsible1002" class="toggle" type="checkbox">
 +
<label for="collapsible1002" class="lbl-toggle">Design neutral integration sites</label>
 +
<div class="collapsible-content">
 +
<div class="content-inner">
 +
<p>
 +
<u>Design neutral integration sites</u><br>
 +
 
   <p>For a successful homologous integration the sequence to be integrated needs to be flanked by two integration  
 
   <p>For a successful homologous integration the sequence to be integrated needs to be flanked by two integration  
 
   sites homologous to the neutral site on the target genome. Additionally, the integrated sequence needs to contain an  
 
   sites homologous to the neutral site on the target genome. Additionally, the integrated sequence needs to contain an  
Line 516: Line 740:
 
for integration sites as well. Since integration sites contain a BsmBI restriction site just like a connector part,  
 
for integration sites as well. Since integration sites contain a BsmBI restriction site just like a connector part,  
 
their construction is a bit more intricate than a normal part:
 
their construction is a bit more intricate than a normal part:
</p><br>
+
</p><br><div class="wrap-collabsible">
 
+
<div class="wrap-collabsible">
+
 
<input id="collapsibleowow" class="toggle" type="checkbox">
 
<input id="collapsibleowow" class="toggle" type="checkbox">
 
<label for="collapsiblewow" class="lbl-toggle">Building a homology/ connector part</label>
 
<label for="collapsiblewow" class="lbl-toggle">Building a homology/ connector part</label>
Line 592: Line 814:
 
   Our system offers the integration of up to 5 genes with 4 different selection markers at 5 different integration sites.  
 
   Our system offers the integration of up to 5 genes with 4 different selection markers at 5 different integration sites.  
 
   Therefore, the integration of up to 20 genes into the UTEX wild type genome is possible.
 
   Therefore, the integration of up to 20 genes into the UTEX wild type genome is possible.
  </p><br>
+
<br>
 
+
</p>
  <p><b>Fluorescence reporters for characterization of parts</b></p>
+
</div>
 +
</div>
 +
</div>
 +
 
 +
 
 +
 +
<br>
 +
<div class="wrap-collabsible">
 +
<input id="collapsibleglow2" class="toggle" type="checkbox">
 +
<label for="collapsibleglow2" class="lbl-toggle">Fluorescence reporters for characterization of parts</label>
 +
<div class="collapsible-content">
 +
<div class="content-inner">
 +
<p>
 +
<u>Fluorescence reporters for characterization of parts</u><br>
 
   <p>When working in Synthetic Biology, reporter genes such as fluorescence proteins are indispensable elements to  
 
   <p>When working in Synthetic Biology, reporter genes such as fluorescence proteins are indispensable elements to  
 
   characterize BioBricks. For a good characterization a suitable reporter is required. But reporters can be more than  
 
   characterize BioBricks. For a good characterization a suitable reporter is required. But reporters can be more than  
Line 649: Line 884:
 
signal overall <a href="https://pubs.rsc.org/en/content/articlelanding/2004/ob/b406492e#!divAbstract">(Kukolka & M. Niemeyer, 2004)</a>.</p>
 
signal overall <a href="https://pubs.rsc.org/en/content/articlelanding/2004/ob/b406492e#!divAbstract">(Kukolka & M. Niemeyer, 2004)</a>.</p>
  
<p>Fig. 8 - graph showing the absorption spectra of UTEX 2973 in comparison to the emission maximum of YFP.</p><br>
+
<figure style="text-align:center">
 +
      <img style="height: 1000px; width: 1000px;"
 +
          src="https://static.igem.org/mediawiki/2019/b/b6/T--Marburg--Reporter--UTEX-Spectra.png" alt="Graph">
 +
      <figcaption style="max-width: 2400px; text-align: center">
 +
          Fig. 8 - Excitation and Emission wavelength of the different Reporters mapped to the Absoptionspectra of Synechococcus elongatus UTEX 2973.
 +
      </figcaption>
 +
  </figure><br>
 +
 
 +
 
 +
 
 +
 
  
 
<p>Additionally, autofluorescence of cyanobacterial cells is rather low at that point, resulting in a stronger signal  
 
<p>Additionally, autofluorescence of cyanobacterial cells is rather low at that point, resulting in a stronger signal  
Line 881: Line 1,126:
 
conditions, resulting in a 2.2-fold reduction of the emission peak. This allows to determine the redox potential in the
 
conditions, resulting in a 2.2-fold reduction of the emission peak. This allows to determine the redox potential in the
 
  environment which then expressed the output of fluorescence. </p>
 
  environment which then expressed the output of fluorescence. </p>
 +
<br>
 +
</p>
 +
</div>
 +
</div>
 +
</div>
 +
 
