Difference between revisions of "Team:Marburg/Experiments"

Line 1: Line 1:
 
{{Marburg}}
 
{{Marburg}}
 
<html>
 
<html>
 +
<style>
 +
.box-dark {
 +
background-color: #3d404d;
 +
min-height: 30vh;
 +
box-shadow: 1px 1px 40px black;
 +
margin-left: -10vw;
 +
width: 120vw;
 +
position: relative;
 +
z-index: 2;
 +
display: flex;
 +
flex-direction: column;
 +
align-items: center;
 +
transform: rotate(355deg);
 +
justify-content: center;
 +
margin-top: -12vh;
 +
}
  
<div class="column full_size">
+
.heading {
 +
color: #f5f5f5;
 +
text-align: center;
 +
font-size: 1.75em;
 +
width: fit-content;
 +
margin-top: 25px;
 +
margin-bottom: unset !important;
 +
transform: rotate(-355deg);
 +
}
  
<h1>Experiments</h1>
+
.line {
<p>Describe the research, experiments, and protocols you used in your iGEM project. These should be detailed enough for another team to repeat your experiments.</p>
+
border-top: 2px solid #f5f5f5;
 +
background-color: #f5f5f5;
 +
border-width: 2px;
 +
display: block;
 +
width: 100px;
 +
margin-top: 25px;
 +
margin-bottom: unset;
 +
transform: rotate(-355deg);
 +
}
  
<p>
+
.logo {
Please remember to put all characterization and measurement data for your parts on the corresponding Registry part pages.  
+
width: 100px;
</p>
+
height: 100px;
 +
position: absolute;
 +
bottom: -50px;
 +
transform: rotate(-355deg);
 +
margin-left: -10px;
 +
}
  
</div>
+
.main {
 +
overflow-x: hidden;
 +
}
  
 +
hr {
 +
display: block;
 +
height: 1px;
 +
border: 0;
 +
border-top: 2px solid #3d404d;
 +
padding: 0;
 +
margin: 1em auto;
 +
width: 50vw;
 +
}
  
 +
@media (max-width: 810px) {
  
<div class="column two_thirds_size">
+
.logo,
<h3>What should this page contain?</h3>
+
.line,
<ul>
+
.heading {
<li> Protocols </li>
+
margin-left: -30px;
<li> Experiments </li>
+
}
<li> Documentation of the development of your project </li>
+
</ul>
+
  
</div>
+
.line {
 +
margin: 1.5rem 0 !important;
 +
margin-left: -40px !important;
 +
}
 +
}
  
<div class="column third_size">
+
</style>
<div class="highlight decoration_A_full">
+
<div>
<h3>Inspiration</h3>
+
<div class="box-dark">
<ul>
+
<h1 class="heading">
<li><a href="https://2014.igem.org/Team:Colombia/Protocols">2014 Colombia </a></li>
+
E X P E R I M E N T S
<li><a href="https://2014.igem.org/Team:Imperial/Protocols">2014 Imperial </a></li>
+
</h1>
<li><a href="https://2014.igem.org/Team:Caltech/Project/Experiments">2014 Caltech </a></li>
+
<hr class="line">
</ul>
+
<img src="https://static.igem.org/mediawiki/2019/a/ac/T--Marburg--logo.svg"
</div>
+
class="logo"
</div>
+
alt="Syntex Logo">
 +
</div>
 +
<div style="margin-top: 10vh;">
 +
<section class="section">
 +
<p>
 +
<i>"When you're experimenting you have to try so many things before you choose what you want, and you may
 +
go days getting nothing but exhaustion."</i> - <b>Fred Astaire</b>
 +
</p>
 +
</section>
 +
<section class="section grid">
 +
<div class="sub"
 +
onclick="popup('abstract1')">
 +
<div class="sub-header">
 +
<h1>
 +
P R O T O C O L S
 +
</h1>
 +
<hr>
 +
</div>
 +
<div class="sub-content">
 +
<p>
 +
All the protocols used in our project are listed here.
 +
</p>
 +
</div>
 +
</div>
 +
<div id="abstract1"
 +
class="popup">
 +
<div class="popup-container">
 +
<div class="popup-header">
 +
<h1 class="title">Protocols</h1>
 +
<button type="button"
 +
onclick="hide('abstract1')">X</button>
 +
</div>
 +
<div class="popup-content">
 +
<p>
 +
<h1 class="title">Protocols</h1>
  
