Difference between revisions of "Team:ShanghaiFLS China/Design"

(Prototype team page)
 
 
(17 intermediate revisions by the same user not shown)
Line 1: Line 1:
{{ShanghaiFLS_China}}
+
{{ShanghaiFLS_China/nostyle.css}}
<html>
+
{{ShanghaiFLS_China/bootstrap.css}}
 +
{{ShanghaiFLS_China/font-awesome.min.css}}
 +
{{ShanghaiFLS_China/style_bg_parts_short.css}}
 +
{{ShanghaiFLS_China/important.css}}
  
<div class="column full_size">
+
<html lang="en">  
<h1>Design</h1>
+
<head>  
<p>
+
<title>ShanghaiFLS_China: Design</title>  
Design is the first step in the design-build-test cycle in engineering and synthetic biology. Use this page to describe the process that you used in the design of your parts. You should clearly explain the engineering principles used to design your project.
+
   
</p>
+
    <!-- Meta tag Keywords -->  
 
+
    <meta name="viewport" content="width=device-width, initial-scale=1">  
 
+
    <meta charset="utf-8">  
</div>
+
    <meta name="Description" content="iGEM 2019 ShanghaiFLS_China design">  
 
+
    <!-- scroll top script when refresh a page
 
+
    <script type="application/x-javascript">  
 
+
        addEventListener("load", function () {
<div class="column two_thirds_size">
+
            setTimeout(hideURLbar, 0);
<h3>What should this page contain?</h3>
+
        }, false);
<ul>
+
<li>Explanation of the engineering principles your team used in your design</li>
+
        function hideURLbar() {
<li>Discussion of the design iterations your team went through</li>
+
            window.scrollTo(0, 1);
<li>Experimental plan to test your designs</li>
+
        }
</ul>
+
    </script>  
 
+
    <!--// Meta tag Keywords -->  
</div>
+
   
 
+
<div class="column third_size">
+
</head>  
<div class="highlight decoration_A_full">
+
<h3>Inspiration</h3>
+
<body>
<ul>
+
<li><a href="https://2016.igem.org/Team:MIT/Experiments/Promoters">2016 MIT</a></li>
+
<li><a href="https://2016.igem.org/Team:BostonU/Proof">2016 BostonU</a></li>
+
<li><a href="https://2016.igem.org/Team:NCTU_Formosa/Design">2016 NCTU Formosa</a></li>
+
</ul>
+
</div>
+
</div>
+
  
