Difference between revisions of "Team:Fudan-TSI/Basic Part"

(0915)
m
Line 1: Line 1:
{{Fudan-TSI}}
+
{{Fudan-TSI}}<script src="https://code.jquery.com/jquery-1.11.3.min.js"></script>
 
<html lang="en">
 
<html lang="en">
 
<!--
 
<!--
Line 35: Line 35:
 
         /** 设置默认字体 **/
 
         /** 设置默认字体 **/
  
         h1, h3, h3, h4, h5, h6 { font-size: 100%; }
+
         /* @@@@ h1, h3, h3, h4, h5, h6 { font-size: 100%; }*/
 
         address, cite, dfn, em, var { font-style: normal; } /* 将斜体扶正 */
 
         address, cite, dfn, em, var { font-style: normal; } /* 将斜体扶正 */
 
         code, kbd, pre, samp { font-family: courier new, courier, monospace; } /* 统一等宽字体 */
 
         code, kbd, pre, samp { font-family: courier new, courier, monospace; } /* 统一等宽字体 */
         small { font-size: 12px; } /* 小于 12px 的中文很难阅读,让 small 正常化 */
+
         /* @@@@ small { font-size: 12px; } /* 小于 12px 的中文很难阅读,让 small 正常化 */
  
 
         /** 重置列表元素 **/
 
         /** 重置列表元素 **/
Line 56: Line 56:
 
         /** 重置表格元素 **/
 
         /** 重置表格元素 **/
 
         table { border-collapse: collapse; border-spacing: 0; }
 
         table { border-collapse: collapse; border-spacing: 0; }
        #FudanBody .imgNoM img{
+
#FudanBody .imgNoM img{
            width:100%;
+
    width:100%;
        }
+
}
        #FudanBody .imgNoM{
+
#FudanBody .imgNoM{
            text-align:center;
+
    text-align:center;
        }
+
}
 
     </style>
 
     </style>
 
     <title>2019 Team:Fudan-TSI Basic_Part</title>
 
     <title>2019 Team:Fudan-TSI Basic_Part</title>
Line 83: Line 83:
 
                         <li>
 
                         <li>
 
                             <a id="navList" data-target="slide-out" class="waves-effect waves-light sidenav-trigger right">
 
                             <a id="navList" data-target="slide-out" class="waves-effect waves-light sidenav-trigger right">
                                 <i class="fa fa-navicon" style="font-size: 24px"></i>
+
                                 <i class="fa fa-navicon" style="font-size:24px"></i>
 
                             </a>
 
                             </a>
 
                         </li>
 
                         </li>
Line 95: Line 95:
 
                     <div class="background">
 
                     <div class="background">
 
                     </div>
 
                     </div>
                     <p style="width: 100%;text-align: center;font-size: 24px"><span class="white-text">Basic parts</span></p>
+
                     <p class="flow-text" style="width:100%;text-align:center"><span class="white-text">Basic parts</span></p>
 
                 </div></li>
 
                 </div></li>
 
                 <li>
 
                 <li>
 
                     <ul class="collapsible expandable">
 
                     <ul class="collapsible expandable">
                         <li>Team: Fudan-TSI</li>
+
                         <li class="onThisPageNav"><span>Team: Fudan-TSI</span></li>
<li><div class="collapsible-header">Project</div>
+
<li><div class="collapsible-header"><span>Project</span></div>
 
     <div class="collapsible-body"><ul>
 
     <div class="collapsible-body"><ul>
 
         <li><a href="/Team:Fudan-TSI/Description">Background</a></li>
 
         <li><a href="/Team:Fudan-TSI/Description">Background</a></li>
Line 109: Line 109:
 
     </ul></div>
 
     </ul></div>
 
</li>
 
</li>
<li><div class="collapsible-header">Results</div>
+
<li><div class="collapsible-header"><span>Results</span></div>
 
     <div class="collapsible-body"><ul>
 
     <div class="collapsible-body"><ul>
 
         <li><a href="/Team:Fudan-TSI/Results#ReverseTranscription">Reverse Transcription</a></li>
 
         <li><a href="/Team:Fudan-TSI/Results#ReverseTranscription">Reverse Transcription</a></li>
Line 118: Line 118:
 
     </ul></div>
 
     </ul></div>
 
</li>
 
</li>
<li><div class="collapsible-header">Model</div>
+
<li><div class="collapsible-header"><span>Model</span></div>
 