 +
<p style="text-align: center">Cultivation:</p>
 +
<div class="wrap-collabsible">
 +
<input id="collapsible1"
 +
class="toggle"
 +
type="checkbox">
 +
<label for="collapsible1"
 +
class="lbl-toggle">BG11 media</label>
 +
<div class="collapsible-content">
 +
<div class="content-inner">
 +
<p>
 +
<u>BG11 media from Uni Marburg, Uni Düsseldorf and Uni Tübingen</u>
 +
<br>
 +
<p><b><u>BG11 medium from Uni Marburg</u></b></p>
 +
<br>
 +
<p><b>Stock 1 (100x): filter sterilize or autoclave</b></p>
 +
<table>
 +
<tbody>
 +
<tr>
 +
<td style="text-align: center">Na<sub>2</sub>Mg EDTA</td>
 +
<td style="text-align: center">0.1 g/L</td>
 +
</tr>
 +
<tr>
 +
<td style="text-align: center">Ferric ammonium citrate &ensp;</td>
 +
<td style="text-align: center">0.6 g/L</td>
 +
</tr>
 +
<tr>
 +
<td style="text-align: center">CaCl<sub>2</sub> x 2 H<sub>2</sub>O &ensp;</td>
 +
<td style="text-align: center">3.6 g/L</td>
 +
</tr>
 +
<tr>
 +
<td style="text-align: center">citric acid x 1 H<sub>2</sub>O</td>
 +
<td style="text-align: center">0.6 g/L</td>
 +
</tr>
 +
</tbody>
 +
</table>
 +
<br>
 +
<p><b>Stock 2 (100x): filter sterilize or autoclave</b></p>
 +
<table>
 +
<tbody>
 +
<tr>
 +
<td style="text-align: center">&ensp; &ensp; &ensp; MgSO<sub>4</sub> x 7 H<sub>2</sub>O
 +
&ensp;
 +
&ensp; &ensp;</td>
 +
<td style="text-align: center">7.5 g/L</td>
 +
</tr>
 +
</tbody>
 +
</table>
 +
<br>
 +
<p><b>Stock 3 (100x): filter sterilize or autoclave</b></p>
 +
<table>
 +
<tbody>
 +
<tr>
 +
<td style="text-align: center">&ensp; &ensp; &ensp; K<sub>2</sub>HPO<sub>4</sub><br> or
 +
K<sub>2</sub>HPO<sub>4</sub> x 3 H<sub>2</sub>O &ensp; &ensp;</td>
 +
<td style="text-align: center">3.05 g/L<br>4.0 g/L</td>
 +
</tr>
 +
</tbody>
 +
</table>
 +
<br>
 +
<p><b>Stock 4 (1000x microelements): autoclave</b></p>
 +
<table>
 +
<tbody>
 +
<tr>
 +
<td style="text-align: center">&ensp; &ensp; &ensp; H<sub>3</sub>BO<sub>3</sub> &ensp;
 +
&ensp;
 +
</td>
 +
<td style="text-align: center">2.88 g/L</td>
 +
</tr>
 +
<tr>
 +
<td style="text-align: center">&ensp; &ensp; &ensp; MnCl<sub>2</sub> x 4 H<sub>2</sub>O
 +
&ensp;
 +
&ensp;</td>
 +
<td style="text-align: center">1.81 g/L</td>
 +
</tr>
 +
<tr>
 +
<td style="text-align: center">&ensp; &ensp; &ensp; ZnSO<sub>4</sub> x 7 H<sub>2</sub>O
 +
&ensp;
 +
&ensp;</td>
 +
<td style="text-align: center">0.222 g/L</td>
 +
</tr>
 +
<tr>
 +
<td style="text-align: center">&ensp; &ensp; &ensp; CuSO<sub>4</sub> x 5 H<sub>2</sub>O
 +
&ensp;
 +
&ensp;</td>
 +
<td style="text-align: center">0.079 g/L</td>
 +
</tr>
 +
<tr>
 +
<td style="text-align: center">&ensp; &ensp; &ensp; CoCl<sub>2</sub> x 6 H<sub>2</sub>O
 +
&ensp;
 +
&ensp;</td>
 +
<td style="text-align: center">0.05 g/L</td>
 +
</tr>
 +
<tr>
 +
<td style="text-align: center">&ensp; &ensp; &ensp; NaMoO<sub>4</sub> &ensp; &ensp;</td>
 +
<td style="text-align: center">0.391 g/L</td>
 +
</tr>
 +
</tbody>
 +
</table>
 +
<br>
 +
<p>Combine stock solutions and add from <b>1 M HEPES/NaOH buffer (pH 8.0)</b> stock to a final
 +
concentration of <b>20 mM</b>.</p>
 +
<p>Add <b>1.5 g of NaNO<sub>3</sub> per liter</b> of medium.</p>
 +
<p>For solid media add <b>1 – 2 % Agar</b>.</p>
 +
<p>Autoclave.</p>
 +
<p>After autoclaving add filter sterilized <b>Na<sub>2</sub>SO<sub>3</sub></b> to a final
 +
concentration of <b>1 mM</b> to BG11-Agar.</p>
 +
<br>
 +
<br>
 +
<br>
 +
<br>
 +
<p><b><u>BG11 medium from Düsseldorf</u></b></p>
 +
<br>
 +
<p>Final concentration of medium:</p>
 +
<br>
 +
<table>
 +
<thead style="border-bottom: 1px solid black">
 +
<th style="text-align: center">compound</th>
 +
<th style="text-align: center">concentration</th>
 +
</thead>
 +
<tbody>
 +
<tr>
 +
<td style="text-align: center">CaCl<sub>2</sub> x 2 H<sub>2</sub>O</td>
 +
<td style="text-align: center">0.036 g/L</td>
 +
</tr>
 +
<tr>
 +
<td style="text-align: center">citric acid</td>
 +
<td style="text-align: center">0.0006 g/L</td>
 +
</tr>
 +
<tr>
 +
<td style="text-align: center">NaNO<sub>3</sub></td>
 +
<td style="text-align: center">1.4958 g/L</td>
 +
</tr>
 +
<tr>
 +
<td style="text-align: center">MgSO<sub>4</sub> x 7 H<sub>2</sub>O</td>
 +
<td style="text-align: center">0.0749 g/L</td>
 +
</tr>
 +
<tr>
 +
<td style="text-align: center">0.25 M Na<sub>2</sub>EDTA (pH 8)</td>
 +
<td style="text-align: center">0.0056 mL/L</td>
 +
</tr>
 +
<tr>
 +
<td style="text-align: center">Na<sub>2</sub>CO<sub>3</sub></td>
 +
<td style="text-align: center">20 µg/L</td>
 +
</tr>
 +
<tr>
 +
<td style="text-align: center">Fe(III) ammonium citrate</td>
 +
<td style="text-align: center">6 µg/L</td>
 +
</tr>
 +
<tr>
 +
<td style="text-align: center">K<sub>2</sub>HPO<sub>4</sub> x 3 H<sub>2</sub>O</td>
 +
<td style="text-align: center">30 µg/L</td>
 +
</tr>
 +
<tr>
 +
<td style="text-align: center">HEPES (pH 8)</td>
 +
<td style="text-align: center">10 mM</td>
 +
</tr>
 +
<tr>
 +
<td style="text-align: center">H<sub>3</sub>BO<sub>3</sub></td>
 +
<td style="text-align: center">2.86 mg/L</td>
 +
</tr>
 +
<tr>
 +
<td style="text-align: center">MnCl<sub>2</sub> x 4 H<sub>2</sub>O</td>
 +
<td style="text-align: center">1.81 mg/L</td>
 +
</tr>
 +
<tr>
 +
<td style="text-align: center">ZnSO<sub>4</sub> x 7 H<sub>2</sub>O</td>
 +
<td style="text-align: center">0.222 mg/L</td>
 +
</tr>
 +
<tr>
 +
<td style="text-align: center">Na<sub>2</sub>MoO<sub>4</sub> x 2 H<sub>2</sub>O</td>
 +
<td style="text-align: center">0.390 mg/L</td>
 +
</tr>
 +
<tr>
 +
<td style="text-align: center">Co(NO<sub>3</sub>)<sub>2</sub> x 6 H<sub>2</sub>O</td>
 +
<td style="text-align: center">0.049 mg/L</td>
 +
</tr>
 +
<tr>
 +
<td style="text-align: center">(CuSO<sub>4</sub> x 5 H<sub>2</sub>O</td>
 +
<td style="text-align: center">0.079 mg/L if required)</td>
 +
</tr>
 +
</tbody>
 +
</table>
 +
<br>
 +
<p>Guidelines:<br>Always work under sterile conditions when handling sterile media or stocks.
 +
Work
 +
under the clean bench.</p>
 +
<br>
 +
<p>Safety warnings:<br>Wear gloves when preparing stocks!<br>Heavy metals are toxic for the
 +
environment and need to be discarded accordingly.</p>
 +
<br>
 +
<p>Before starting:<br>For plates: Thaw antibiotic stocks before pouring plates.</p>
 +
<br>
 +
<ol>
 +
<li>
 +
<p><b>100x BG11 stock:</b></p>
 +
<p>
 +
<ul>
 +
<li>CaCl<sub>2</sub> x 2 H<sub>2</sub>O (3.6 g/L)</li>
 +
<li>citric acid (0.6 g/L)</li>
 +
<li>NaNO<sub>3</sub> (149.58 g/L)</li>
 +
<li>MgSO<sub>4</sub> x 7 H<sub>2</sub>O (7.49 g/L)</li>
 +
<li>0.25 M Na<sub>2</sub>EDTA, pH 8 (0.56 mL/L)</li>
 +
</ul>
 +
<p>For 100x BG11 Stock-N:</p>
 +
<ul>
 +
<li>Omit NaNO<sub>3</sub></li>
 +
</ul>
 +
<br>
 +
</p>
 +
</li>
 +
<br>
 +
<li>
 +
<p><b>Supplemental stocks for standard media:</b></p>
 +
<p>
 +
<ul>
 +
<li>1000x Na<sub>2</sub>CO<sub>3</sub>: 20 mg/mL</li>
 +
<li>100x TES-buffer, pH 8.0 (1M), adjust with KOH</li>
 +
<li>1000x K<sub>2</sub>HPO<sub>4</sub> x 3 H<sub>2</sub>O: 30 mg/mL</li>
 +
<li>1000x Fe(III) ammonium citrate (6 mg/mL)</li>
 +
<li>5000x CuSO<sub>4</sub> x 5 H<sub>2</sub>O (395 ng/mL) (sterilize using a filter)
 +
</li>
 +
</ul>
 +
</p>
 +
</li>
 +
<br>
 +
<li>
 +
<p><b>Trace metal mix:</b></p>
 +
<p>
 +
<p>1000x concentration</p>
 +
<ul>
 +
<li>H<sub>3</sub>BO<sub>3</sub> (2.86 g/L)</li>
 +
<li>MnCl<sub>2</sub> x 4 H<sub>2</sub>O (1.81 g/L)</li>
 +
<li>ZnSO<sub>4</sub> x 7 H<sub>2</sub>O (0.222 g/L)</li>
 +
<li>Na<sub>2</sub>MoO<sub>4</sub> x 2 H<sub>2</sub>O (0.390 g/L)</li>
 +
<li>Co(NO<sub>3</sub>)<sub>2</sub> x 6 H<sub>2</sub>O (0.049 g/L)</li>
 +
</ul>
 +
<br>
 +
<p>For BG11 lacking certain metals (e.g. for working with metal inducible promoters
 +
P<sub><i>petE</i></sub>, P<sub><i>coaT</i></sub>, P<sub><i>ziaA</i></sub> etc., trace
 +
metal
 +
mix can be prepared lacking these chemicals and used instead of standard trace metal
 +
mix.
 +
</p>
 +
</p>
 +
</li>
 +
<br>
 +
<li>
 +
<p><b>Standard 1x BG11:</b></p>
 +
<p>
 +
<p>Fill 1 L bottle with 500 mL ultra pure water. Add stock solutions as shown below.</p>
 +
<br>
 +
<table>
 +
<thead style="border-bottom: 1px solid black">
 +
<tr>
 +
<th style="text-align: center">Stock solution</th>
 +
<th style="text-align: center">volume</th>
 +
</tr>
 +
</thead>
 +
<tbody>
 +
<tr>
 +
<td style="text-align: center">100x BG11 Stock</td>
 +
<td style="text-align: center">10 mL</td>
 +
</tr>
 +
<tr>
 +
<td style="text-align: center">1000x Na<sub>2</sub>CO<sub>3</sub></td>
 +
<td style="text-align: center">1 mL</td>
 +
</tr>
 +
<tr>
 +
<td style="text-align: center">1000x K<sub>2</sub>HPO<sub>4</sub> x 3
 +
H<sub>2</sub>O<br>100x TES-buffer</td>
 +
<td style="text-align: center">1 mL<br>10 mL</td>
 +
</tr>
 +
<tr>
 +
<td style="text-align: center">100x TES-buffer</td>
 +
<td style="text-align: center">10 mL</td>
 +
</tr>
 +
<tr>
 +
<td style="text-align: center">1000x Trace metal Mix</td>
 +
<td style="text-align: center">1 mL</td>
 +
</tr>
 +
</tbody>
 +
</table>
 +
<br>
 +
<p>Add ultra pure water to 1 L.<br>Autoclave.<br>After autoclaving, add 1 mL 1000x Fe(III)
 +
ammonium citrate.<br>Optional: After autoclaving, add 200 µL 5000x CuSO<sub>4</sub></p>
 +
<br>
 +
</p>
 +
</li>
 +
<br>
 +
<li>
 +
<p><b>Standard 1x BG11-N:</b></p>
 +
<p>
 +
<p>Fill 1 L bottle with 500 mL ultra pure water. Add stock solutions as shown below.</p>
 +
<br>
 +
<table>
 +
<thead style="border-bottom: 1px solid black">
 +
<tr>
 +
<th style="text-align: center">Stock solution</th>
 +
<th style="text-align: center">volume</th>
 +
</tr>
 +
</thead>
 +
<tbody>
 +
<tr>
 +
<td style="text-align: center">100x BG11 Stock-N</td>
 +
<td style="text-align: center">10 mL</td>
 +
</tr>
 +
<tr>
 +
<td style="text-align: center">1000x Na<sub>2</sub>CO<sub>3</sub></td>
 +
<td style="text-align: center">1 mL</td>
 +
</tr>
 +
<tr>
 +
<td style="text-align: center">1000x K<sub>2</sub>HPO<sub>4</sub> x 3
 +
H<sub>2</sub>O<br>100x TES-buffer</td>
 +
<td style="text-align: center">1 mL<br>10 mL</td>
 +
</tr>
 +
<tr>
 +
<td style="text-align: center">100x TES-buffer</td>
 +
<td style="text-align: center">10 mL</td>
 +
</tr>
 +
<tr>
 +
<td style="text-align: center">1000x Trace metal Mix</td>
 +
<td style="text-align: center">1 mL</td>
 +
</tr>
 +
</tbody>
 +
</table>
 +
<br>
 +
<p>Add ultra pure water to 1 L.<br>Autoclave.<br>After autoclaving, add 1 mL sterile 1000x
 +
Fe(III) ammonium citrate.<br>Optional: After autoclaving, add 200 µL 5000x
 +
CuSO<sub>4</sub>
 +
</p>
 +
</p>
 +
</li>
 +
<br>
 +
<li>
 +
<p><b>Standard 2x BG11 for agar plates:</b></p>
 +
<p>
 +
<p>Fill 500 mL bottle with 250 mL ultra pure water. Add stock solutions as shown below.
 +
</p>
 +
<br>
 +
<table>
 +
<thead style="border-bottom: 1px solid black">
 +
<tr>
 +
<th style="text-align: center">Stock solution</th>
 +
<th style="text-align: center">volume</th>
 +
</tr>
 +
</thead>
 +
<tbody>
 +
<tr>
 +
<td style="text-align: center">100x BG11 Stock-N</td>
 +
<td style="text-align: center">10 mL</td>
 +
</tr>
 +
<tr>
 +
<td style="text-align: center">1000x Na<sub>2</sub>CO<sub>3</sub></td>
 +
<td style="text-align: center">1 mL</td>
 +
</tr>
 +
<tr>
 +
<td style="text-align: center">1000x K<sub>2</sub>HPO<sub>4</sub> x 3
 +
H<sub>2</sub>O<br>100x TES-buffer</td>
 +
<td style="text-align: center">1 mL<br>10 mL</td>
 +
</tr>
 +
<tr>
 +
<td style="text-align: center">100x TES-buffer, pH = 8.0</td>
 +
<td style="text-align: center">10 mL</td>
 +
</tr>
 +
<tr>
 +
<td style="text-align: center">1000x Trace metal Mix</td>
 +
<td style="text-align: center">1 mL</td>
 +
</tr>
 +
</tbody>
 +
</table>
 +
<br>
 +
<p>Add ultra pure water to 500 mL.<br>Autoclave.<br>After autoclaving, add 1 mL sterile
 +
1000x
 +
Fe(III) ammonium citrate.<br>Optional: After autoclaving, add 200 µL 5000x
 +
CuSO<sub>4</sub>
 +
</p>
 +
</p>
 +
</li>
 +
<br>
 +
<p><b>BG11 plates:</b></p>
 +
<li>Prepare 1.5 % agar: Weigh 4.5 g Bacto Agar. Fill up to 300 mL. Autoclave.<br>Microwave
 +
agar
 +
until liquid. Let cool.</li>
 +
<br>
 +
<li>In a 50 mL Falcon, add 1 vol 2x BG11 and 1 vol liquid 1.5 % agar. (Note: Usually, one
 +
plate
 +
requires 30-40 mL total volume.)</li>
 +
<br>
 +
<li>When mixture is hand warm, add appropriate antibiotics, if required. Quickly pour late,
 +
avoiding air bubbles.</li>
 +
</ol>
 +
<br>
 +
<br>
 +
<br>
 +
<br>
 +
<p><b><u>BG11 medium from Tübingen</u></b></p>
 +
<br>
 +
<p>For 1 L <i>n</i> mL of the stock solutions are used:<br>stock solution 1-7: 5 mL <br>stock
 +
solutin 8: 5 mL <br>stock solution of trace elements: 1 mL</p>
 +
<br>
 +
<table>
 +
<thead style="border-bottom: 1px solid black">
 +
<tr>
 +
<th style="text-align: center">BG11-media stock solutions (200x) &ensp;</th>
 +
<th style="text-align: center">m (for 200 mL) &ensp;</th>
 +
<th style="text-align: center">final concentration &ensp;</th>
 +
</tr>
 +
</thead>
 +
<tbody>
 +
<tr>
 +
<td style="text-align: center">1. &ensp; NaNO<sub>3</sub></td>
 +
<td style="text-align: center">60.00 g</td>
 +
<td style="text-align: center">17.65 mM</td>
 +
</tr>
 +
<tr>
 +
<td style="text-align: center">2. &ensp; K<sub>2</sub>HPO<sub>4</sub></td>
 +
<td style="text-align: center">1.25 g</td>
 +
<td style="text-align: center">0.18 mM</td>
 +
</tr>
 +
<tr>
 +
<td style="text-align: center">3. &ensp; MgSO<sub>4</sub> x 7 H<sub>2</sub>O</td>
 +
<td style="text-align: center">2.96 g</td>
 +
<td style="text-align: center">0.30 mM</td>
 +
</tr>
 +
<tr>
 +
<td style="text-align: center">4. &ensp; CaCl<sub>2</sub> x 2 H<sub>2</sub>O</td>
 +
<td style="text-align: center">1.47 g</td>
 +
<td style="text-align: center">0.25 mM</td>
 +
</tr>
 +
<tr>
 +
<td style="text-align: center">5. &ensp; Na<sub>2</sub>EDTA 2 x H<sub>2</sub>O</td>
 +
<td style="text-align: center">0.04 g</td>
 +
<td style="text-align: center">0.003 mM</td>
 +
</tr>
 +
<tr>
 +
<td style="text-align: center">6. &ensp; Na<sub>2</sub>CO<sub>3</sub></td>
 +
<td style="text-align: center">1.61 g</td>
 +
<td style="text-align: center">0.38 mM</td>
 +
</tr>
 +
<tr>
 +
<td style="text-align: center">7. &ensp; Fe(III) citrate<br>citric acid</td>
 +
<td style="text-align: center">0.29 g<br>0.23 g</td>
 +
<td style="text-align: center">0.03 mM<br>0.03 mM</td>
 +
</tr>
 +
<tr>
 +
<td style="text-align: center">8. &ensp; NaHCO<sub>3</sub></td>
 +
<td style="text-align: center">16.80 g</td>
 +
<td style="text-align: center">5 mM</td>
 +
</tr>
 +
</tbody>
 +
</table>
 +
<br>
 +
<table>
 +
<thead style="border-bottom: 1px solid black">
 +
<tr>
 +
<th style="text-align: center">Trace elements stock solution (1000x) &ensp;</th>
 +
<th style="text-align: center">m (for 100 mL) &ensp;</th>
 +
<th style="text-align: center">final concentration &ensp;</th>
 +
</tr>
 +
</thead>
 +
<tbody>
 +
<tr>
 +
<td style="text-align: center">H<sub>3</sub>BO<sub>4</sub></td>
 +
<td style="text-align: center">286 mg</td>
 +
<td style="text-align: center">46.26 µM</td>
 +
</tr>
 +
<tr>
 +
<td style="text-align: center">MnCl<sub>2</sub>x 4 H<sub>2</sub>O</td>
 +
<td style="text-align: center">181 mg</td>
 +
<td style="text-align: center">9.15 µM</td>
 +
</tr>
 +
<tr>
 +
<td style="text-align: center">ZnSO<sub>4</sub> x 7 H<sub>2</sub>O</td>
 +
<td style="text-align: center">22.2 mg</td>
 +
<td style="text-align: center">0.77 µM</td>
 +
</tr>
 +
<tr>
 +
<td style="text-align: center">Na<sub>2</sub>MO<sub>4</sub> x 2 H<sub>2</sub>O</td>
 +
<td style="text-align: center">39 mg</td>
 +
<td style="text-align: center">1.61 µM</td>
 +
</tr>
 +
<tr>
 +
<td style="text-align: center">CuSO<sub>4</sub> 5 x H<sub>2</sub>O</td>
 +
<td style="text-align: center">7.9 mg</td>
 +
<td style="text-align: center">0.32 µM</td>
 +
</tr>
 +
<tr>
 +
<td style="text-align: center">Co(NO<sub>3</sub>)<sub>2</sub> x 6 H<sub>2</sub>O</td>
 +
<td style="text-align: center">4.94 mg</td>
 +
<td style="text-align: center">0.17 µM</td>
 +
</tr>
 +
</tbody>
 +
</table>
 +
<br>
 +
<p><b>Preparation of stock solutions:</b></p>
 +
<p>stock solutions 1-7: weigh out substances and fill up with 200 mL
 +
MilliQ-H<sub>2</sub>O.<br>Note:
 +
Fe(III) citrate and citric acid are weighed in together and have to be protected from
 +
light.<br>Autoclave stock solutions and store them at room temperature. Stock solution 7
 +
should
 +
be
 +
wrapped up in aluminium foil.</p>
 +
<br>
 +
<p><b>Preparation of BG11-medium:</b></p>
 +
<p>give 900 mL MilliQ H<sub>2</sub>O in a 1 L measuring cylinder. <br>5 mL of each 200x stock
 +
solution are added (7 stock solutions) <br>1 mL trace element stock solution (1000x) is added.
 +
<br>Fill the cylinder with MilliQ H<sub>2</sub> O up to 1000 mL or 995 mL. <br>Autoclave.
 +
There
 +
will be a precipitate so shake before use. <br>Store at room temperature. <br>Add 5 mL 1 M
 +
NaHCO<sub>3</sub> stock solution (8) (200x) before use. </p>
 +
<br>
 +
<p><b>agar plates:</b></p>
 +
<p>end concentration 10 g/L agar (Use Bacto-Agar for cyanobacteria!) <br>Mix agar and
 +
BG11-medium
 +
after autoclaving. <br>For 1L agar plates: Autoclave 10 g agar in 500 mL MilliQ-H<sub>2</sub>O
 +
and
 +
500 mL 2x BG11 (5 mL of each stock solution + 1 mL of the trace element stock solution)
 +
seperately. <br>Mix them when handwarm and add 5 mL NaHCO<sub>3</sub> (+ Glc +
 +
Casaminoacids)<br>500 mL last for approximately one bag of petri dishes. <br>Pour thick agar
 +
plates (30-40 mL) as cyanobacteria have long generation times. <br><b>Verify that there are no
 +
contaminations: (Rippka et al., 1979)</b><br>BG11 agar plates + 2 % glucose + 0.02 %
 +
Casaminoacids (for 500 mL agar plates):<br>20 mL glucose (50 % stock solution, 55 g glucose
 +
monohydrate on 100 mL (warm up to dissolve) --> sterile filtration) <br>1 mL casaminoacids
 +
(100
 +
g/L stock solution). </p>
 +
</p>
 +
</div>
 +
</div>
 +
</div>
  
