Difference between revisions of "Team:Marburg/test joana"

Line 1: Line 1:
 
{{Marburg}}
 
{{Marburg}}
 
<html>
 
<html>
  <style>
+
<style>
 
     .box-dark {
 
     .box-dark {
      background-color: #3d404d;
+
        background-color: #3d404d;
      min-height: 30vh;
+
        min-height: 30vh;
      box-shadow: 1px 1px 40px black;
+
        box-shadow: 1px 1px 40px black;
      margin-left: -10vw;
+
        margin-left: -10vw;
      width: 120vw;
+
        width: 120vw;
      position: relative;
+
        position: relative;
      z-index: 2;
+
        z-index: 2;
      display: flex;
+
        display: flex;
      flex-direction: column;
+
        flex-direction: column;
      align-items: center;
+
        align-items: center;
      transform: rotate(355deg);
+
        transform: rotate(355deg);
      justify-content: center;
+
        justify-content: center;
      margin-top: -12vh;
+
        margin-top: -12vh;
 
     }
 
     }
  
 
     .heading {
 
     .heading {
      color: #f5f5f5;
+
        color: #f5f5f5;
      text-align: center;
+
        text-align: center;
      font-size: 1.75em;
+
        font-size: 1.75em;
      width: fit-content;
+
        width: fit-content;
      margin-top: 25px;
+
        margin-top: 25px;
      margin-bottom: unset !important;
+
        margin-bottom: unset !important;
      transform: rotate(-355deg);
+
        transform: rotate(-355deg);
 
     }
 
     }
  
 
     .line {
 
     .line {
      border-top: 2px solid #f5f5f5;
+
        border-top: 2px solid #f5f5f5;
      background-color: #f5f5f5;
+
        background-color: #f5f5f5;
      border-width: 2px;
+
        border-width: 2px;
      display: block;
+
        display: block;
      width: 100px;
+
        width: 100px;
      margin-top: 25px;
+
        margin-top: 25px;
      margin-bottom: unset;
+
        margin-bottom: unset;
      transform: rotate(-355deg);
+
        transform: rotate(-355deg);
 
     }
 
     }
  
 
     .logo {
 
     .logo {
      width: 100px;
+
        width: 100px;
      height: 100px;
+
        height: 100px;
      position: absolute;
+
        position: absolute;
      bottom: -50px;
+
        bottom: -50px;
      transform: rotate(-355deg);
+
        transform: rotate(-355deg);
      margin-left: -10px;
+
        margin-left: -10px;
 
     }
 
     }
  
 
     .main {
 
     .main {
      overflow-x: hidden;
+
        overflow-x: hidden;
 
     }
 
     }
  
 
     hr {
 
     hr {
      display: block;
+
        display: block;
      height: 1px;
+
        height: 1px;
      border: 0;
+
        border: 0;
      border-top: 2px solid #3d404d;
+
        border-top: 2px solid #3d404d;
      padding: 0;
+
        padding: 0;
      margin: 1em auto;
+
        margin: 1em auto;
      width: 50vw;
+
        width: 50vw;
 
     }
 
     }
  
 
     @media (max-width: 810px) {
 
     @media (max-width: 810px) {
  
      .logo,
+
        .logo,
      .line,
+
        .line,
      .heading {
+
        .heading {
        margin-left: -30px;
+
            margin-left: -30px;
      }
+
        }
  
      .line {
+
        .line {
        margin: 1.5rem 0 !important;
+
            margin: 1.5rem 0 !important;
        margin-left: -40px !important;
+
            margin-left: -40px !important;
      }
+
        }
 