     <div class="collapsible-body"><ul>
 
     <div class="collapsible-body"><ul>
 
         <li><a href="/Team:Fudan-TSI/Model">Modeling</a></li>
 
         <li><a href="/Team:Fudan-TSI/Model">Modeling</a></li>
Line 125: Line 125:
 
     </ul></div>
 
     </ul></div>
 
</li>
 
</li>
<li><div class="collapsible-header">Parts</div>
+
<li><div class="collapsible-header"><span>Parts</span></div>
 
     <div class="collapsible-body"><ul>
 
     <div class="collapsible-body"><ul>
 
         <li><a href="/Team:Fudan-TSI/Basic_Part">Basic parts</a></li>
 
         <li><a href="/Team:Fudan-TSI/Basic_Part">Basic parts</a></li>
Line 133: Line 133:
 
     </ul></div>
 
     </ul></div>
 
</li>
 
</li>
<li><div class="collapsible-header">Outreach</div>
+
<li><div class="collapsible-header"><span>Outreach</span></div>
 
     <div class="collapsible-body"><ul>
 
     <div class="collapsible-body"><ul>
 
         <li><a href="/Team:Fudan-TSI/Public_Engagement">Education &amp; Public engagement</a></li>
 
         <li><a href="/Team:Fudan-TSI/Public_Engagement">Education &amp; Public engagement</a></li>
Line 141: Line 141:
 
     </ul></div>
 
     </ul></div>
 
</li>
 
</li>
<li><div class="collapsible-header">Team</div>
+
<li><div class="collapsible-header"><span>Team</span></div>
 
     <div class="collapsible-body"><ul>
 
     <div class="collapsible-body"><ul>
 
         <li><a href="/Team:Fudan-TSI/Team">Members</a></li>
 
         <li><a href="/Team:Fudan-TSI/Team">Members</a></li>
 
         <li><a href="/Team:Fudan-TSI/Attributions">Attributions</a></li>
 
         <li><a href="/Team:Fudan-TSI/Attributions">Attributions</a></li>
 
         <li><a href="https://2018.igem.org/Team:Fudan/Heritage" target=_blank>Heritage</a></li>
 
         <li><a href="https://2018.igem.org/Team:Fudan/Heritage" target=_blank>Heritage</a></li>
        <li><a href="/Team:Fudan-TSI">&copy; 2019</a></li>
 
 
     </ul></div>
 
     </ul></div>
 
</li>
 
</li>
Line 169: Line 168:
 
                 <div id="figureBannerTitle" class="hide-on-small-only">
 
                 <div id="figureBannerTitle" class="hide-on-small-only">
 
                     <h1>Basic parts</h1>
 
                     <h1>Basic parts</h1>
                     <p><span>&nbsp;</span></p>
+
                     <p class="flow-text"><span>&nbsp;</span></p>
 
                 </div>
 
                 </div>
 
                 <div class="hide-on-small-only">
 
                 <div class="hide-on-small-only">
Line 203: Line 202:
 
                     <div id="section1" class="section container">
 
                     <div id="section1" class="section container">
 
                         <h2>BBa_K2549006 <a href="http://parts.igem.org/Part:BBa_K2549006" target=_blank>mouse Notch 1 core</a></h2>
 
                         <h2>BBa_K2549006 <a href="http://parts.igem.org/Part:BBa_K2549006" target=_blank>mouse Notch 1 core</a></h2>
                         <p>Our favorite basic part for this year’s iGEM competition is mouse Notch 1 receptor’s core domain.<br/><img alt="006 screencapture" src="https://static.igem.org/mediawiki/2018/thumb/7/7e/T--Fudan--BBa_K2549006.png/1444px-T--Fudan--BBa_K2549006.png" />
+
                         <p class="flow-text">Our favorite basic part for this year’s iGEM competition is mouse Notch 1 receptor’s core domain.<br/><img alt="006 screencapture" src="https://static.igem.org/mediawiki/2018/thumb/7/7e/T--Fudan--BBa_K2549006.png/1444px-T--Fudan--BBa_K2549006.png" />
                         </p><p>
+
                         </p><p class="flow-text">
 
                             Notch core consists of the negatively regulated region and transmembrane region of the mouse Notch 1 receptor. It is the joint that empowers SynNotch the high modularity and proper activation. From the N terminal to C terminal, it is composed of three lin12-repeats (LNR) domains LNR-A, LNR-B, LNR-C, the heterodimerization domain (HD), and the transmembrane domain. The LNR-AB linker between LNR-A and B is like a plug that occludes ADAM from cleaving wild type extracellular domain can be substituted by antiGFP scFvs like LaG16 and anti-CD19, while its intracellular domain can be replaced by specialized transcription factors. Notch core is also the key to the activation of both wild type Notch receptors and SynNotch.
 