  
 +
<div class="wrap-collabsible">
 +
<input id="collapsible2"
 +
class="toggle"
 +
type="checkbox">
 +
<label for="collapsible2"
 +
class="lbl-toggle">competent cells</label>
 +
<div class="collapsible-content">
 +
<div class="content-inner">
 +
<p>
 +
<u>competent cells (<i>E. coli</i>)</u>
 +
<ol>
 +
<li> HK was inoculated with 2.00 mL of the overnight culture</li>
 +
<li> Incubation until the optical density is 0.6 – 0.8 (37°C, 220 rpm)</li>
 +
<li> Transfer into 50 mL falcons and centrifugation (5000 rpm, 10 min)</li>
 +
<li> Remove supernatant</li>
 +
<li> Resuspension in cold 0.1 M CaCl2 (15.0 mL)</li>
 +
<li> Incubation on ice for 30 min</li>
 +
<li> Centrifugation (5000 rpm, 10 min)</li>
 +
<li> Remove supernatant</li>
 +
<li> Resuspension in 0.1 M CaCl2 (3.25 mL) + 80% glycerin (0.75 mL)</li>
 +
<li> Aliquot in sterile eppies</li>
 +
<li> Blast-freeze in N2 (l)</li>
 +
<li> Store in freezer (-80°C)</li>
 +
</ol>
 +
<br>
 +
</p>
 +
</div>
 +
</div>
 +
</div>
  