     }
 
     }
 
+
</style>
  </style>
+
<div>
  <div>
+
 
     <div class="box-dark">
 
     <div class="box-dark">
      <h1 class="heading">
+
        <h1 class="heading">
        L A B A U T O M A T I O N
+
            L A B A U T O M A T I O N
      </h1>
+
        </h1>
      <hr class="line">
+
        <hr class="line">
      <img src="https://static.igem.org/mediawiki/2019/a/ac/T--Marburg--logo.svg"
+
        <img src="https://static.igem.org/mediawiki/2019/a/ac/T--Marburg--logo.svg" class="logo" alt="Syntex Logo">
        class="logo"
+
        alt="Syntex Logo">
+
 
     </div>
 
     </div>
 
     <div style="margin-top: 10vh;">
 
     <div style="margin-top: 10vh;">
      <section class="section">
+
        <section class="section">
        <h1 class="title">A.P.P Automated Purfication Protocol</h1>
+
            <h1 class="title">A.P.P Automated Purfication Protocol</h1>
        <p style="text-align: justify;">
+
            <p style="text-align: justify;">
          Vielleicht noch ein allgemeinem abstract zu Messung (vergleiche andere WIKIS)
+
                Vielleicht noch ein allgemeinem abstract zu Messung (vergleiche andere WIKIS)
        </p>
+
            </p>
      </section>
+
        </section>
      <section class="section">
+
        <section class="section">
        <article>
+
            <article>
          <h1 class="title">Storytelling:</h1>
+
                <div>
          <p style="text-align: justify; margin-bottom: 1em;">
+
                    <p style="text-align: justify; margin-bottom: 1em;">
            This year’s iGEM Team worked extensively on automating a plasmid purification on Opentrons’ OT-2. Plasmid
+
                        This year’s iGEM Team worked extensively on automating a plasmid purification on Opentrons’
        purification is an indispensable part of completing the cloning workflow in the OT-2.</p>
+
                        OT-2. Plasmid
        <figure style="float: right; margin-left: 25px;">
+
                        purification is an indispensable part of completing the cloning workflow in the OT-2.</p>
            <img style="height: 400px; width: 600px"
+
                    <figure style="float: right; margin-left: 25px;">
                src="https://static.igem.org/mediawiki/2019/6/60/T--Marburg--SyntexConnections.png"
+
                        <img style="height: 400px; width: 600px"
                alt="Connections between Opentrons, Promega and QInstruments">
+
                            src="https://static.igem.org/mediawiki/2019/6/60/T--Marburg--SyntexConnections.png"
            <figcaption style="max-width: 600px">
+
                            alt="Connections between Opentrons, Promega and QInstruments">
                Fig.1 - iGEM team Marburg 2019 is establishing connections between Opentrons, Promega and QInstruments.
+
                        <figcaption style="max-width: 600px">
            </figcaption>
+
                            Fig.1 - iGEM team Marburg 2019 is establishing connections between Opentrons, Promega and
            <br>
+
                            QInstruments.
            <p style="text-align: justify; margin-bottom: 1em;">
+
                        </figcaption>
            Since the time of an iGEM project is limited to only one year, consequently only a limited amount of work can be
+
                        <br>
        done in that time, which is even reduced by failing experiments and making mistakes in the lab. To overcome this
+
                        <p style="text-align: justify; margin-bottom: 1em;">
        problem and increase the reproducibility and simultaneously raise the amount of experiments in the lab, we
+
                            Since the time of an iGEM project is limited to only one year, consequently only a limited
        automated plasmid purification on the OT-2. Using this protocol and making it open-source <b>(GitHub Link?)</b>,
+
                            amount of work can be
        we
+
                            done in that time, which is even reduced by failing experiments and making mistakes in the
        achieved to parallelize work in the lab or make more time for public engagement, human practice, IHP or
+
                            lab. To overcome this
        everything else not directly lab-related, benefiting the whole iGEM community. This benefits will also be
+
                            problem and increase the reproducibility and simultaneously raise the amount of experiments
        translated beyond iGEM community such as in the amateur biohackers, enthusiasts, and students community and even
+
                            in the lab, we
        to research groups doing cutting-edge research.<br>
+
                            automated plasmid purification on the OT-2. Using this protocol and making it open-source
        This idea started when we found out that there is also a great need in the industry for an automated cloning
+
                            <b>(GitHub Link?)</b>,
        workflow. Promega provided us with great advice <b>(Link to IHP)</b> and sponsored the Wizard® MagneSil® Plasmid
+
                            we
        Purification System, QInstruments sponsored the BioShake D30-T elm and Opentrons sponsored their Magnetic
+
                            achieved to parallelize work in the lab or make more time for public engagement, human
        Module. Through our work aligned with the philosophy of iGEM for nurturing collaborations, we enabled
+
                            practice, IHP or
        connections between these companies to achieve the true potential of their products. This kind of bridge would
+
                            everything else not directly lab-related, benefiting the whole iGEM community. This benefits
        not have been possible otherwise.<br>
+
                            will also be
 +
                            translated beyond iGEM community such as in the amateur biohackers, enthusiasts, and
 +
                            students community and even
 +
                            to research groups doing cutting-edge research.<br>