                             Notch core consists of the negatively regulated region and transmembrane region of the mouse Notch 1 receptor. It is the joint that empowers SynNotch the high modularity and proper activation. From the N terminal to C terminal, it is composed of three lin12-repeats (LNR) domains LNR-A, LNR-B, LNR-C, the heterodimerization domain (HD), and the transmembrane domain. The LNR-AB linker between LNR-A and B is like a plug that occludes ADAM from cleaving wild type extracellular domain can be substituted by antiGFP scFvs like LaG16 and anti-CD19, while its intracellular domain can be replaced by specialized transcription factors. Notch core is also the key to the activation of both wild type Notch receptors and SynNotch.
 
                         </p>
 
                         </p>
Line 216: Line 215:
 
                             </div>
 
                             </div>
  
                             <p><b>Structure of the negative regulatory region of Notch 1 receptor, surface delivery, and optimization.</b><br/>
+
                             <p class="flow-text"><b>Structure of the negative regulatory region of Notch 1 receptor, surface delivery, and optimization.</b><br/>
 
                                         a-c. Shows structure of the Notch 1 core, with more detail on the NRR. (With structural information adapted from Gordon et al., 2009)<br/>
 
                                         a-c. Shows structure of the Notch 1 core, with more detail on the NRR. (With structural information adapted from Gordon et al., 2009)<br/>
 
                                         d. Shows that mouse SynNotch with LaG16-2 scFv (single chain fragment variants) as ectodomain is expressed on the 293T cell membrane as an example via anti-myc AF488 immunofluorescence staining. Shown here the light parts.<br/>
 
                                         d. Shows that mouse SynNotch with LaG16-2 scFv (single chain fragment variants) as ectodomain is expressed on the 293T cell membrane as an example via anti-myc AF488 immunofluorescence staining. Shown here the light parts.<br/>
Line 268: Line 267:
 
                                 </tr>
 
                                 </tr>
 
                             </table>
 
                             </table>
                             <p>*) <b>ARF<sub>aS</sub>:</b> activation ratio fold of activating-form SynNotch</p>
+
                             <p class="flow-text">*) <b>ARF<sub>aS</sub>:</b> activation ratio fold of activating-form SynNotch</p>
                             <p>See more in <a href="/Team:Fudan-TSI/Optimization">Optimization</a></p>
+
                             <p class="flow-text">See more in <a href="/Team:Fudan-TSI/Optimization">Optimization</a></p>
 
                         </div>
 
                         </div>
                         <p>It is suggested by recent research that Notch activation begin as the receptor is first "opened up" at its negatively regulatory region (NRR) by the mechanical force exerted by Notch-bound ligand endocytosis on signal-sender cell, exposing its cleavage sites to proteases. Intracellular proteolytic action releases the Notch intracellular domain (NICD). In the majority of cellular interactions, the free Notch intracellular domain then translocate into the cell nucleus via nuclear localization sequence to regulate downstream signaling. For wild type Notch, the Notch intracellular domain would interacted with its major downstream effector CBF-1/Suppressor of Hairless/Lag-1 (CSL) on their target DNA. Together they recruit co-factors to activate endogenous downstream transcription. For SynNotch, specialized transcription factors will exclusively participate in regulation of genetic circuits that allow user-defined cellular responses.
+
                         <p class="flow-text">It is suggested by recent research that Notch activation begin as the receptor is first "opened up" at its negatively regulatory region (NRR) by the mechanical force exerted by Notch-bound ligand endocytosis on signal-sender cell, exposing its cleavage sites to proteases. Intracellular proteolytic action releases the Notch intracellular domain (NICD). In the majority of cellular interactions, the free Notch intracellular domain then translocate into the cell nucleus via nuclear localization sequence to regulate downstream signaling. For wild type Notch, the Notch intracellular domain would interacted with its major downstream effector CBF-1/Suppressor of Hairless/Lag-1 (CSL) on their target DNA. Together they recruit co-factors to activate endogenous downstream transcription. For SynNotch, specialized transcription factors will exclusively participate in regulation of genetic circuits that allow user-defined cellular responses.
 