 +
<div class="wrap-collabsible">
 +
<input id="collapsible3"
 +
class="toggle"
 +
type="checkbox">
 +
<label for="collapsible3"
 +
class="lbl-toggle">Transformation</label>
 +
<div class="collapsible-content">
 +
<div class="content-inner">
 +
<p>
 +
<u>Transformation</u>
 +
<ol>
 +
<li> x µL of DNA in either top10 or DH5α <br>(x = 1.00 µL for Retransformation; 5.00 µL of GG
 +
lvl
 +
1 construct)</li>
 +
<li> incubation on ice for 30 minutes</li>
 +
<li> heatshock (42°C, 90 sec)</li>
 +
<li> incubation in ice for 5 minutes</li>
 +
<li> addition of 500 µL LB medium</li>
 +
<li> incubation (37°C, x h)<br>(x = 1 h when antibiotic resistance kanamycin, chloramphenicol,
 +
ampicillin; 2 h when spectinomycin)</li>
 +
<li> centrifugation (5000 rpm, 2 min)<br>(when doing a retransformation this step was not
 +
executed, 100 µL of liquid were then plated on an agar plate with antibiotic resistance)
 +
</li>
 +
<li> remove supernatant</li>
 +
<li> plate on agar plate with antibiotic resistance</li>
 +
<li> incubation (37°C, overnight)</li>
 +
</ol>
 +
<br>
 +
</p>
 +
</div>
 +
</div>
 +
</div>
 +
 +
<div class="wrap-collabsible">
 +
<input id="collapsible4"
 +
class="toggle"
 +
type="checkbox">
 +
<label for="collapsible4"
 +
class="lbl-toggle">Transformation protocol for Synechococcus 7942</label>
 +
<div class="collapsible-content">
 +
<div class="content-inner">
 +
<p>
 +
<u>Transformation protocol for Synechococcus 7942</u>
 +
<br>
 +
<ol>
 +
<li>Start a fresh culture (50 mL) in BG-11</li>
 +
<li>Measure OD<sub>730nm</sub> to use cells when the OD is between 0.5 and 1.0</li>
 +
<li>Spin down cells in sterile tube at 6000 × g at room temperature.</li>
 +
<li>Concentrate the cells by re-suspending them in smaller amount of fresh growth medium so to
 +
get
 +
a final OD<sub>730nm</sub> of 2.5 – 3.5</li>
 +
<li>Place 0.4 mL of re-suspended cells in sterile culture tubes.</li>
 +
<li>Add 50 ng – 2 µg plasmid DNA to each tube and gently mix. (Leave one tube as a control w/o
 +
DNA
 +
added).</li>
 +
<li>Wrap tubes in aluminum foil (perhaps make hole in Eppie lid for gas exchange).</li>
 +
<li>Place the tubes in the growth chamber at 30° (if high CO2 requiring phenotype is expected
 +
place plates in 3 % CO2) for 4 – 24 h.</li>
 +
<li>Spot 200 μL (about 10-15 μL drops) on a sterile filter (Whatman Nuclepore Track-Etch
 +
Membrane
 +
#111107, 47mm diameter; 0.4 μM pore size) that has been placed on a BG-11 agar plate +
 +
antibiotics.</li>
 +
</ol>
 +
<br>
 +
</p>
 +
</div>
 +
</div>
 +
</div>
 +
 +
<div class="wrap-collabsible">
 +
<input id="collapsible5"
 +
class="toggle"
 +
type="checkbox">
 +
<label for="collapsible5"
 +
class="lbl-toggle">triparental conjugation</label>
 +
<div class="collapsible-content">
 +
<div class="content-inner">
 +
<p>
 +
<u>triparental conjugation</u>
 +
<ul>
 +
<li> UTEX 2973 culture was inoculated at OD 0.1</li>
 +
<li> When UTEX 2973 culture was at OD ~0.3, cultures of prK2013 and HB101 were inoculated from
 +
“overnight cultures” to OD 0.1</li>
 +
<li> When UTEX 2973 culture was at OD 0.6-0.8 the conjugation was started:</li>
 +
<ol>
 +
<li> Centrifugation of 2.00 mL of each culture (4000 x g, 2min)</li>
 +
<li> Washing (2x) with 2.00 mL of respective media</li>
 +
<li> Pipet-mixing and inverting (no vortexing!)</li>
 +
<li> Resuspension in media (UTEX 2973: 200 µL; E.coli: 100 µL)</li>
 +
<li> Mixing of all three strains</li>
 +
<li> Incubation (37°C, 30 minutes, 100-150 µE)</li>
 +
<li> Blotting 5 µL on sterile filters on LB/BG11 (95:5) plates without antibiotics</li>
 +
<li> Incubation (37°C, overnight, 150 µE)</li>
 +
<li> Moving sterile filters on LB/BG11 (95:5) plates containing spectinomycin</li>
 +
<li> Incubation (37°C, few days, 150 µE)</li>
 +
<li> Streaking cyano blots on new BG11 plates containing spectinomycin</li>
 +
<li> Colony PCR to verify the conjugation</li>
 +
</ol>
 +
</ul>
 +
<br>
 +
</p>
 +
</div>
 +
</div>
 +
</div>
 +
 +
<div class="wrap-collabsible">
 +
<input id="collapsible6"
 +
class="toggle"
 +
type="checkbox">
 +
<label for="collapsible6"
 +
class="lbl-toggle">Well-plate cultivation</label>
 +
<div class="collapsible-content">
 +
<div class="content-inner">
 +
<p>
 +
<u>Well-plate cultivation</u>
 +
<br>
 +
<ol>
 +
<li>inoculate colony of UDAR 4787 into liquid media in Volume of 1 mL + 0.5 μL Spec. incubate
 +
(24-48h, 42 ˙C, 130 rpm, 5% CO<sub>2</sub>, 500 μE)</li>
 +
<li>inoculate row A from 24-wellplate with preculture to OD<sub>730</sub>= 0.1</li>
 +
<li>inoculate B6 with UDAR as blank</li>
 +
<li>when OD reaches 0.6 inoculate row A to row C and D to OD = 0.1.</li>
 +
<li>well B6 to well B4+5</li>
 +
</ol>
 +
<br>
 +
</p>
 +
</div>
 +
</div>
 +
</div>
 +
 +
<br>
 +
<p style="text-align: center">Measurement:</p>
 +
 +
<div class="wrap-collabsible">
 +
<input id="collapsible7"
 +
class="toggle"
 +
type="checkbox">
 +
<label for="collapsible7"
 +
class="lbl-toggle">NanoLuc measurement</label>
 +
<div class="collapsible-content">
 +
<div class="content-inner">
 +
<p>
 +
<u>NanoLuc measurement</u>
 +
<br>
 +
<ol>
 +
<li>Inoculation of <i>E. coli</i> cultures (~0.1 OD 600 nm)</li>
 +
<li>Let culture grow until OD ~ 0.8.</li>
 +
<li>Preparation of Nano-Glo: mixing Nano-Glo buffer with NanoLuc substrate (1:50)</li>
 +
<li>Add 50 µL of culture and 50 µL of substrate per well (96 well plate inoculation).</i></li>
 +
<li>Wait 3 minuntes.</li>
 +
<li>Measure luminescence</li>
 +
</ol>
 +
<br>
 +
</p>
 +
</div>
 +
</div>
 +
</div>
 +
 +
<div class="wrap-collabsible">
 +
<input id="collapsible8"
 +
class="toggle"
 +
type="checkbox">
 +
<label for="collapsible8"
 +
class="lbl-toggle">Parts measurement</label>
 +
<div class="collapsible-content">
 +
<div class="content-inner">
 +
<p>
 +
<u>Parts measurement</u>
 +
<br>
 +
<p>after the well-plate cultivation (see above) the part measurement follows</p>
 +
<ol>
 +
<li>when row C and D reach OD = 0.6 measure OD with plate reader <br>Settings: 730 nm, 3
 +
measuring
 +
points (circle)</li>
 +
<li>transfer 200 μL of blanks, C1-6 and D1-6 into 96 well plate black</li>
 +
<li>measure fluorescence in a plate reader</li>
 +
<li>Setting: Excitation 488 nm, Emission 518 nm, size 2x2 (circle), frame 1200 μm,
 +
<u>strengthener:optimal</u></li>
 +
</ol>
 +
<br>
 +
</p>
 +
</div>
 +
</div>
 +
</div>
 +
<br>
 +
<p style="text-align: center">Cloning:</p>
 +
 +
<div class="wrap-collabsible">
 +
<input id="collapsible9"
 +
class="toggle"
 +
type="checkbox">
 +
<label for="collapsible9"
 +
class="lbl-toggle">Colony PCR protocol for <i>Synechococcus elongatus</i> UTEX 2973</label>
 +
<div class="collapsible-content">
 +
<div class="content-inner">
 +
<p>
 +
<u>Colony PCR protocol for <i>Synechococcus elongatus</i> UTEX 2973</u>
 +
<br>
 +
<ol>
 +
<li>Pick colony you want to use as template</li>
 +
<li>Resuspend in 50µl ddH<sub>2</sub>O</li>
 +
<li>Boil at 100°C for 10 minutes</li>
 +
<li>Afterwards prepare the reaction as follows:</li>
 +
<p style="text-indent: 30px">2.5 µl forward primer</p>
 +
<p style="text-indent: 30px">2.5 µl reversed primer</p>
 +
<p style="text-indent: 30px">25 µl Thermo Scientific™DreamTaq Green PCR Master Mix (2X)</p>
 +
<p style="text-indent: 30px">20 µl boiled cells</p>
 +
<li>Perform PCR using the following conditions:</li>
 +
<br>
 +
<table>
 +
<thead style="border-bottom: 1px solid black">
 +
<tr>
 +
<th style="text-align: center">step</th>
 +
<th style="text-align: center">Temperature</th>
 +
<th style="text-align: center">Time</th>
 +
<th style="text-align: center">cycle number</th>
 +
</tr>
 +
</thead>
 +
<tbody>
 +
<tr>
 +
<td style="text-align: center">Initial Denaturation</td>
 +
<td style="text-align: center">95°C</td>
 +
<td style="text-align: center">180 s</td>
 +
<td style="text-align: center">1</td>
 +
</tr>
 +
<tr>
 +
<td style="text-align: center">Denaturation</td>
 +
<td style="text-align: center">95</td>
 +
<td style="text-align: center">30 s</td>
 +
<td style="text-align: center">25</td>
 +
</tr>
 +
<tr>
 +
<td style="text-align: center">Annealing</td>
 +
<td style="text-align: center">Tm</td>
 +
<td style="text-align: center">30 s</td>
 +
<td style="text-align: center">25</td>
 +
</tr>
 +
<tr>
 +
<td style="text-align: center">Elongation</td>
 +
<td style="text-align: center">72</td>
 +
<td style="text-align: center">60 s</td>
 +
<td style="text-align: center">25</td>
 +
</tr>
 +
<tr>
 +
<td style="text-align: center">Terminal elongation</td>
 +
<td style="text-align: center">72</td>
 +
<td style="text-align: center">15 min</td>
 +
<td style="text-align: center">1</td>
 +
</tr>
 +
</tbody>
 +
</table>
 +
<br>
 +
<p>For PCR products longer than 2kb, the elongation time should be prolonged by 1min/kb.</p>
 +
<li>Load your gel</li>
 +
</ol>
 +
<br>
 +
</p>
 +
</div>
 +
</div>
 +
</div>
 +
 +
<div class="wrap-collabsible">
 +
<input id="collapsible10"
 +
class="toggle"
 +
type="checkbox">
 +
<label for="collapsible10"
 +
class="lbl-toggle">Digestion</label>
 +
<div class="collapsible-content">
 +
<div class="content-inner">
 +
<p>
 +
<u>Digestion</u>
 +
<br>
 +
<ol>
 +
<li> measurement of concentration of DNA</li>
 +
<li> mix components listed in table below</li>
 +
<p>
 +
<br>
 +
<table>
 +
<thead style="border-bottom: 1px solid black">
 +
<tr>
 +
<th style="text-align: center">component</th>
 +
<th style="text-align: center">volume /µL</th>
 +
</tr>
 +
</thead>
 +
<tbody>
 +
<tr>
 +
<td style="text-align: center">DNA (1 µg)</td>
 +
<td style="text-align: center">x</td>
 +
</tr>
 +
<tr>
 +
<td style="text-align: center">H<sub>2</sub>O</td>
 +
<td style="text-align: center">44.0-x</td>
 +
</tr>
 +
<tr>
 +
<td style="text-align: center">CutSmart Buffer or NEBuffer</td>
 +
<td style="text-align: center">5.00</td>
 +
</tr>
 +
<tr>
 +
<td style="text-align: center">Enzyme e.g. BsmbI or BSaI</td>
 +
<td style="text-align: center">1.00</td>
 +
</tr>
 +
</tbody>
 +
<tfoot style="border-top: 1px solid black">
 +
<tr>
 +
<td style="text-align: center">Σ in tube</td>
 +
<td style="text-align: center">50.0</td>