 +
                            This idea started when we found out that there is also a great need in the industry for an
 +
                            automated cloning
 +
                            workflow. Promega provided us with great advice <b>(Link to IHP)</b> and sponsored the
 +
                            Wizard® MagneSil® Plasmid
 +
                            Purification System, QInstruments sponsored the BioShake D30-T elm and Opentrons sponsored
 +
                            their Magnetic
 +
                            Module. Through our work aligned with the philosophy of iGEM for nurturing collaborations,
 +
                            we enabled
 +
                            connections between these companies to achieve the true potential of their products. This
 +
                            kind of bridge would
 +
                            not have been possible otherwise.<br>
 +
                            <br>
 +
                            Nevertheless, a massive amount of barriers had to be broken down. The shaker was a bit
 +
                            bigger than the space
 +
                            normally occupied by modules in the OT-2 and needed stabilizing support, so it was obvious
 +
                            to design a
 +
                            custom-made shaker adapter and print it with our own in-house 3D printer, which would keep
 +
                            the costs for the
 +
                            automation of this workflow extremely low. Moreover, the 3D design will be publicly
 +
                            available in our GitHub
 +
                            repository (LINK), which will make our solution accessible to everyone with access to a 3D
 +
                            printer.<br>
 +
                            <br>
 +
                            Additionally, we stumbled across serious problems with the calibration of our OT-2 and
 +
                            accessing the shaker with
 +
                            the pipette. The BioShake D30-T elm is currently not a usual labware defined by Opentrons’,
 +
                            so we had to be
 +
                            creative and come up with our own labware definition. Opentron is recently rolling out a
 +
                            major update from their
 +
                            OT-2 3.9 to 4.0 firmware that includes a lot of paradigm changes, making it impossible for
 +
                            us to define it as a
 +
                            decent custom labware. That is why we came up with the idea to use Opentrons’ internal
 +
                            coordinate system and
 +
                            defining the required 96 Deep Well Plate on the shaker as coordinates. This facilitated
 +
                            accessing the shaker
 +
                            with the pipette, being as precise as Opentrons’ own labware definitions, but a whole series
 +
                            of problems
 +
                            followed, as we tried to use Opentrons’ pipette functions to transfer the chemicals. We
 +
                            managed these problems
 +
                            as well, by defining our own Python functions, telling the pipette how to transfer liquids
 +
                            from and to the
 +
                            defined shaker. In the end when running the script, one would not be able to tell the
 +
                            difference between the
 +
                            labware and functions defined by us from the ones defined by Opentrons’.<br>
 +
                            <br>
 +
                        </p>
 +
                        <p style="text-align: justify; margin-bottom: 1em;">
 +
                            While we wanted to establish Syn. elong. as a new chassis for the iGEM community and
 +
                            scientists we wanted to
 +
                            show the best conditions for cultivation and the best measuring method for our parts in UTEX
 +
                            2973. Therefore
 +
                            we analyzed a big variety of cultivating conditions in measuring growth curves, tried to
 +
                            find a standard in
 +
                            light measurement, evaluated different reporters???, established a measurement method and
 +
                            compared it to a
 +
                            already known FACS measurement method (?).
 +
                        </p>
 +
                        <p style="text-align: justify; margin-bottom: 1em;">
 +
                            At the beginning of our project we faced the first question on how to cultivate UTEX at 1500
 +
                            μE. [quelle].
 +
                            So we had to measure the light conditions in our incubators and while doing this simple task
 +
                            the first
 +
                            part of standardization began. We discovered that nearly every paper? is using different
 +
                            methods to measure
 +
                            their light conditions and that it is a really complex and important procedure. So we got in
 +
                            contact with
 +
                            cyano and light measurement experts [link IHP] to confront this problem and standardize it.
 +
                            In the following
 +
                            popup we show different ways of measurement, their (dis-)advantages and different results
 +
                            depending on the
 +
                            measuring instrument.<br>
 +
                            Not only the light intensity but also a variety of other cultivating parameters needed to be
 +
                            analyzed.
 +
                            In literature and while talking with different experts (IHP), we recognized that small
 +
                            deviations of these
 +