                         </p>
 
                         </p>
 
                     </div>
 
                     </div>
Line 282: Line 281:
 
                 <a href="#!"><img alt="project summary" src="https://static.igem.org/mediawiki/2018/9/96/T--Fudan--X.svg"></a>
 
                 <a href="#!"><img alt="project summary" src="https://static.igem.org/mediawiki/2018/9/96/T--Fudan--X.svg"></a>
 
                 <div class="container">
 
                 <div class="container">
                     <h2 style="margin: 0;padding: 10px 0;">Project Summary</h2>
+
                     <h4 style="margin:0;padding:10px 0;">Project Summary</h4>
                     <p style="margin: 0">Mutation library generation is critical for biological and medical research, but current methods cannot mutate a specific sequence continuously without manual intervention. Here we present a toolbox for <i>in vivo</i> continuous mutation library construction. First, the target DNA is transcribed into RNA. Next, our reverse transcriptase reverts RNA into cDNA, during which the target is randomly mutated by enhanced error-prone reverse transcription. Finally, the mutated version replaces the original sequence through recombination. These steps will be carried out iteratively, generating a random mutation library of the target with high efficiency as mutations accumulate along with bacterial growth. Our toolbox is orthogonal and provides a wide range of applications among various species. R-Evolution could mutate coding sequences and regulatory sequences, which enables the <i>in vivo</i> evolution of individual proteins or multiple targets at a time, promotes high-throughput research, and serves as a foundational advance to synthetic biology.
+
                     <p class="flow-text" style="margin:0">Mutation library generation is critical for biological and medical research, but current methods cannot mutate a specific sequence continuously without manual intervention. Here we present a toolbox for <i>in vivo</i> continuous mutation library construction. First, the target DNA is transcribed into RNA. Next, our reverse transcriptase reverts RNA into cDNA, during which the target is randomly mutated by enhanced error-prone reverse transcription. Finally, the mutated version replaces the original sequence through recombination. These steps will be carried out iteratively, generating a random mutation library of the target with high efficiency as mutations accumulate along with bacterial growth. Our toolbox is orthogonal and provides a wide range of applications among various species. R-Evolution could mutate coding sequences and regulatory sequences, which enables the <i>in vivo</i> evolution of individual proteins or multiple targets at a time, promotes high-throughput research, and serves as a foundational advance to synthetic biology.
 
                     </p>
 
                     </p>
 
                 </div>
 
                 </div>
Line 291: Line 290:
 
             <div class="floatingBtn">
 
             <div class="floatingBtn">
 
                 <a href="#!" id="abstractBtn" class="btn">
 
                 <a href="#!" id="abstractBtn" class="btn">
                     <i class="fa fa-sticky-note" style="font-size: 30px;line-height: 50px"></i>
+
                     <i class="fa fa-sticky-note" style="font-size:30px;line-height:50px"></i>
 
                 </a>
 
                 </a>
 
                 <a href="#FudanWrapper" class="btn">
 
                 <a href="#FudanWrapper" class="btn">
                     <i class="fa fa-angle-up" style="font-size: 48px;line-height: 45px"></i>
+
                     <i class="fa fa-angle-up" style="font-size:48px;line-height:45px"></i>
 
                 </a>
 
                 </a>
 
             </div>
 
             </div>
Line 308: Line 307:
 
                         </a><a href="http://www.yfc.cn/en/" target="_blank"><img class="col s3 m6 l3" style="padding: 0.15rem 0.9rem;" alt="Yunfeng Capital" src="https://static.igem.org/mediawiki/2018/e/e2/T--Fudan--yunfengLogo.png">
 
                         </a><a href="http://www.yfc.cn/en/" target="_blank"><img class="col s3 m6 l3" style="padding: 0.15rem 0.9rem;" alt="Yunfeng Capital" src="https://static.igem.org/mediawiki/2018/e/e2/T--Fudan--yunfengLogo.png">
 