 +
</tr>
 +
</tfoot>
 +
</table>
 +
<br>
 +
</p>
 +
<li> 2h, 37°C in Mastercycler</li>
 +
<li> Agarose gel with Ethidium bromide (EtBr) (3 µL EtBr in 60 mL agarose gel), 70-120 V,
 +
30-60
 +
minutes </li>
 +
</ol>
 +
<br>
 +
</p>
 +
</div>
 +
</div>
 +
</div>
 +
 +
<div class="wrap-collabsible">
 +
<input id="collapsible11"
 +
class="toggle"
 +
type="checkbox">
 +
<label for="collapsible11"
 +
class="lbl-toggle">DNA plasmid purification with the Macherey-Nagel kit</label>
 +
<div class="collapsible-content">
 +
<div class="content-inner">
 +
<p>
 +
<u>DNA plasmid purification with the Macherey-Nagel Kit:</u>
 +
<br>
 +
<p> Before starting:</p>
 +
<p> Add 1 mL of Buffer A1 to the RNase A vial and vortex. Transfer the solution back into the
 +
Buffer
 +
A1 bottle and mix thoroughly. Indicate date of RNase A addition. Store Buffer A1 containing
 +
RNase
 +
A at 4 °C. The solution will be stable at this temperature for at least six months.</p>
 +
<p> Add the indicated volume of 96-100 % ethanol to Buffer A4 and Buffer AQ.</p>
 +
<br>
 +
<ol>
 +
<li> <b>Cultivate and harvest bacterial cells</b>
 +
<p>Use <b>1-5 mL</b> of a saturated <b><i>E.coli</i> LB culture</b>, pellet cells in a
 +
standard
 +
benchtop microcentrifuge for <b>30 s</b> at <b>11,000 x g</b>. Discard the supernatant and
 +
remove as much of the liquid as possible.</p>
 +
<p><i><u>Note:</u> For isolation of low-copy plasmids refer to section 5.2.</i></p>
 +
<p>~Personal note: We centrifuged in 15 mL falcons at 4000 rpm for 10 minutes at 4 °C.~</p>
 +
</li>
 +
<br>
 +
<li> <b>Cell lysis</b>
 +
<p> Add <b>250 µL Buffer A1</b>. Resuspend the cell pellet completely by vortexing or
 +
pipetting
 +
up and down. Make sure no cell clumps remain before addition of Buffer A2!</p>
 +
<p> <i><u>Attention:</u> Check Buffer A2 for precipitated SDS prior to use. If a white
 +
precipitate is visible, warm the buffer several minutes at 30-40 °C until precipitate is
 +
dissolved completely. mix thoroughly and cool buffer down to room temperature (18-25
 +
°C).</i></p>
 +
<p> Add <b>250 µL Buffer A2</b>. Mix gently by inverting the tube <b>6-8 times</b>. Do not
 +
vortex to avoid shearing of genomic DNA. incubate at <b>room temperature</b> for up to
 +
<b>5
 +
min</b> or until lysate appears clear.</p>
 +
<p> Add <b>300 µL Buffer A3</b>. Mix thoroughly by inverting the tube <b>6-8 times</b> until
 +
blue samples turn colorless completely! Do not vortex to avoid shearing of genomic DNA!
 +
</p>
 +
<p> <i>Make sure to neutralize completely to precipitate all protein and chromosomal DNA.
 +
LyseControl should turn completely colorless without any traces of blue.</i></p>
 +
</li>
 +
<br>
 +
<li> <b>Clarification of lysate</b>
 +
<p> Centrifuge for <b>5 min</b> at <b>11,000 x g</b> at room temperature.</p>
 +
<p> Repeat this step in case the supernatant is not clear!</p>
 +
</li>
 +
<br>
 +
<li> <b>Wash silica membrane</b>
 +
<p> Place a NucleoSpin® Plasmid / Plasmid (NoLid) Column in a Collection Tube (2 mL) and
 +
decant
 +
the supernatant from step 3 or pipette a maximum of 750 µL of the supernatant onto the
 +
column.
 +
Centrifuge for <b>1 min</b> at <b>11,000 x g</b>. Discard flowthrough and place the
 +
NucleoSpin® Plasmid / Plasmid (NoLid) Column back into the collection tube.</p>
 +
<p> Repeat this step to load the remaining lysate.</p>
 +
</li>
 +
<br>
 +
<li> <b>Wash silica membrane</b>
 +
<p> <i>Recommended: If plasmid DNA is prepared from host strains containing high levels of
 +
nucleases (e.g., HB101 or strains of the JM series), <b>it is strongly recommended</b>
 +
performing an additional washing step with <b>500 µL Buffer AW, optionally preheated to
 +
50
 +
°C</b>, and centrifuge for <b>1 min</b> at <b>11,000 x g</b> before proceeding with
 +
Buffer
 +
A4. Additional washing with Buffer AW will also increase the reading length of DNA
 +
sequencing reactions and improve the performance of critical enzymatic reactions.</i>
 +
</p>
 +
<p> Add <b>600 µL Buffer A4</b> (supplemented with ethanol, see section 3). Centrifuge for
 +
<b>1
 +
min</b> at <b>11,000 x g</b>. Discard flowthrough and place the NucleoSpin®
 +
Plasmid/Plasmid
 +
(NoLid) Column back into the <b>empty</b> collection tube.</p>
 +
</li>
 +
<br>
 +
<li> <b>Dry silica membrane</b>
 +
<p> Centrifuge for <b>2 min</b> at <b>11,000 x g</b> and discard the collection tube.</p>
 +
<p> <i><u>Note:</u> Residual ethanolic wash buffer might inhibit enzymatic reactions.</i>
 +
</p>
 +
</li>
 +
<br>
 +
<li> <b>Elute DNA</b>
 +
<p> Place the NucleoSpin® Plasmid/Plasmid (NoLid) Column in a 1.5 mL microcentrifuge tube
 +
(not
 +
provided) and add <b>50 µL Buffer AE</b>. Incubate for <b>1 min</b> at <b>room
 +
temperature</b>. Centrifuge for 1 min at room temperature. Centrifuge for 1 min at
 +
<b>11,000
 +
x g</b>.</p>
 +
<p> <i><u>Note:</u> For more efficient elution procedures and alternative elution buffer
 +
(e.g.,
 +
TE buffer or water) see section 2.5.</i></p>
 +
<p> ~Personal note: We heated Buffer AE to 80 °C and used 30-40 µL of it.~</p>
 +
</li>
 +
</ol>
 +
</p>
 +
</div>
 +
</div>
 +
</div>
 +
 +
<div class="wrap-collabsible">
 +
<input id="collapsible12"
 +
class="toggle"
 +
type="checkbox">
 +
<label for="collapsible12"
 +
class="lbl-toggle">DpnI digest</label>
 +
<div class="collapsible-content">
 +
<div class="content-inner">
 +
<p>
 +
<u>DpnI digest</u>
 +
<br>
 +
<ol>
 +
<li>add 2 µL of DpnI to sample</li>
 +
<li>incubate at 37°C for 2h</li>
 +
<li>Agarosegel with Ethidium bromide (EtBr) (3 µL EtBr in 60 mL agarose gel), 70-120 V, 30-60
 +
minutes</li>
 +
</ol>
 +
<br>
 +
</p>
 +
</div>
 +
</div>
 +
</div>
 +
 +
<div class="wrap-collabsible">
 +
<input id="collapsible13"
 +
class="toggle"
 +
type="checkbox">
 +
<label for="collapsible13"
 +
class="lbl-toggle">Gel Elektrophoresis</label>
 +
<div class="collapsible-content">
 +
<div class="content-inner">
 +
<p>
 +
<u>Gel Elektrophoresis</u>
 +
<br>
 +
<ol>
 +
<li>Preparation of the buffer and agarose gel</li>
 +
<br>
 +
<p><b>TAE-buffer (50x):</b></p>
 +
<br>
 +
<table>
 +
<thead style="border-bottom: 1px solid black">
 +
<tr>
 +
<th style="text-align: center">Tris</th>
 +
<th style="text-align: center">EDTA-Na<sub>2</sub>-salt &ensp;</th>
 +
<th style="text-align: center">acetic acid</th>
 +
</tr>
 +
</thead>
 +
<tbody>
 +
<tr>
 +
<td style="text-align: center">242.3 g/L</td>
 +
<td style="text-align: center">18.6 g/L</td>
 +
<td style="text-align: center">60.05 g/L</td>
 +
</tr>
 +
</tbody>
 +
</table>
 +
<br>
 +
<br>
 +
<p><b>1.2 % agarose gel:</b></p>
 +
<br>
 +
<p>4.8 g agarose in 400 mL TAE-buffer (1x)</p>
 +
<br>
 +
<li>On 100 mL 1.2 % Agarose gel 5 µL EtBr are added, stirred, filled into the box and then let
 +
it
 +
solidify.</li>
 +
<li>Add 10 µL of loading dye to 50 µL of the sample.</li>
 +
<li>Fill the pockets of the gel: 3 µL of gene ladder in one pocket and 15-20 µL of sample in
 +
the
 +
other pockets.</i></li>
 +
<li>Apply a voltage of 70-100 V and let gel run for 30-60 minutes.</li>
 +
</ol>
 +
<br>
 +
</p>
 +
</div>
 +
</div>
 +
</div>
 +
 +
<div class="wrap-collabsible">
 +
<input id="collapsible14"
 +
class="toggle"
 +
type="checkbox">
 +
<label for="collapsible14"
 +
class="lbl-toggle">Gel extraction with the QIAquick® Gel Extraction kit</label>
 +
<div class="collapsible-content">
 +
<div class="content-inner">
 +
<p>
 +
<u>Gel extraction with the QIAquick® Gel Extraction kit</u>
 +
<p> Notes before starting</p>
 +
<ul>
 +
<li> This protocoll is for the purification of up to 10 µg DNA (70 bp to 10 kb).</li>
 +
<li> The yellow colour of Buffer QG indicates a pH = 7.5. DNA adsorption to the membrane is
 +
only
 +
efficient at pH ≤ 7.5.</li>
 +
<li> Add ethanol (96-100%) to Buffer PE before use (see bottle label for volume).</li>
 +
<li> Isopropanol (100%) and a heating block or water bath at 50°C are required.</li>
 +
<li> All centrifugation steps are carried out at 17,900 x g (13,000 rpm) in a conventional
 +
table-top centrifuge.</li>
 +
</ul>
 +
<ol>
 +
<li> Excise the DNA fragment from the agarose gel with a clean, sharp scalpel.</li>
 +
<li> Weigh the gel slice in a colourless tube. Add 3 volumes of Buffer QG to 1 volume gel (100
 +
mg
 +
gel ~ 100 µL). The maximum amount of gel per spin column is 400 mg. For > 2% agarose gels,
 +
add
 +
6
 +
volumes Buffer QG.</li>
 +
<li> Incubate at 50°C for 10 min (or until the gel slice has completely dissolved). Vortex the
 +
tube every 2-3 min to help dissolve gel. After the gel slice has dissolved completely, check
 +
that the color of the mixture is yellow (similar to Buffer QG without dissolved agarose). If
 +
the
 +
colour of the mixture is orange or violet, add 10 µL 3 M sodium acetate, pH 5.0, and mix.
 +
The
 +
mixture turns yellow.</li>
 +
<li> Add 1 gel volume isopropanol to the sample and mix.</li>
 +
<li> Place a QIAquick spin column in a provided 2 mL collection tube or into a vacuum
 +
manifold.
 +
To
 +
bind DNA, apply the sample to the QIAquick column and centrifuge for 1 min or apply vacuum
 +
to
 +
the manifold until all the samples have passed through the column. Discard the flow-through
 +
and
 +
place the QIAquick column back into the same tube. For sample volumes of >800 µL, load and
 +
spin/
 +
apply vacuum again.</li>
 +
<li> If DNA will subsequently be used for sequencing, in vitro transcription, or
 +
microinjection,
 +
add 500 µL Buffer QG to the QIAquick column and centrifuge for 1 min or apply vacuum.
 +
Discard
 +
flow-through and place the QIAquick column back into the same tube.</li>
 +
<li>
 +
<p>To wash, add 750 µL Buffer PE to QIAquick column and centrifuge for 1 min or apply
 +
vacuum.
 +
Discard flow-through and place the QIAquick column back into the same tube.</p>
 +
<p> <b>Note:</b> If the DNA will be used for salt-sensitive applications (e.g., sequencing,
 +
blunt-ended ligation), let the column stand 2-5 min after addition of Buffer PE.</p>
 +
<p> Centrifuge the QIAquick column in the provided 2 mL collection tube for 1 min to remove