                            parameters had a huge impact on the growth speed of Synechococcus elongatus. While
 +
                            establishing UTEX 2973 as
 +
                            a new chassis we evaluated this impact on the growth speed and were able to show
 +
                            combinations of parameters
 +
                            that lead to the fastest growth speed.<br>
 +
                            Another aspect was measuring the expression and characterize our part. Different
 +
                            possibilities were
 +
                            discussed and after testing them we decided on two methods in our project (plate reader and
 +
                            FACs). One
 +
                            approach was to measure the fluorescence/luminescence with a plate reader [link part
 +
                            measurement]. Plate
 +
                            readers belong to standard equipment of every lab nowadays, and could deliver easy
 +
                            reproducible results.<br>
 +
                            The second way was to measure the fluorescence by FACS (Fluorescence-Activated Cell Sorting)
 +
                            [link facs]. In
 +
                            contrast to a platerader a FACs device delivers results with high accuracy by measuring
 +
                            every cell by its
 +
                            own(vielleicht erst spaeter FACS genau erklaeren aber nicht im abtract?). On the other side
 +
                            not
 +
                            every laboratory posses a FACs/device. So in the end we would like to offer a two method
 +
                            analyzed database
 +
                            from our crontructs for iGEM teams and research groups, who do not have access to a FACS and
 +
                            show the
 +
                            difference in measurement methods.<br>
 +
                            At the end of the project we were able to create a protocol how to handle Synechococcus
 +
                            elongatus UTEX 2973
 +
                            and make a contribution to the cyano community by establishing essential/fixed standards in
 +
                            measurement.
 +
                        </p>
 +
                        <figure align=center>
 +
                            <img style="height: 500px; width: 300px"
 +
                                src="https://static.igem.org/mediawiki/2019/b/bb/T--Marburg--opentrons_magnetic_module.JPG"
 +
                                alt="OT-2 left">
 +
                            <img style="height: 500px; width: 300px"
 +
                                src="https://static.igem.org/mediawiki/2019/3/30/T--Marburg--opentrons_shaker.JPG"
 +
                                alt="OT-2 right">
 +
                            <figcaption style="max-width: 1400px">
 +
                                Fig.2 - Single-Channel pipette, magnetic module and shaker in action while performing
 +
                                the plasmid
 +
                                purification.
 +
                            </figcaption>
 +
                        </figure>
 +
                        <br>
 +
                        <p>
 +
                            Putting the pieces together, we were able to translate the manual plasmid purification
 +
                            protocol provided by Nans
 +
                            Bodet into an Opentrons protocol, being the very first of its kind. We pioneered a workflow
 +
                            for up to six
 +
                            samples with the p300 Single-Channel Electronic Pipette and a scaled-up version for up to 48
 +
                            samples with the
 +
                            p300 8-Channel Electronic Pipette without having to intervene even once. This scalability
 +
                            provides important
 +
                            flexibility for various kinds of experiments.<br>
 +
                            <br>
 +
                            In our process of developing and running the protocol we determined some problems on
 +
                            increasing the yield of our
 +
                            plasmids. There was a large number of parameters that could be varied, changing the final
 +
                            concentration of the
 +
                            plasmids. For example, we realized that the duration of lysis is paramount for the yield and
 +
                            success of plasmid
 +
                            purification. Over-lysis will lead to a decrease in plasmid yield, whereas under-lysis will
 +
                            induce clumping of
 +
                            magnetic beads; thus failing the experiment. After a whole heap of plasmid purifications we
 +
                            managed to identify
 +
                            the most relevant parameters and improve the protocol in the best way possible.<br>
 +
                            <br>
 +
                        </p>
 +
                        <figure align=center>
 +
                            <img style="height: 700px; width: 600px"
 +
                                src="https://static.igem.org/mediawiki/2019/e/ea/T--Marburg--SingleChannelSetup.png"
 +
                                alt="OT-Layout left">
 +
                            <img style="height: 700px; width: 600px"
 +
                                src="https://static.igem.org/mediawiki/2019/d/df/T--Marburg--8channelSetup.png"
 +
                                alt="OT-Layout right">
 +
                            <figcaption style="max-width: 1400px">
 +
                                Fig.3 - Final setup for the automated plasmid purification workflows in the OT-2. The
 +
                                left picture shows the
 +
                                setup for the single channel workflow, the right picture for the 8-channel workflow.
 +
                            </figcaption>
 +
                        </figure>
 +
 