 +
<!-- //header -->
 +
<header>   
 +
    <div class="container" id="home">
 +
        <!-- nav -->
 +
        <nav class="py-4">
 +
        <div id="logo">
 +
            <h1> 
 +
            <a href="https://2019.igem.org/Team:ShanghaiFLS_China">Team:ShanghaiFLS_China</a>
 +
            </h1>
 +
        </div>
 +
 +
        <label for="drop" class="toggle">Menu</label>
 +
        <input type="checkbox" id="drop" />
 +
            <ul class="menu mt-2">
 +
                <li class="mr-lg-4 mr-3"><a href="https://2019.igem.org/Team:ShanghaiFLS_China">Home</a></li>
 +
                <li class="mr-lg-4 mr-3">
 +
                <label for="drop-1" class="toggle">Team<span class="fa fa-angle-down" aria-hidden="true"></span> </label>
 +
                <a>Team<span class="fa fa-angle-down" aria-hidden="true"></span></a>
 +
                <input type="checkbox" id="drop-1"/>
 +
                <ul>
 +
                    <li><a href="https://2019.igem.org/Team:ShanghaiFLS_China/Team">Team</a></li>
 +
                    <li><a href="https://2019.igem.org/Team:ShanghaiFLS_China/Collaborations">Collaborations</a></li>
 +
                </ul>
 +
                </li>
 +
                <li class="mr-lg-4 mr-3">
 +
                <label for="drop-2" class="toggle">Project<span class="fa fa-angle-down" aria-hidden="true"></span> </label>
 +
                <a>Project<span class="fa fa-angle-down" aria-hidden="true"></span></a>
 +
                <input type="checkbox" id="drop-2"/>
 +
                <ul>
 +
                    <li><a href="https://2019.igem.org/Team:ShanghaiFLS_China/Description">Description</a></li>
 +
                    <li><a href="https://2019.igem.org/Team:ShanghaiFLS_China/Design">Design</a></li>
 +
                    <li><a href="https://2019.igem.org/Team:ShanghaiFLS_China/Experiments">Experiments</a></li>
 +
                    <li><a href="https://2019.igem.org/Team:ShanghaiFLS_China/Notebook">Notebook</a></li>
 +
                    <li><a href="https://2019.igem.org/Team:ShanghaiFLS_China/Contribution">Characterization</a></li>
 +
                    <li><a href="https://2019.igem.org/Team:ShanghaiFLS_China/Results">Results</a></li>
 +
                    <li><a href="https://2019.igem.org/Team:ShanghaiFLS_China/Model">Model</a></li>
 +
                    <li><a href="https://2019.igem.org/Team:ShanghaiFLS_China/Demonstrate">Demonstrate</a></li>
 +
                    <li><a href="https://2019.igem.org/Team:ShanghaiFLS_China/Attributions">Attributions</a></li>
 +
                </ul>
 +
                </li>
 +
                <li class="mr-lg-4 mr-3">
 +
                <label for="drop-3" class="toggle">Parts<span class="fa fa-angle-down" aria-hidden="true"></span> </label>
 +
                <a>Parts<span class="fa fa-angle-down" aria-hidden="true"></span></a>
 +
                <input type="checkbox" id="drop-3"/>
 +
                <ul>
 +
                    <li><a href="https://2019.igem.org/Team:ShanghaiFLS_China/Parts">Parts Overview</a></li>
 +
                    <li><a href="https://2019.igem.org/Team:ShanghaiFLS_China/Basic_Part">Basic Parts</a></li>
 +
                    <li><a href="https://2019.igem.org/Team:ShanghaiFLS_China/Composite_Part">Composite Parts</a></li>
 +
                    <li><a href="https://2019.igem.org/Team:ShanghaiFLS_China/Part_Collection">Part Collection</a></li>
 +
                </ul>
 +
                </li>
 +
                <li class="mr-lg-4 mr-3"><a href="https://2019.igem.org/Team:ShanghaiFLS_China/Safety">Safety</a></li>
 +
                <li class="mr-lg-4 mr-3">
 +
                <label for="drop-4" class="toggle">Human Practices<span class="fa fa-angle-down" aria-hidden="true"></span> </label>
 +
                <a>Human Practices<span class="fa fa-angle-down" aria-hidden="true"></span></a>
 +
                <input type="checkbox" id="drop-4"/>
 +
                <ul>
 +
                    <li><a href="https://2019.igem.org/Team:ShanghaiFLS_China/Human_Practices">Integrated Human Practices</a></li>
 +
                    <li><a href="https://2019.igem.org/Team:ShanghaiFLS_China/Public_Engagement">Education and Engagement</a></li>
 +
                </ul>
 +
                </li>
 +
                <li class="mr-lg-4 mr-3"><a href="https://igem.org/2019_Judging_Form?id=3239">Judging Form</a></li>
 +
            </ul>
 +
        </nav>
 +
        <!-- //nav -->
 +
    </div>
 +
</header>
 +
<!-- //header -->
 +
 +
<!-- banner -->
 +
<section class="banner">
 +
    <div class="banner-layer">
 +
        <div class="container">
 +
            <div class="row w3pvt_banner_info">
 +
                <div class="col-md-8 w3layouts_banner_margin">
 +
                    <h2 class="editContent">Design</h2>
 +
                </div>
 +
            </div>
 +
        </div>
 +
    </div>
 +
</section>
 +
<!-- //banner -->
  