 +
residual wash buffer.</p>
 +
</li>
 +
<li> Place QIAquick column into a clean 1.5 mL microcentrifuge tube.</li>
 +
<li> To elute DNA, add 50 µL Buffer EB (10 mM Tris-Cl, pH 8.5) or water to the centre of the
 +
QIAquick membrane and centrifuge the column for 1 min. For increased DNA concentration, add
 +
30
 +
µL Buffer EB to the centre of the QIAquick membrane, let the column stand for 1 min, and
 +
then
 +
centrifuge for 1 min. After the addition of Buffer EB to the QIAquick membrane, increasing
 +
the
 +
incubation time up to 4 min can increase the yield of purified DNA.</li>
 +
<li> If purified DNA is to be analyzed on a gel, add 1 volume of Loading Dye to 5 volumes of
 +
purified DNA. Mix the solution by pipetting up and down before loading the gel.</li>
 +
</ol>
 +
<br>
 +
</p>
 +
</div>
 +
</div>
 +
</div>
 +
 +
 +
<div class="wrap-collabsible">
 +
<input id="collapsible15"
 +
class="toggle"
 +
type="checkbox">
 +
<label for="collapsible15"
 +
class="lbl-toggle">Golden Gate level 0</label>
 +
<div class="collapsible-content">
 +
<div class="content-inner">
 +
<p>
 +
<u>Golden Gate level 0</u>
 +
<ol>
 +
<li> Mix components listed in table below</li>
 +
<br>
 +
<p>
 +
<table>
 +
<thead style="border-bottom: 1px solid black">
 +
<tr>
 +
<th style="text-align: center">component</th>
 +
<th style="text-align: center">volume /µL</th>
 +
</tr>
 +
</thead>
 +
<tbody>
 +
<tr>
 +
<td style="text-align: center">Entry vector (60 ng/µL)</td>
 +
<td style="text-align: center">1.00</td>
 +
</tr>
 +
<tr>
 +
<td style="text-align: center">TF buffer</td>
 +
<td style="text-align: center">1.00</td>
 +
</tr>
 +
<tr>
 +
<td style="text-align: center">T4 ligase</td>
 +
<td style="text-align: center">1.00</td>
 +
</tr>
 +
<tr>
 +
<td style="text-align: center">BsmbI</td>
 +
<td style="text-align: center">1.00</td>
 +
</tr>
 +
<tr>
 +
<td style="text-align: center">Insert (180 ng/µL)</td>
 +
<td style="text-align: center">x</td>
 +
</tr>
 +
<tr>
 +
<td style="text-align: center">H<sub>2</sub>O</td>
 +
<td style="text-align: center">6.00-x</td>
 +
</tr>
 +
</tbody>
 +
<tfoot style="border-top: 1px solid black">
 +
<tr>
 +
<td style="text-align: center">Σ in tube</td>
 +
<td style="text-align: center">10.0</td>
 +
</tr>
 +
</tfoot>
 +
</table>
 +
</p>
 +
<br>
 +
<li> Golden Gate program in Mastercycler (Eppendorf)</li>
 +
<br>
 +
<p> <u>Note:</u> all the parts, the buffer and enzymes were kept on ice consistently</p>
 +
<br>
 +
<p> GoldenGate standard program:<br>Step 1: 37°C, 2 min <br>Step 2: 16°C, 5 min <br>Repetition
 +
(30x) of step 1 and 2 <br>Step 3: 60°C, 10 min <br>Step 4: 80°C, 10 min <br>Step 5: 4°C,
 +
hold
 +
until lid is opened</p>
 +
</ol>
 +
<br>
 +
<p> The protocol Golden Gate level 0 can also be found following <a
 +
href="https://www.protocols.io/view/golden-gate-lvl-0-8edhta6">this link</a>. </p>
 +
</p>
 +
</div>
 +
</div>
 +
</div>
 +
 +
<div class="wrap-collabsible">
 +
<input id="collapsible16"
 +
class="toggle"
 +
type="checkbox">
 +
<label for="collapsible16"
 +
class="lbl-toggle">Golden Gate level 1</label>
 +
<div class="collapsible-content">
 +
<div class="content-inner">
 +
<p>
 +
<u>Golden Gate level 1</u>
 +
<ol>
 +
<li> Measurement of concentration of parts used</li>
 +
<li> Dilution of parts to 20 fmol</li>
 +
<li> Preparation of Mastermix (consisting of parts) in PCR-tube (1.00 µL of each part)</li>
 +
<li> Addition of 1.00 µL level 1 Ori part</li>
 +
<li> Addition of 1.00 µL T4 Lig buffer</li>
 +
<li> Addition of 1.00 µL T4 Ligase</li>
 +
<li> Addition of 1.00 µL BsaI</li>
 +
<li> Pipet-mixing</li>
 +
<li> GoldenGate program in Mastercycler (Eppendorf)</li>
 +
<br>
 +
<p><u>Note:</u> all the parts, the buffer and enzymes were kept on ice consistently</p>
 +
<br>
 +
<p> GoldenGate standard program:<br>Step 1: 37°C, 2 min <br>Step 2: 16°C, 5 min <br>Repetition
 +
(30x) of step 1 and 2 <br>Step 3: 60°C, 10 min <br>Step 4: 80°C, 10 min <br>Step 5: 4°C,
 +
hold
 +
until lid is opened</p>
 +
<p> GoldenGate spaceholder constructs program:<br>Step 1: 37°C, 2 min <br>Step 2: 16°C, 5 min
 +
<br>Repetition (50x) of step 1 and 2 <br>Step 3: 4°C, hold until lid is opened</p>
 +
</ol>
 +
<br>
 +
<p> The protocol Golden Gate level 1 can also be found following <a
 +
href="https://www.protocols.io/view/golden-gate-lvl-1-2-8d4hs8w">this link</a>. </p>
 +
</p>
 +
</div>
 +
</div>
 +
</div>
 +
 +
<div class="wrap-collabsible">
 +
<input id="collapsible17"
 +
class="toggle"
 +
type="checkbox">
 +
<label for="collapsible17"
 +
class="lbl-toggle">Ligation Protocol with T4 DNA Ligase (M0202) (New England BioLabs Inc.)</label>
 +
<div class="collapsible-content">
 +
<div class="content-inner">
 +
<p>
 +
<u>Ligation Protocol with T4 DNA Ligase (M0202) (New England BioLabs Inc.)</u>
 +
<br>
 +
<ol>
 +
<li>Set up the following reaction in a microcentrifuge tube on ice.<i>(T4 DNA Ligase should be
 +
added last. Note that the table shows a ligation using a molar ratio of 1:3 vector to
 +
insert
 +
for the indicated DNA sizes.) Use NEBioCalculator to calculate molar ratios</i></li>
 +
<br>
 +
<table>
 +
<thead style="border-bottom: 1px solid black">
 +
<tr>
 +
<th style="text-align: center">component</th>
 +
<th style="text-align: center">20 µL reaction</th>
 +
</tr>
 +
</thead>
 +
<tbody>
 +
<tr>
 +
<td style="text-align: center">T4 DNA Ligase Buffer (10X)*</td>
 +
<td style="text-align: center">2 µL</td>
 +
</tr>
 +
<tr>
 +
<td style="text-align: center">Vector DNA (4 kb)</td>
 +
<td style="text-align: center">50 ng (0.020 pmol)</td>
 +
</tr>
 +
<tr>
 +
<td style="text-align: center">Insert DNA (1 kb)</td>
 +
<td style="text-align: center">37.5 ng (0.060 pmol)</td>
 +
</tr>
 +
<tr>
 +
<td style="text-align: center">Nuclease-free water</td>
 +
<td style="text-align: center">to 20 μl</td>
 +
</tr>
 +
<tr>
 +
<td style="text-align: center">T4 DNA Ligase</td>
 +
<td style="text-align: center">1 µL</td>
 +
</td>
 +
</tr>
 +
</tbody>
 +
</table>
 +
<br>
 +
<p><i>* The T4 DNA Ligase Buffer should be thawed and resuspended at room temperature.</i></p>
 +
<br>
 +
<li>Gently mix the reaction by pipetting up and down and microfuge briefly.</li>
 +
<li>For cohesive (sticky) ends, incubate at 16°C overnight or room temperature for 10 minutes.
 +
</li>
 +
<li>For blunt ends or single base overhangs, incubate at 16°C overnight or room temperature
 +
for
 +
2
 +
hours <i>(alternatively, high concentration T4 DNA Ligase can be used in a 10 minute
 +
ligation).</i></li>
 +
<li>Heat inactivate at 65°C for 10 minutes.</li>
 +
<li>Chill on ice and transform 1-5 μl of the reaction into 50 μl competent cells.</li>
 +
</ol>
 +
<br>
 +
</p>
 +
</div>
 +
</div>
 +
</div>
 +
 +
<div class="wrap-collabsible">
 +
<input id="collapsible18"
 +
class="toggle"
 +
type="checkbox">
 +
<label for="collapsible18"
 +
class="lbl-toggle">PCR Purification with the QIAquick® PCR Purification Kit</label>
 +
<div class="collapsible-content">
 +
<div class="content-inner">
 +
<p>
 +
<u>PCR Purification with the QIAquick® PCR Purification Kit</u>
 +
<p> Notes before starting</p>
 +
<ul>
 +
<li> This protocol is for the purification of up to 10 µg PCR products (100 bp to 10 kb in
 +
size).
 +
</li>
 +
<li> Add ethanol (96-100%) to Buffer PE before use (see bottle label for volume).</li>
 +
<li> All centrifugation steps are carried out at 17.900 x g (13,000 rpm) in a conventional
 +
table-top microcentrifuge at room temperature.</li>
 +
<li> Add 1:250 volume pH indicator I to Buffer PB. The yellow colour of Buffer PB with pH
 +
indicator I indicates a pH ≤ 7.5. The adsorption of DNA to the membrane is only efficient at
 +
pH
 +
≤ 7.5. If the purified PCR product is to be used in sensitive microarray applications, it
 +
may
 +
be
 +
beneficial to use Buffer PB without the addition of pH indicator I; do not add pH indicator
 +
I
 +
to
 +
buffer aliquots.</li>
 +
<li> Symbols: ● centrifuge processing; ▴ vacuum processing</li>
 +
</ul>
 +
<ol>
 +
<li> Add 5 volumes Buffer PB to 1 volume of the PCR reaction and mix. If the colour of the
 +
mixture
 +
is orange or violet, add 10 µL 3 M sodium acetate, pH 5.0, and mix. The colour of the
 +
mixture
 +
will turn yellow.</li>
 +
<li> Place a QIAquick column in ● a provided 2 mL collection tube or into▴a vacuum manifold.
 +
For
 +
details on how to set up a vacuum manifold, refer to the QIAquick Spin Handbook.</li>
 +
<li> To bind DNA, apply the sample to the QIAquick column and ● centrifuge for 30-60 s
 +
or▴apply
 +
vacuum to the manifold until all the samples have passed through the column. ● Discard
 +
flow-through and place the QIAquick column back in the same tube.</li>
 +
<li> To wash, add 750 µL Buffer PE to the QIAquick column ● centrifuge for 30-60 s or▴apply
 +
vacuum. ● Discard flow-through and place the QIAquick column back in the same tube. </li>
 +
<li> Centrifuge the QIAquick column once more in the provided 2 mL collection tube for 1 min
 +
to
 +
remove residual wash buffer.</li>
 +
<li> Place each QIAquick column in a clean 1.5 mL microcentrifuge tube.</li>
 +
<li> To elute DNA, add 50 µL Buffer EB (10 mM Tris-Cl, pH 8.5) or water (pH 7.0-8.5) to the
 +
centre
 +
of the QIAquick membrane and centrifuge the column for 1 min. For increased DNA
 +
concentration,
 +
add 30 µL elution buffer to the centre of the QIAquick membrane, let the column stand for 1
 +
min
 +
and then centrifuge.</li>
 +
<li> If the purified DNA is to be analyzed on a gel, add 1 volume of Loading Dye to 5 volumes
 +
of
 +
purified DNA. Mix the solution by pipetting up and down before loading the gel.</li>
 +
</ol>
 +
<br>
 +
</p>
 +
</div>
 +
</div>
 +
</div>
 +
 +
<div class="wrap-collabsible">
 +
<input id="collapsible19"
 +
class="toggle"
 +
type="checkbox">
 +
<label for="collapsible19"
 +
class="lbl-toggle">PCR Using Q5® High-Fidelity DNA Polymerase (M0491)</label>
 +
<div class="collapsible-content">
 +
<div class="content-inner">
 +
<p>
 +
<u>PCR Using Q5® High-Fidelity DNA Polymerase (M0491)</u>
 +
<br>
 +
<ol>