  
</p>
+
 
+
<br>
 
    
 
    
  
 +
<div class="wrap-collabsible">
 +
<input id="collapsible2" class="toggle" type="checkbox">
 +
<label for="collapsible2" class="lbl-toggle">competent cells</label>
 +
<div class="collapsible-content">
 +
<div class="content-inner">
 +
<p>
 +
<u>competent cells (<i>E. coli</i>)</u>
 +
 +
<br>
 +
</p>
 +
</div>
 +
</div>
 +
</div>
 +
 
  
 +
 +
<br>
 +
<div class="wrap-collabsible">
 +
<input id="collapsible2" class="toggle" type="checkbox">
 +
<label for="collapsible2" class="lbl-toggle">competent cells</label>
 +
<div class="collapsible-content">
 +
<div class="content-inner">
 +
<p>
 +
<u>competent cells (<i>E. coli</i>)</u>
 +
 +
<br>
 +
</p>
 +
</div>
 +
</div>
 +
</div>
 +
 
  
 +
 +
<br>
 +
 
 +
 
 +
 
 +
 
 +
 
 +
 
 +
 
  
 
+
</p>
</body>
+
<br>
 
+
</p>
 +
</div>
 +
</div>
 +
</div>
 +
 +
 +
 
 +
 
 +
            </section>
 +
          </div>
 +
        </div>
 +
      </div>
 +
      <div class="sub"
 +
        onclick="popup('model3')">
 +
        <div class="sub-header">
 +
          <h1>
 +
            <!--Title of third model-->
 +
          </h1>
 +
          <hr>
 +
        </div>
 +
        <div class="sub-content">
 +
          <img src="">
 +
        </div>
 +
      </div>
 +
      <div id="model3"
 +
        class="popup">
 +
        <div class="popup-container">
 +
          <div class="popup-header">
 +
            <h1 class="title">
 +
              <!--Title inside popup-->
 +
            </h1>
 +
            <button type="button"
 +
              onclick="hide('model3')">X</button>
 +
          </div>
 +
          <div class="popup-content"
 +
            style="text-align: justify;">
 +
            <section class="section">
 +
              <!--Content of popup-->
 +
            </section>
 +
          </div>
 +
        </div>
 +
      </div>
 +
    </section>
 +
  </div>
 
</html>
 
</html>
 
{{Marburg/footer}}
 
{{Marburg/footer}}

Revision as of 03:14, 22 October 2019


Design
“Always plan ahead. It wasn’t raining when Noah build the ark” - Richard Cushing

What does expanding the golden gate based Marburg Collection, automating time consuming lab work and establishing the CRISPR/Cpf1 system in Synechococcus elongatus UTEX 2973 have in common?
To achieve these objectives, it is always necessary to have a comprehensive theoretical preparation. It all starts with literature research, summarizing the current state of the art and based on this developing own ideas. To have the theoretical background settled before the lab work starts is a key point of every project and consumes many hours.
Because in the near future phototrophic organisms will get more and more relevance for biotechnological applications, we want to establish the use of Synechococcus elongatus as a phototrophic organism for synthetic biology. Following the principles of synthetic biology to simplify the process of engineering of biological systems, we set it our goal to establish Synechococcus elongatus UTEX 2973 as the fastest and most accessible phototrophic chassis to date, providing it as a wind tunnel for phototrophic organisms with user friendly and standardized workflows.
In order to achieve these goals, a lot of effort has been put into designing, building, testing, evaluating and learning. Further, these steps had to be iterated over and over again to elaborate our standardized designs. By providing you our theoretical background we want to give you an insight in our decision-making.


Strain Engineering


In Strain Engineering we modified Synechococcus elongatus UTEX 2973 to establish the CRISPR/Cpf1 system in our organism.
(Further we tailored strains that the organism suits to several experimental setups and domesticated a wild type plasmid for further genetic manipulation.)

Toolbox


We expanded last years Marburg Collection 1.0, a golden-gate based cloning toolbox, to the Marbrug Collection 2.0, consisting of 190 parts and made the parts suittable for Synechococcus elongatus UTEX 2973. “Here we describe the design of all relevant features of this toolbox. We provide instruction on how to use the connectors and the thought behind the selection of specific fusion sites.”