 +
<section class="about py-5" id="about">
 +
    <div class="container py-3">
 +
        <h3 class="heading">Design</h3>
 +
        <div class="row about-grids">
 +
                <p class="my-4">It has long been known that the <em>AOX1</em> promoter (<em>P<sub>AOX1</sub></em>) is strongly induced by methanol and highly repressed by glucose and other carbon sources, yet it is only in the recent years that the in trans regulations are fully deciphered. As demonstrated in Wang et al., 2016, <em>P<sub>AOX1</sub></em> is activated by a cascade of transcription factors Mxr1, Prm1, and Mit1: Mxr1 is essential for <em>P<sub>AOX1</sub></em> de-repression and is inhibited by glucose. When methanol is present as the only carbon source, however, Mxr1 isderepressed, and Prm1 expression is induced by methanol. Prm1 expression is further amplified by its self-activation, while Mit1 expression is also upregulated by Prm1 activation. Taken together, Mxr1 derepresses <em>P<sub>AOX1</sub></em>, while Prm1 and Mit1 strongly activate <em>P<sub>AOX1</sub></em>, upregulating the expression of alcohol oxidase 1. Besides activating <em>P<sub>AOX1</sub></em> though, Mit1 also represses the expression of Prm1, down regulating the cascade overall. The figure below illustrates this cascade upon methanol induction.</p>
 +
                <img src="https://static.igem.org/mediawiki/2019/8/87/T--ShanghaiFLS_China--fig4.png" alt="" class="img-fluid" />
 +
                <p class="p-citation"><strong><em>In trans</em> regulation of <em>P<sub>AOX1</sub></em> upon methanol induction in the wild type <em>P. pastoris</em> GS115 strain.</strong></p>
 +
                <p class="my-4"><br />In order to further dynamically upregulate <em>P<sub>AOX1</sub></em>, we recombined the homologous promoters and transcription factors as our composite parts and integrated them into the wild type <em>P. pastoris</em> GS115 strain, which shall not only additionally activate <em>P<sub>AOX1</sub></em> but also positively regulate the expression levels the homogeneous Mit1 and Prm1. We used yEGFP3 (<em>abbr</em>. GFP), a yeast optimized EGFP variant as our reporter gene of <em>P<sub>AOX1</sub></em> activity.</p>
 +
                <img src="https://static.igem.org/mediawiki/2019/c/c2/T--ShanghaiFLS_China--fig5.png" alt="" class="img-fluid" />
 +
                <p class="p-citation"><strong>Construct <em>P<sub>AOX1</sub></em>-GFP</strong>. The <em>P<sub>AOX1</sub></em>-GFP strain is obtained by integrating <em>P<sub>AOX1</sub></em>-GFP (Part:BBa_K3239007) into the wild type <em>P. pastoris</em> GS115. The GFP protein serves as the reporter of <em>P<sub>AOX1</sub></em> activity. This serves as our control as <em>P<sub>AOX1</sub></em> regulation is the same as the wild type <em>P. pastoris</em> GS115 strain.</p>
 +
                <img src="https://static.igem.org/mediawiki/2019/f/f7/T--ShanghaiFLS_China--fig6.png" alt="" class="img-fluid" />
 +
                <p class="p-citation"><strong>Constructs <em>pGMP1</em>-<em>P<sub>AOX1</sub></em>-GFP, <em>pAPM1</em>-<em>P<sub>AOX1</sub></em>-GFP and <em>pGMP1</em>-<em>pAPM1</em>-<em>P<sub>AOX1</sub></em>-GFP</strong>. The <em>pGMP1</em>-<em>P<sub>AOX1</sub></em>-GFP strain is obtained by the integrating <em>P<sub>MIT1</sub></em>-<em>PRM1</em> (Part:BBa_K3239009) into the <em>P<sub>AOX1</sub></em>-GFP strain; the <em>pAPM1</em>-<em>P<sub>AOX1</sub></em>-GFP strain is obtained by integrating <em>P<sub>PRM1</sub></em>-<em>MIT1</em> (Part:BBa_K3239010) into the <em>P<sub>AOX1</sub></em>-GFP strain; and the <em>pGMP1</em>-<em>pAPM1</em>-<em>P<sub>AOX1</sub></em>-GFP is obtained by integrating <em>P<sub>MIT1</sub></em>-<em>PRM1</em> and <em>P<sub>PRM1</sub></em>-<em>MIT1</em> into the <em>P<sub>AOX1</sub></em>-GFP strain. In all of these strains, GFP expression reflects <em>P<sub>AOX1</sub></em> activity. Note that while the illustration omits the homogenous <em>AOX1</em> gene and the homogeneous in trans regulations among the homogeneous transcription factors, they are still present in the strains, and can be illustrated in the same way as in the figure above.</p>
 +
                <img src="https://static.igem.org/mediawiki/2019/5/59/T--ShanghaiFLS_China--Fig.456.png" alt="" class="img-fluid" />
 +
                <p class="p-citation"><strong>Overall design of the experiment</strong>. We first PCR amplified promoters <em>P<sub>PRM1</sub></em> and <em>P<sub>MIT1</sub></em> and genes <em>PRM1</em> and <em>MIT1</em> from pre-existing plasmids, then fused them together into plasmids <em>pMIT1</em>-<em>PRM1</em> and <em>pPRM1</em>-<em>MIT1</em> via Gibson assembly, hence leaving no scar at the conjunctoins. After PCR verifying each assembled plasmids, we then integrated them into <em>P<sub>AOX1</sub></em>-GFP strains via electroporation, giving us <em>pGMP1</em>-<em>P<sub>AOX1</sub></em>-GFP, <em>pAPM1</em>-<em>P<sub>AOX1</sub></em>-GFP and <em>pGMP1</em>-<em>pAPM1</em>-<em>P<sub>AOX1</sub></em>-GFP. Of our three constructs, two (<em>pGMP1</em>-<em>P<sub>AOX1</sub></em>-GFP, <em>pAPM1</em>-<em>P<sub>AOX1</sub></em>-GFP) were obtained and experimentally tested, while the third (<em>pGMP1</em>-<em>pAPM1</em>-<em>P<sub>AOX1</sub></em>-GFP) is obtained later and still being experimentally tested.</p>
 +
                <p class="my-4"><br />Given that this would eventually result in a very complicated regulatory cascade of <em>P<sub>AOX1</sub></em> activation, we modeled our constructs for an approximate prediction of their expression efficiencies compared to wild type <em>P. pastoris</em> GS115. We later experimentally tested our constructs and gained fairly positive results.</p>
 +
        </div>
 +
        <h3 class="heading">References</h3>
 +
        <div class="row about-grids">
 +
        <p class="my-4">Wang, X., Wang, Q., Wang, J., Zhou, M., Shi, L., Zhou, X., … Shen, W. (2016). Mit1 Transcription Factor Mediates Methanol Signaling and Regulates the Alcohol Oxidase 1 ( AOX1 ) Promoter in Pichia pastoris. <em>Journal of Biological Chemistry</em>, 291(12), 6245–6261. https://doi.org/10.1074/jbc.m115.692053</p>
 +
        </div>
 +
    </div>
 +
</section>
  