 +
<li>Please note that protocols with Q5 High-Fidelity DNA Polymerase may differ from protocols
 +
with
 +
other polymerases. Conditions recommended below should be used for optimal
 +
performance.<br><b>Reaction Setup:</b><br>We recommend assembling all reaction components on
 +
ice
 +
and quickly transferring the reactions to a thermocycler preheated to the denaturation
 +
temperature (98°C). All components should be mixed prior to use. Q5 High-Fidelity DNA
 +
Polymerase
 +
may be diluted in 1X Q5 Reaction Buffer just prior to use in order to reduce pipetting
 +
errors.
 +
</li>
 +
<br>
 +
<table>
 +
<thead style="border-bottom: 1px solid black; border-collapse: separate;">
 +
<tr>
 +
<th style="text-align: center">component &ensp;</th>
 +
<th style="text-align: center">25 µL reaction &ensp;</th>
 +
<th style="text-align: center">50 µL reaction &ensp;</th>
 +
<th style="text-align: center">final concentration &ensp;</th>
 +
</tr>
 +
</thead>
 +
<tbody>
 +
<tr>
 +
<td style="text-align: center">5X Q5 reaction Buffer</td>
 +
<td style="text-align: center">5 µL</td>
 +
<td style="text-align: center">10 µL</td>
 +
<td style="text-align: center">1X</td>
 +
</tr>
 +
<tr>
 +
<td style="text-align: center">10 mM dNTPs</td>
 +
<td style="text-align: center">0.5 µL</td>
 +
<td style="text-align: center">1 µL</td>
 +
<td style="text-align: center">200 µM</td>
 +
</tr>
 +
<tr>
 +
<td style="text-align: center">10 µM Forward Primer</td>
 +
<td style="text-align: center">1.25 µL</td>
 +
<td style="text-align: center">2.5 µL</td>
 +
<td style="text-align: center">0.5 µM</td>
 +
</tr>
 +
<tr>
 +
<td style="text-align: center">10 µM Reverse Primer</td>
 +
<td style="text-align: center">1.25 μl</td>
 +
<td style="text-align: center">2.5 µL</td>
 +
<td style="text-align: center">0.5 µM</td>
 +
</tr>
 +
<tr>
 +
<td style="text-align: center">Template DNA</td>
 +
<td style="text-align: center">variable</td>
 +
<td style="text-align: center">variable</td>
 +
<td style="text-align: center">
 +
< 1,000
 +
ng</td>
 +
</tr>
 +
<tr>
 +
<td style="text-align: center">Q5 High-Fidelity DNA Polymerase</td>
 +
<td style="text-align: center">0.25 µL</td>
 +
<td style="text-align: center">0.5 µL</td>
 +
<td style="text-align: center">0.02 U/µL</td>
 +
</tr>
 +
<tr>
 +
<td style="text-align: center">5X Q5 High GC Enhancer (optional)</td>
 +
<td style="text-align: center">(5 µL)</td>
 +
<td style="text-align: center">(10 µL)</td>
 +
<td style="text-align: center">1X</td>
 +
</tr>
 +
<tr>
 +
<td style="text-align: center">Nuclease-Free Water</td>
 +
<td style="text-align: center">to 25 μl</td>
 +
<td style="text-align: center">to 50 µL</td>
 +
<td style="text-align: center"></td>
 +
</tr>
 +
</tbody>
 +
</table>
 +
<br>
 +
<p><i>Notes: Gently mix the reaction. Collect all liquid to the bottom of the tube by a quick
 +
spin
 +
if necessary. Overlay the sample with mineral oil if using a PCR machine without a heated
 +
lid.</i><br>Transfer PCR tubes to a PCR machine and begin
 +
thermocycling.<br><b>Thermocycling
 +
Conditions for a Routine PCR:</b></p><br>
 +
<table>
 +
<thead style="border-bottom: 1px solid black">
 +
<tr>
 +
<th style="text-align: center">step</th>
 +
<th style="text-align: center">temp</th>
 +
<th style="text-align: center">time</th>
 +
</tr>
 +
</thead>
 +
<tbody>
 +
<tr>
 +
<td style="text-align: center">Initial Denaturation</td>
 +
<td style="text-align: center">98°C</td>
 +
<td style="text-align: center">30 seconds</td>
 +
</tr>
 +
<tr>
 +
<td style="text-align: center">25-35 cycles</td>
 +
<td style="text-align: center">98°C<br>*50-72°C<br>72°C</td>
 +
<td style="text-align: center">5-10 seconds<br>10-30 seconds<br>20-30 seconds/kb</td>
 +
</tr>
 +
<tr>
 +
<td style="text-align: center">Final Extension</td>
 +
<td style="text-align: center">72°C</td>
 +
<td style="text-align: center">2 minutes</td>
 +
</tr>
 +
<tr>
 +
<td style="text-align: center">Hold</td>
 +
<td style="text-align: center">4-10°C</td>
 +
<td style="text-align: center"></td>
 +
</tr>
 +
</tbody>
 +
</table>
 +
<br>
 +
<p><i>*Use of the NEBTm Calculator is highly recommended.</i></p>
 +
<br>
 +
<li><b>General Guidelines:</b><br>Template:Use of high quality, purified DNA templates greatly
 +
enhances the success of PCR. Recommended amounts of DNA template for a 50 µl reaction are as
 +
follows:</li><br>
 +
<table>
 +
<thead style="border-bottom: 1px solid black">
 +
<tr>
 +
<th style="text-align: center">DNA</th>
 +
<th style="text-align: center">amount</th>
 +
</tr>
 +
</thead>
 +
<tbody>
 +
<tr>
 +
<td style="text-align: center">DNA Genomic</td>
 +
<td style="text-align: center">1 ng - 1 µg</td>
 +
</tr>
 +
<tr>
 +
<td style="text-align: center">Plasmid or Viral</td>
 +
<td style="text-align: center">1 pg - 10 ng</td>
 +
</tr>
 +
</tbody>
 +
</table>
 +
<br>
 +
<li>Primers:<br>Oligonucleotide primers are generally 20–40 nucleotides in length and ideally
 +
have
 +
a GC content of 40–60%. Computer programs such as Primer3 can be used to design or analyze
 +
primers. The best results are typically seen when using each primer at a final concentration
 +
of
 +
0.5 µM in the reaction.</li>
 +
<li>Mg<sup>++</sup> and additives:<br>Mg<sup>++</sup> concentration of 2.0 mM is optimal for
 +
most
 +
PCR products generated with Q5 High-Fidelity DNA Polymerase. When used at a final
 +
concentration
 +
of 1X, the Q5 Reaction Buffer provides the optimal Mg<sup>++</sup>
 +
concentration.<br>Amplification of some difficult targets, like GC-rich sequences, may be
 +
improved by the addition of 1X Q5 High GC Enhancer. The Q5 High GC Enhancer is not a buffer
 +
and
 +
should not be used alone. It should be added only to reactions with the Q5 Reaction Buffer
 +
when
 +
other conditions have failed.</li>
 +
<li>Deoxynucleotides:<br>The final concentration of dNTPs is typically 200 μM of each
 +
deoxynucleotide. Q5 High-Fidelity DNA Polymerase cannot incorporate dUTP and is not
 +
recommended
 +
for use with uracil-containing primers or templates.</li>
 +
<li>Q5 High-Fidelity DNA Polymerase concentration:<br>We generally recommend using Q5
 +
High-Fidelity DNA Polymerase at a final concentration of 20 units/ml (1.0 unit/50 μl
 +
reaction).
 +
However, the optimal concentration of Q5 High-Fidelity DNA Polymerase may vary from 10–40
 +
units/ml (0.5–2 units/50 μl reaction) depending on amplicon length and difficulty. Do not
 +
exceed
 +
2 units/50 μl reaction, especially for amplicons longer than 5 kb.</li>
 +
<li>Buffers:<br>The 5X Q5 Reaction Buffer provided with the enzyme is recommended as the
 +
first-choice buffer for robust, high-fidelity amplification. For difficult amplicons, such
 +
as
 +
GC-rich templates or those with secondary structure, the addition of the Q5 High GC Enhancer
 +
can
 +
improve reaction performance. The 5X Q5 Reaction Buffer is detergent-free and contains 2.0
 +
mM
 +
Mg<sup>++</sup> at the final (1X) concentration.</li>
 +
<li>Denaturation:<br>An initial denaturation of 30 seconds at 98°C is sufficient for most
 +
amplicons from pure DNA templates. Longer denaturation times can be used (up to 3 minutes)
 +
for
 +
templates that require it. <br>During thermocycling, the denaturation step should be kept to
 +
a
 +
minimum. Typically, a 5–10 second denaturation at 98°C is recommended for most templates.
 +
</li>
 +
<li>Annealing:<br>Optimal annealing temperatures for Q5 High-Fidelity DNA Polymerase tend to
 +
be
 +
higher than for other PCR polymerases. The NEB Tm Calculator should be used to determine the
 +
annealing temperature when using this enzyme. Typically, use a 10–30 second annealing step
 +
at
 +
3°C above the T<sub>m</sub> of the lower T<sub>m</sub> primer. A temperature gradient can
 +
also
 +
be used to optimize the annealing temperature for each primer pair.<br>For high
 +
T<sub>m</sub>
 +
primer pairs, two-step cycling without a separate annealing step can be used (see note 12).
 +
</li>
 +
<li>Extension:<br>The recommended extension temperature is 72°C. Extension times are generally
 +
20–30 seconds per kb for complex, genomic samples, but can be reduced to 10 seconds per kb
 +
for
 +
simple templates (plasmid, <i>E. coli</i>, etc.) or complex templates < 1
 +
kb.
 +
Extension
 +
time
 +
can
 +
be
 +
increased
 +
to
 +
40
 +
seconds
 +
per
 +
kb
 +
for
 +
cDNA
 +
or
 +
long,
 +
complex
 +
templates,
 +
if
 +
necessary.
 +
<br>A final extension of 2 minutes at 72°C is recommended.</li>
 +
<li>Cycle number:<br>Generally, 25–35 cycles yield sufficient product. For genomic amplicons,
 +
30-35 cycles are recommended.</li>
 +
<li>2-step PCR:<br>When primers with annealing temperatures ≥ 72°C are used, a 2-step
 +
thermocycling protocol (combining annealing and extension into one step) is possible.</li>
 +
<li>Amplification of long products:<br>When amplifying products > 6 kb, it is often helpful to
 +
increase the extension time to 40–50 seconds/kb.</li>
 +
<li>PCR product:<br>The PCR products generated using Q5 High-Fidelity DNA Polymerase have
 +
blunt
 +
ends. If cloning is the next step, then blunt-end cloning is recommended. If T/A-cloning is
 +
preferred, the DNA should be purified prior to A-addition, as Q5 High-Fidelity DNA
 +
Polymerase
 +
will degrade any overhangs generated.<br>Addition of an untemplated -dA can be done with
 +
<i>Taq</i> DNA Polymerase (NEB #M0267 ) or Klenow exo<sup>-</sup> (NEB #M0212 ).</li>
 +
</ol>
 +
<br>
 +
</p>
 +
</div>
 +
</div>
 +
</div>
 +
 +
<div class="wrap-collabsible">
 +
<input id="collapsible20"
 +
class="toggle"
 +
type="checkbox">
 +
<label for="collapsible20"
 +
class="lbl-toggle">qPCR</label>
 +
<div class="collapsible-content">
 +
<div class="content-inner">
 +
<p>
 +
<u>qPCR</u>
 +
<br>
 +
<ol>
 +
<li>Mix the components listed below</li>
 +
<br>
 +
<table>
 +
<thead style="border-bottom: 1px solid black">
 +
<tr>
 +
<th style="text-align: center">component</th>
 +
<th style="text-align: center">Volume</th>
 +
</tr>
 +
</thead>
 +
<tbody>
 +
<tr>
 +
<td style="text-align: center">template</td>