 +
                        <video src="https://static.igem.org/mediawiki/2019/c/c4/T--Marburg--PlasmidPurificationMarburg.mp4"
 +
                            controls poster="vorschaubild.jpg"></video>
 +
                </div>
 +
            </article>
 +
        </section>
 +
        </div>
 +
        </div>
 +
 
 
         <br>
 
         <br>
        Nevertheless, a massive amount of barriers had to be broken down. The shaker was a bit bigger than the space
 
        normally occupied by modules in the OT-2 and needed stabilizing support, so it was obvious to design a
 
        custom-made shaker adapter and print it with our own in-house 3D printer, which would keep the costs for the
 
        automation of this workflow extremely low. Moreover, the 3D design will be publicly available in our GitHub
 
        repository (LINK), which will make our solution accessible to everyone with access to a 3D printer.<br>
 
 
         <br>
 
         <br>
         Additionally, we stumbled across serious problems with the calibration of our OT-2 and accessing the shaker with
+
         </body>
        the pipette. The BioShake D30-T elm is currently not a usual labware defined by Opentrons’, so we had to be
+
        creative and come up with our own labware definition. Opentron is recently rolling out a major update from their
+
        OT-2 3.9 to 4.0 firmware that includes a lot of paradigm changes, making it impossible for us to define it as a
+
        decent custom labware. That is why we came up with the idea to use Opentrons’ internal coordinate system and
+
        defining the required 96 Deep Well Plate on the shaker as coordinates. This facilitated accessing the shaker
+
        with the pipette, being as precise as Opentrons’ own labware definitions, but a whole series of problems
+
        followed, as we tried to use Opentrons’ pipette functions to transfer the chemicals. We managed these problems
+
        as well, by defining our own Python functions, telling the pipette how to transfer liquids from and to the
+
        defined shaker. In the end when running the script, one would not be able to tell the difference between the
+
        labware and functions defined by us from the ones defined by Opentrons’.<br>
+
        <br>
+
          </p>
+
          <p style="text-align: justify; margin-bottom: 1em;">
+
            While we wanted to establish Syn. elong. as a new chassis for the iGEM community and scientists we wanted to
+
            show the best conditions for cultivation and the best measuring method for our parts in UTEX 2973. Therefore
+
            we analyzed a big variety of cultivating conditions in measuring growth curves, tried to find a standard in
+
            light measurement, evaluated different reporters???, established a measurement method and compared it to a
+
            already known FACS measurement method (?).
+
          </p>
+
          <p style="text-align: justify; margin-bottom: 1em;">
+
            At the beginning of our project we faced the first question on how to cultivate UTEX at 1500 μE. [quelle].
+
            So we had to measure the light conditions in our incubators and while doing this simple task the first
+
            part of standardization began. We discovered that nearly every paper? is using different methods to measure
+
            their light conditions and that it is a really complex and important procedure. So we got in contact with
+
            cyano and light measurement experts [link IHP] to confront this problem and standardize it. In the following
+
            popup we show different ways of measurement, their (dis-)advantages and different results depending on the
+
            measuring instrument.<br>
+
            Not only the light intensity but also a variety of other cultivating parameters needed to be analyzed.
+
            In literature and while talking with different experts (IHP), we recognized that small deviations of these
+
            parameters had a huge impact on the growth speed of Synechococcus elongatus. While establishing UTEX 2973 as
+