 +
<!-- footer -->
 +
<footer class="py-5">
 +
    <div class="container">
 +
        <div class="w3layoutsinfo-grids">
 +
            <div class="w3layouts-grid-left w3layouts-grid-right text-center">
 +
            <p><br /></p>
 +
            <img src="https://static.igem.org/mediawiki/2019/8/80/T--ShanghaiFLS_China--thanks.png" alt="" class="img-fluid">
 +
            <p><br /></p>
 +
                <div class="social mb-4">
 +
                    <ul>
 +
                        <li><a><span class="fa qmr-2 fa-twitter"></span></a><a>igem2019_sfls</a></li>
 +
                        <li><a><span class="fa qmr-2 fa-instagram"></span></a><a>igem_shanghaifls_china</a></li>
 +
                    </ul>
 +
                </div>
 +
            </div>
 +
        </div>
 +
        <div class="copyright text-center">
 +
            <p>Copyright &copy; iGEM 2019 Team ShanghaiFLS_China. All rights reserved. Email: SFLS_x_iGEM@outlook.com</p>
 +
            <a href="#home" class="move-top scroll"><span class="fa fa-angle-up" aria-hidden="true"></span></a>
 +
        </div>
 +
    </div>
 +
</footer>
 +
<!-- //footer -->
 +
 +
</body>
 