 +
<td style="text-align: center">1 µL</td>
 +
</tr>
 +
<tr>
 +
<td style="text-align: center">Primer-F</td>
 +
<td style="text-align: center">1 µL</td>
 +
</tr>
 +
<tr>
 +
<td style="text-align: center">Primer-R</td>
 +
<td style="text-align: center">1 µL</td>
 +
</tr>
 +
<tr>
 +
<td style="text-align: center">2x master mix (provided)</td>
 +
<td style="text-align: center">10 µL</td>
 +
</tr>
 +
<tr>
 +
<td style="text-align: center">H<sub>2</sub>O</td>
 +
<td>7 µL</td>
 +
</tr>
 +
</tbody>
 +
<tfoot style="border-top: 1px solid black">
 +
<tr>
 +
<td style="text-align: center">total volume</td>
 +
<td style="text-align: center">20 µL</td>
 +
</tr>
 +
</tfoot>
 +
</table>
 +
<br>
 +
<li>Start program in Mastercycler:</li>
 +
</ol>
 +
<p style="text-indent: 30px"> 1. 50°C, 2 minutes</p>
 +
<p style="text-indent: 30px">2. 2.95°C, 2 minutes</p>
 +
<p style="text-indent: 30px">3. 95°C, 15 seconds</p>
 +
<p style="text-indent: 30px">4. 60°C, 60 seconds</p>
 +
<p style="text-indent: 30px">cycles: 40(cycle 2 to 4)</p>
 +
</p>
 +
</div>
 +
</div>
 +
</div>
 +
 +
<div class="wrap-collabsible">
 +
<input id="collapsible21"
 +
class="toggle"
 +
type="checkbox">
 +
<label for="collapsible21"
 +
class="lbl-toggle">Quick electroporation of <i>E. coli</i></label>
 +
<div class="collapsible-content">
 +
<div class="content-inner">
 +
<p>
 +
<u>Quick electroporation of <i>E. coli</i></u>
 +
<p>This quick electroporation protocol was explained to us by Dr. Alberto Sánchez-Pascuala Jerez
 +
from the research group of Prof. Dr. Tobias J. Erb in the Max-Planck-Institute for terrestrial
 +
microbiology in Marburg. It was adapted by us and might not be exactly how Dr. Alberto
 +
Sánchez-Pascuala Jerez does it.</p>
 +
<br>
 +
<p><b>Optional:</b></p>
 +
<ol>
 +
<li>Restreak cells from glycerol stock on LB.</li>
 +
<li>Inoculate a single colony in liquid LB.</li>
 +
</ol>
 +
<br>
 +
<p><b>Standard:</b></p>
 +
<ol>
 +
<li>Inoculate your culture at <b>OD<sub>600</sub>=0.05</b> from an overnight culture</li>
 +
<li>Grow the culture until an <b>OD<sub>600</sub>=0.5</b> is reached. <i>Note: If the culture
 +
reaches OD600= ~0.6 it can still be used, but reinoculating is recommended if higher
 +
values
 +
are reached.</i></li>
 +
<li>Directly put the culture on <b>ice</b> for 10-15 min.</li>
 +
<li>Transfer the culture into a falcon and spin down in a cooled centrifuge at <b>2500 rpm,
 +
4°C
 +
for 10-15 min.</b><i>Heraeus™ Multifuge™ X1 is used for higher volumes.</i></li>
 +
<li><b>Wash</b> the cells 2-3 times in dd H2O (or other sterile water).</li>
 +
<li>Resuspend in 0.5-2.0 mL water, depending on how many aliquots you want and how big the
 +
pellet
 +
is.</li>
 +
<li>Make 50 µL – 100 µL aliquots.</li>
 +
<li><b>Add DNA</b> to your aliquot on ice.</li>
 +
<li>Transfer cell/ DNA mix <b>into</b> an <b>electroporation cuvette</b> on ice. <i>Gene
 +
Pulser®/MicroPulser™ Electroporation Cuvettes (green cap) from Bio-Rad are used.</i></li>
 +
<li><b>Wipe the cuvette</b> with a paper towel to remove any liquid that might cause an arc
 +
and
 +
place it in the electroporation chamber.</li>
 +
<li><b>Electroporate</b> the sample, directly <b>add recovery medium</b> and <b>transfer</b>
 +
the
 +
cells <b>into a reaction tube</b>. The following settings are used: 2500 V, 25 µF, 200 Ω, 2
 +
mm.
 +
As medium 500 µL SOB medium are added.</li>
 +
<li><b>Incubate</b> the cells at 37°C and 250 rpm for 1h (amp resistance) or 2h (other
 +
resistances; kan, cam, spec..)</li>
 +
<li><b>Plate</b> and incubate at 37°C over night.</li>
 +
</ol>
 +
</p>
 +
</div>
 +
</div>
 +
</div>
 +
 +
 +
 +
<div class="wrap-collabsible">
 +
<input id="collapsible22"
 +
class="toggle"
 +
type="checkbox">
 +
<label for="collapsible22"
 +
class="lbl-toggle">Sequencing</label>
 +
<div class="collapsible-content">
 +
<div class="content-inner">
 +
<p>
 +
<u>Sequencing</u>
 +
<br>
 +
<p>
 +
<table>
 +
<thead style="border-bottom: 1px solid black">
 +
<tr>
 +
<th style="text-align: center">substrate</th>
 +
<th style="text-align: center">volume</th>
 +
</tr>
 +
</thead>
 +
<tbody>
 +
<tr>
 +
<td style="text-align: center">Primer</td>
 +
<td style="text-align: center">3.00 µL</td>
 +
</tr>
 +
<tr>
 +
<td style="text-align: center">DNA (500-1200 ng) + H<sub>2</sub>O</td>
 +
<td style="text-align: center">12.0 µL</td>
 +
</tr>
 +
<tr>
 +
<td style="text-align: center">∑ in eppie</td>
 +
<td style="text-align: center">15.0 µL</td>
 +
</tr>
 +
</tbody>
 +
</table>
 +
</p>
 +
<br>
 +
<ol>
 +
<li> Add Primer, DNA (500-1200 ng) and water</li>
 +
<li> Attach sequencing label on eppie</li>
 +
<li> Register the label number online on Microsynth website</li>
 +
<li> send registered eppies to Microsynth</li>
 +
</ol>
 +
<br>
 +
</p>
 +
</div>
 +
</div>
 +
</div>
 +
 +
 +
 +
 +
</p>
 +
</div>
 +
</div>
 +
</div>
 +
<div class="sub"
 +
onclick="popup('abstract2')">
 +
<div class="sub-header">
 +
<h1>
 +
L A B B O O K S
 +
</h1>
 +
<hr>
 +
</div>
 +
<div class="sub-content">
 +
<p>
 +
Our labbook entrys.
 +
</p>
 +
</div>
 +
</div>
 +
<div class="sub"
 +
onclick="popup('abstract3')">
 +
<div class="sub-header">
 +
<h1>
 +
A U T O M A T I O N<br>
 +
P R O T O C O L S
 +
</h1>
 +
<hr>
 +
</div>
 +
<div class="sub-content">
 +
<p>
 +
The protocols of the Automation Lab can be found here.
 +
</p>
 +
</div>
 +
</div>
 +
</section>
 +
 +
<div id="abstract3"
 +
class="popup">
 +
<div class="popup-container">
 +
<div class="popup-header">
 +
<h2>DryLab protcols</h2>
 +
<button type="button"
 +
onclick="hide('abstract3')">X</button>
 +
</div>
 +
<div class="popup-content">
 +
<p>
 +
<h1 class="title">DryLab Protocols</h1>
 +
Follow <a href="https://github.com/igemsoftware2019/iGemMarburg2019">this link</a> to see all the
 +
protocols
 +
of
 +
the DryLab.<br>
 +
</p>
 +
</div>
 +
</div>
 +
</div>
 +
 +
 +
<div id="abstract2"
 +
class="popup">
 +
<div class="popup-container">
 +
<div class="popup-header">
 +
<h2>Labbooks</h2>
 +
<button type="button"
 +
onclick="hide('abstract2')">X</button>
 +
</div>
 +
<div class="popup-content">
 +
<p>
 +
<h1 class="title">Labbooks</h1>
 +
<a href="https://static.igem.org/mediawiki/2019/9/92/T--marburg--cultivation_of_UTEX.pdf">Cultivation of
 +
UTEX</a><br>
 +
<a href="https://static.igem.org/mediawiki/2019/c/c9/T--marburg--labbook-_light_measurement.pdf">Light
 +
measurement</a><br>
 +
<a
 +
href="https://static.igem.org/mediawiki/2019/e/ea/T--marburg--labbook-_building_placeholder_constructs_lvl_1.pdf">Building
 +
placeholder constructs lvl 1</a><br>
 +
<a href="https://static.igem.org/mediawiki/2019/7/7c/T--marburg--labbook-_level_1_assembly_method.pdf">Level 1
 +
assembly method</a><br>
 +
<a href="https://static.igem.org/mediawiki/2019/9/93/T--marburg--labbook-Toolbox-_Building_parts.pdf">Toolbox:
 +
Building parts</a><br>
 +
<a
 +
href="https://static.igem.org/mediawiki/2019/c/cf/T--marburg--labbook-_Synechococcus_elongatus_PCC_7942.pdf"><i>Synechococcus
 +
elongatus</i>PCC 7942</a><br>
 +
<a href="https://static.igem.org/mediawiki/2019/2/2c/T--marburg--labbook-_Toolbox-_general.pdf">Toolbox:
 +
General</a><br>
 +
<a
 +
href="https://static.igem.org/mediawiki/2019/6/6d/T--marburg--labbook-_Toolbox_copy_Marburg_Collection_1.pdf">Toolbox
 +
Marburg Collection 1.0</a><br>
 +
<a href="https://static.igem.org/mediawiki/2019/6/63/T--marburg--labbook-_triparental_conjugation.pdf">Triparental
 +
conjugation</a><br>
 +
<a
 +
href="https://static.igem.org/mediawiki/2019/8/83/T--marburg--labbook-_aNSo_integration_into_the_genome.pdf">aNSo
 +
integration into the genome</a><br>
 +
<a href="https://static.igem.org/mediawiki/2019/0/09/T--marburg--labbook-_Sch%C3%B6nas_lvl_1_GG.pdf">Schönas
 +
lvl
 +
1
 +
GG</a><br>
 +
<a href="https://static.igem.org/mediawiki/2019/2/21/T--marburg--labbook-_pANS_domestication.pdf">pANS
 +
domestication</a><br>
 +
<a href="https://static.igem.org/mediawiki/2019/7/71/T--marburg--labbook-_Natural_Competence.pdf">Natural
 +
Competence</a><br>
 +
<a href="https://static.igem.org/mediawiki/2019/f/f1/T--marburg--labbook-_Growth_Curves.pdf">Growth
 +
Curves</a><br>
 +
<a href="https://static.igem.org/mediawiki/2019/5/5d/T--marburg--labbook-_Generell_Strain_Engineering.pdf">Strain
 +
Engineering: General</a><br>
 +
<a href="https://static.igem.org/mediawiki/2019/a/a5/T--marburg--labbook-_Cpf1_system.pdf">Cpf1 system</a><br>
 +
<a
 +
href="https://static.igem.org/mediawiki/2019/4/49/T--marburg--labbook-_Nanoluc_%2B_YFP_%28codonoptimised%29.pdf">NanoLuc
 +
+ YFP (codonoptimised)</a><br>
 +
<a
 +
href="https://static.igem.org/mediawiki/2019/d/d6/T--marburg--labbook-_Farnesen-Synthase.pdf">Farnesen-Synthase</a><br>
 +
<a href="https://static.igem.org/mediawiki/2019/9/92/T--marburg--labbook-_General_Metabolic.pdf">Metabolic
 +
Engineering: General</a><br>
 +
<a
 +
href="https://static.igem.org/mediawiki/2019/1/10/T--marburg--labbook-_Hinrik_learn_how_to_use_labfolder.pdf">Metabolic
 +
Engineering</a><br>
 +
<a
 +
href="https://static.igem.org/mediawiki/2019/6/69/T--marburg--labbook-_Limonen-Synthase.pdf">Limonen-Synthase</a><br>
 +
<a href="https://static.igem.org/mediawiki/2019/1/1c/T--marburg--labbook-_MEP-Pathway.pdf">MEP-Pathway</a><br>
 +
<a href="https://static.igem.org/mediawiki/2019/c/c3/T--marburg--labbook-_New_parts_Improve_parts.pdf">New
 +
parts/
 +
improve parts</a><br>
 +
<a href="https://static.igem.org/mediawiki/2019/4/4c/T--marburg--labbook-_qPCR.pdf">qPCR</a><br>
 +
</p>
 +
</div>
 +
</div>
 +
</div>
 +
 +
 +
 +
</div>
 +
</div>
 +
</div>
 
</html>
 
</html>
 
{{Marburg/footer}}
 
{{Marburg/footer}}

Revision as of 15:10, 21 October 2019

E X P E R I M E N T S


"When you're experimenting you have to try so many things before you choose what you want, and you may go days getting nothing but exhaustion." - Fred Astaire

P R O T O C O L S


All the protocols used in our project are listed here.

L A B B O O K S


Our labbook entrys.

A U T O M A T I O N
P R O T O C O L S


The protocols of the Automation Lab can be found here.