            a new chassis we evaluated this impact on the growth speed and were able to show combinations of parameters
+
            that lead to the fastest growth speed.<br>
+
            Another aspect was measuring the expression and characterize our part. Different possibilities were
+
            discussed and after testing them we decided on two methods in our project (plate reader and FACs). One
+
            approach was to measure the fluorescence/luminescence with a plate reader [link part measurement]. Plate
+
            readers belong to standard equipment of every lab nowadays, and could deliver easy reproducible results.<br>
+
            The second way was to measure the fluorescence by FACS (Fluorescence-Activated Cell Sorting) [link facs]. In
+
            contrast to a platerader a FACs device delivers results with high accuracy by measuring every cell by its
+
            own(vielleicht erst spaeter FACS genau erklaeren aber nicht im abtract?). On the other side not
+
            every laboratory posses a FACs/device. So in the end we would like to offer a two method analyzed database
+
            from our crontructs for iGEM teams and research groups, who do not have access to a FACS and show the
+
            difference in measurement methods.<br>
+
            At the end of the project we were able to create a protocol how to handle Synechococcus elongatus UTEX 2973
+
            and make a contribution to the cyano community by establishing essential/fixed standards in measurement.
+
          </p>
+
          <figure align=center>
+
            <img style="height: 500px; width: 300px"
+
                src="https://static.igem.org/mediawiki/2019/b/bb/T--Marburg--opentrons_magnetic_module.JPG"
+
                alt="OT-2 left">
+
            <img style="height: 500px; width: 300px"
+
                src="https://static.igem.org/mediawiki/2019/3/30/T--Marburg--opentrons_shaker.JPG" alt="OT-2 right">
+
            <figcaption style="max-width: 1400px">
+
                Fig.2 - Single-Channel pipette, magnetic module and shaker in action while performing the plasmid
+
                purification.
+
            </figcaption>
+
        </figure>
+
        <br>
+
    <p>
+
        Putting the pieces together, we were able to translate the manual plasmid purification protocol provided by Nans
+
        Bodet into an Opentrons protocol, being the very first of its kind. We pioneered a workflow for up to six
+
        samples with the p300 Single-Channel Electronic Pipette and a scaled-up version for up to 48 samples with the
+
        p300 8-Channel Electronic Pipette without having to intervene even once. This scalability provides important
+
        flexibility for various kinds of experiments.<br>
+
        <br>
+
        In our process of developing and running the protocol we determined some problems on increasing the yield of our
+
        plasmids. There was a large number of parameters that could be varied, changing the final concentration of the
+
        plasmids. For example, we realized that the duration of lysis is paramount for the yield and success of plasmid
+
        purification. Over-lysis will lead to a decrease in plasmid yield, whereas under-lysis will induce clumping of
+
        magnetic beads; thus failing the experiment. After a whole heap of plasmid purifications we managed to identify
+
        the most relevant parameters and improve the protocol in the best way possible.<br>
+
        <br>
+
    </p>
+
    <figure align=center>
+
        <img style="height: 700px; width: 600px"
+
            src="https://static.igem.org/mediawiki/2019/e/ea/T--Marburg--SingleChannelSetup.png" alt="OT-Layout left">
+
        <img style="height: 700px; width: 600px"
+
            src="https://static.igem.org/mediawiki/2019/d/df/T--Marburg--8channelSetup.png" alt="OT-Layout right">
+
        <figcaption style="max-width: 1400px">
+
            Fig.3 - Final setup for the automated plasmid purification workflows in the OT-2. The left picture shows the
+
            setup for the single channel workflow, the right picture for the 8-channel workflow.
+
        </figcaption>
+
    </figure>
+
 