</html>
 
</html>

Latest revision as of 10:14, 21 October 2019

ShanghaiFLS_China: Design

Design

It has long been known that the AOX1 promoter (PAOX1) is strongly induced by methanol and highly repressed by glucose and other carbon sources, yet it is only in the recent years that the in trans regulations are fully deciphered. As demonstrated in Wang et al., 2016, PAOX1 is activated by a cascade of transcription factors Mxr1, Prm1, and Mit1: Mxr1 is essential for PAOX1 de-repression and is inhibited by glucose. When methanol is present as the only carbon source, however, Mxr1 isderepressed, and Prm1 expression is induced by methanol. Prm1 expression is further amplified by its self-activation, while Mit1 expression is also upregulated by Prm1 activation. Taken together, Mxr1 derepresses PAOX1, while Prm1 and Mit1 strongly activate PAOX1, upregulating the expression of alcohol oxidase 1. Besides activating PAOX1 though, Mit1 also represses the expression of Prm1, down regulating the cascade overall. The figure below illustrates this cascade upon methanol induction.

In trans regulation of PAOX1 upon methanol induction in the wild type P. pastoris GS115 strain.


In order to further dynamically upregulate PAOX1, we recombined the homologous promoters and transcription factors as our composite parts and integrated them into the wild type P. pastoris GS115 strain, which shall not only additionally activate PAOX1 but also positively regulate the expression levels the homogeneous Mit1 and Prm1. We used yEGFP3 (abbr. GFP), a yeast optimized EGFP variant as our reporter gene of PAOX1 activity.

Construct PAOX1-GFP. The PAOX1-GFP strain is obtained by integrating PAOX1-GFP (Part:BBa_K3239007) into the wild type P. pastoris GS115. The GFP protein serves as the reporter of PAOX1 activity. This serves as our control as PAOX1 regulation is the same as the wild type P. pastoris GS115 strain.

Constructs pGMP1-PAOX1-GFP, pAPM1-PAOX1-GFP and pGMP1-pAPM1-PAOX1-GFP. The pGMP1-PAOX1-GFP strain is obtained by the integrating PMIT1-PRM1 (Part:BBa_K3239009) into the PAOX1-GFP strain; the pAPM1-PAOX1-GFP strain is obtained by integrating PPRM1-MIT1 (Part:BBa_K3239010) into the PAOX1-GFP strain; and the pGMP1-pAPM1-PAOX1-GFP is obtained by integrating PMIT1-PRM1 and PPRM1-MIT1 into the PAOX1-GFP strain. In all of these strains, GFP expression reflects PAOX1 activity. Note that while the illustration omits the homogenous AOX1 gene and the homogeneous in trans regulations among the homogeneous transcription factors, they are still present in the strains, and can be illustrated in the same way as in the figure above.

Overall design of the experiment. We first PCR amplified promoters PPRM1 and PMIT1 and genes PRM1 and MIT1 from pre-existing plasmids, then fused them together into plasmids pMIT1-PRM1 and pPRM1-MIT1 via Gibson assembly, hence leaving no scar at the conjunctoins. After PCR verifying each assembled plasmids, we then integrated them into PAOX1-GFP strains via electroporation, giving us pGMP1-PAOX1-GFP, pAPM1-PAOX1-GFP and pGMP1-pAPM1-PAOX1-GFP. Of our three constructs, two (pGMP1-PAOX1-GFP, pAPM1-PAOX1-GFP) were obtained and experimentally tested, while the third (pGMP1-pAPM1-PAOX1-GFP) is obtained later and still being experimentally tested.


Given that this would eventually result in a very complicated regulatory cascade of PAOX1 activation, we modeled our constructs for an approximate prediction of their expression efficiencies compared to wild type P. pastoris GS115. We later experimentally tested our constructs and gained fairly positive results.

References

Wang, X., Wang, Q., Wang, J., Zhou, M., Shi, L., Zhou, X., … Shen, W. (2016). Mit1 Transcription Factor Mediates Methanol Signaling and Regulates the Alcohol Oxidase 1 ( AOX1 ) Promoter in Pichia pastoris. Journal of Biological Chemistry, 291(12), 6245–6261. https://doi.org/10.1074/jbc.m115.692053