                         </a>
 
                         </a>
                             <h3 class="col s12" style="text-align: left; color: rgba(255, 255, 255, 0.8); font-size:12px">R-Evolution: an <i>in vivo</i> sequence-specific toolbox for continuous mutagenesis</h3>
+
                             <h3 class="col s12" style="text-align: left; color: rgba(255, 255, 255, 0.8); font-size:12.5px">R-Evolution: an <i>in vivo</i> sequence-specific toolbox for continuous mutagenesis</h3>
 
                         </div>
 
                         </div>
 
                         <div id="usefulLinks" class="col m9 s12 row">
 
                         <div id="usefulLinks" class="col m9 s12 row">

Revision as of 07:04, 17 September 2019

<script src="https://code.jquery.com/jquery-1.11.3.min.js"></script> 2019 Team:Fudan-TSI Basic_Part

Basic parts

 

Basic parts

 

BBa_K2549006 mouse Notch 1 core

Our favorite basic part for this year’s iGEM competition is mouse Notch 1 receptor’s core domain.
006 screencapture

Notch core consists of the negatively regulated region and transmembrane region of the mouse Notch 1 receptor. It is the joint that empowers SynNotch the high modularity and proper activation. From the N terminal to C terminal, it is composed of three lin12-repeats (LNR) domains LNR-A, LNR-B, LNR-C, the heterodimerization domain (HD), and the transmembrane domain. The LNR-AB linker between LNR-A and B is like a plug that occludes ADAM from cleaving wild type extracellular domain can be substituted by antiGFP scFvs like LaG16 and anti-CD19, while its intracellular domain can be replaced by specialized transcription factors. Notch core is also the key to the activation of both wild type Notch receptors and SynNotch.

Structure of the negative regulatory region of Notch 1 receptor, surface delivery, and optimization.
a-c. Shows structure of the Notch 1 core, with more detail on the NRR. (With structural information adapted from Gordon et al., 2009)
d. Shows that mouse SynNotch with LaG16-2 scFv (single chain fragment variants) as ectodomain is expressed on the 293T cell membrane as an example via anti-myc AF488 immunofluorescence staining. Shown here the light parts.
e. A conclusive diagram of our Notch optimization. We have 5 mutations that exhibit better activation performance to SynNotch with LaG17 as scFv.

SynNotch Class ARFaS*) Preferred
LaG17-mN1c-tTAA II 1.67 ± 0.20
LaG17-6G-LNRA[-]mN1c-tTAA I 1.73 ± 0.29
LaG17-LNRA cbs(D1433K)mN1c-tTAA II 2.69 ± 0.11
LaG17-LNRA cbs(D1433Q)mN1c-tTAA II Needs more repeat
LaG17-LNRAlnkr(L1457V)mN1c-tTAA I 2.12 ± 0.39
LaG17-LNRAlnkr(L1457G)mN1c-tTAA II 2.55± 0.55

*) ARFaS: activation ratio fold of activating-form SynNotch

See more in Optimization

It is suggested by recent research that Notch activation begin as the receptor is first "opened up" at its negatively regulatory region (NRR) by the mechanical force exerted by Notch-bound ligand endocytosis on signal-sender cell, exposing its cleavage sites to proteases. Intracellular proteolytic action releases the Notch intracellular domain (NICD). In the majority of cellular interactions, the free Notch intracellular domain then translocate into the cell nucleus via nuclear localization sequence to regulate downstream signaling. For wild type Notch, the Notch intracellular domain would interacted with its major downstream effector CBF-1/Suppressor of Hairless/Lag-1 (CSL) on their target DNA. Together they recruit co-factors to activate endogenous downstream transcription. For SynNotch, specialized transcription factors will exclusively participate in regulation of genetic circuits that allow user-defined cellular responses.

project summary

Project Summary

Mutation library generation is critical for biological and medical research, but current methods cannot mutate a specific sequence continuously without manual intervention. Here we present a toolbox for in vivo continuous mutation library construction. First, the target DNA is transcribed into RNA. Next, our reverse transcriptase reverts RNA into cDNA, during which the target is randomly mutated by enhanced error-prone reverse transcription. Finally, the mutated version replaces the original sequence through recombination. These steps will be carried out iteratively, generating a random mutation library of the target with high efficiency as mutations accumulate along with bacterial growth. Our toolbox is orthogonal and provides a wide range of applications among various species. R-Evolution could mutate coding sequences and regulatory sequences, which enables the in vivo evolution of individual proteins or multiple targets at a time, promotes high-throughput research, and serves as a foundational advance to synthetic biology.