+
    <video src="https://static.igem.org/mediawiki/2019/c/c4/T--Marburg--PlasmidPurificationMarburg.mp4" controls
+
        poster="vorschaubild.jpg"></video>
+
 
+
    <br>
+
    <br>
+
</body>
+
  
 
</html>
 
</html>
 
{{Marburg/footer}}
 
{{Marburg/footer}}

Revision as of 17:57, 21 October 2019

L A B A U T O M A T I O N


A.P.P Automated Purfication Protocol

Vielleicht noch ein allgemeinem abstract zu Messung (vergleiche andere WIKIS)

This year’s iGEM Team worked extensively on automating a plasmid purification on Opentrons’ OT-2. Plasmid purification is an indispensable part of completing the cloning workflow in the OT-2.

Connections between Opentrons, Promega and QInstruments
Fig.1 - iGEM team Marburg 2019 is establishing connections between Opentrons, Promega and QInstruments.

Since the time of an iGEM project is limited to only one year, consequently only a limited amount of work can be done in that time, which is even reduced by failing experiments and making mistakes in the lab. To overcome this problem and increase the reproducibility and simultaneously raise the amount of experiments in the lab, we automated plasmid purification on the OT-2. Using this protocol and making it open-source (GitHub Link?), we achieved to parallelize work in the lab or make more time for public engagement, human practice, IHP or everything else not directly lab-related, benefiting the whole iGEM community. This benefits will also be translated beyond iGEM community such as in the amateur biohackers, enthusiasts, and students community and even to research groups doing cutting-edge research.
This idea started when we found out that there is also a great need in the industry for an automated cloning workflow. Promega provided us with great advice (Link to IHP) and sponsored the Wizard® MagneSil® Plasmid Purification System, QInstruments sponsored the BioShake D30-T elm and Opentrons sponsored their Magnetic Module. Through our work aligned with the philosophy of iGEM for nurturing collaborations, we enabled connections between these companies to achieve the true potential of their products. This kind of bridge would not have been possible otherwise.

Nevertheless, a massive amount of barriers had to be broken down. The shaker was a bit bigger than the space normally occupied by modules in the OT-2 and needed stabilizing support, so it was obvious to design a custom-made shaker adapter and print it with our own in-house 3D printer, which would keep the costs for the automation of this workflow extremely low. Moreover, the 3D design will be publicly available in our GitHub repository (LINK), which will make our solution accessible to everyone with access to a 3D printer.

Additionally, we stumbled across serious problems with the calibration of our OT-2 and accessing the shaker with the pipette. The BioShake D30-T elm is currently not a usual labware defined by Opentrons’, so we had to be creative and come up with our own labware definition. Opentron is recently rolling out a major update from their OT-2 3.9 to 4.0 firmware that includes a lot of paradigm changes, making it impossible for us to define it as a decent custom labware. That is why we came up with the idea to use Opentrons’ internal coordinate system and defining the required 96 Deep Well Plate on the shaker as coordinates. This facilitated accessing the shaker with the pipette, being as precise as Opentrons’ own labware definitions, but a whole series of problems followed, as we tried to use Opentrons’ pipette functions to transfer the chemicals. We managed these problems as well, by defining our own Python functions, telling the pipette how to transfer liquids from and to the defined shaker. In the end when running the script, one would not be able to tell the difference between the labware and functions defined by us from the ones defined by Opentrons’.

While we wanted to establish Syn. elong. as a new chassis for the iGEM community and scientists we wanted to show the best conditions for cultivation and the best measuring method for our parts in UTEX 2973. Therefore we analyzed a big variety of cultivating conditions in measuring growth curves, tried to find a standard in light measurement, evaluated different reporters???, established a measurement method and compared it to a already known FACS measurement method (?).

At the beginning of our project we faced the first question on how to cultivate UTEX at 1500 μE. [quelle]. So we had to measure the light conditions in our incubators and while doing this simple task the first part of standardization began. We discovered that nearly every paper? is using different methods to measure their light conditions and that it is a really complex and important procedure. So we got in contact with cyano and light measurement experts [link IHP] to confront this problem and standardize it. In the following popup we show different ways of measurement, their (dis-)advantages and different results depending on the measuring instrument.
Not only the light intensity but also a variety of other cultivating parameters needed to be analyzed. In literature and while talking with different experts (IHP), we recognized that small deviations of these parameters had a huge impact on the growth speed of Synechococcus elongatus. While establishing UTEX 2973 as a new chassis we evaluated this impact on the growth speed and were able to show combinations of parameters that lead to the fastest growth speed.
Another aspect was measuring the expression and characterize our part. Different possibilities were discussed and after testing them we decided on two methods in our project (plate reader and FACs). One approach was to measure the fluorescence/luminescence with a plate reader [link part measurement]. Plate readers belong to standard equipment of every lab nowadays, and could deliver easy reproducible results.
The second way was to measure the fluorescence by FACS (Fluorescence-Activated Cell Sorting) [link facs]. In contrast to a platerader a FACs device delivers results with high accuracy by measuring every cell by its own(vielleicht erst spaeter FACS genau erklaeren aber nicht im abtract?). On the other side not every laboratory posses a FACs/device. So in the end we would like to offer a two method analyzed database from our crontructs for iGEM teams and research groups, who do not have access to a FACS and show the difference in measurement methods.
At the end of the project we were able to create a protocol how to handle Synechococcus elongatus UTEX 2973 and make a contribution to the cyano community by establishing essential/fixed standards in measurement.

OT-2 left OT-2 right
Fig.2 - Single-Channel pipette, magnetic module and shaker in action while performing the plasmid purification.

Putting the pieces together, we were able to translate the manual plasmid purification protocol provided by Nans Bodet into an Opentrons protocol, being the very first of its kind. We pioneered a workflow for up to six samples with the p300 Single-Channel Electronic Pipette and a scaled-up version for up to 48 samples with the p300 8-Channel Electronic Pipette without having to intervene even once. This scalability provides important flexibility for various kinds of experiments.

In our process of developing and running the protocol we determined some problems on increasing the yield of our plasmids. There was a large number of parameters that could be varied, changing the final concentration of the plasmids. For example, we realized that the duration of lysis is paramount for the yield and success of plasmid purification. Over-lysis will lead to a decrease in plasmid yield, whereas under-lysis will induce clumping of magnetic beads; thus failing the experiment. After a whole heap of plasmid purifications we managed to identify the most relevant parameters and improve the protocol in the best way possible.

OT-Layout left OT-Layout right
Fig.3 - Final setup for the automated plasmid purification workflows in the OT-2. The left picture shows the setup for the single channel workflow, the right picture for the 8-channel workflow.