Difference between revisions of "Team:Fudan-TSI/Demonstrate"

(Prototype team page)
 
(2018 by LC)
Line 1: Line 1:
{{Fudan-TSI}}
+
{{Fudan-TSI}}<script src="https://ajax.aspnetcdn.com/ajax/jQuery/jquery-1.11.3.min.js"></script>
<html>
+
<html lang="en">
 +
<!--
 +
This html document is created by Tian Huang for Team Fudan iGEM 2018.
 +
We make it compatible on laptop and mobile devices by using Materialize 1.0.0-rc.2.
 +
-->
 +
<!-- LC check on 2018-10-18 -->
 +
<head>
 +
    <meta charset="UTF-8">
  
 +
    <!-- CSS -->
 +
    <link rel="stylesheet" type="text/css" href="https://2019.igem.org/wiki/index.php?title=Template:Fudan-TSI/Fudan-css.css&action=raw&ctype=text/css" />
  
 +
    <!-- Font-awesome icons 4.7.0 -->
 +
    <link href="https://2019.igem.org/wiki/index.php?title=Template:Fudan-TSI/Fudan-font-awesome.css&action=raw&ctype=text/css" rel="stylesheet" />
  
<div class="column full_size judges-will-not-evaluate">
+
    <!-- Materialize 1.0.0-rc.2 (Material Design like) -->
<h3>★  ALERT! </h3>
+
    <link rel="stylesheet" href="https://2018.igem.org/wiki/index.php?title=Template:Fudan/materialize.css&action=raw&ctype=text/css">
<p>This page is used by the judges to evaluate your team for the <a href="https://2019.igem.org/Judging/Medals">medal criterion</a> or <a href="https://2019.igem.org/Judging/Awards"> award listed below</a>. </p>
+
<p> Delete this box in order to be evaluated for this medal criterion and/or award. See more information at <a href="https://2019.igem.org/Judging/Pages_for_Awards"> Instructions for Pages for awards</a>.</p>
+
</div>
+
  
 +
    <!-- Clear default CSS settings; CSS reset -->
 +
    <style>
 +
        *{margin: 0;padding: 0;list-style: none;}
 +
        /* via: https://blog.csdn.net/weixin_41014370/article/details/79523637 */
  
<div class="clear"></div>
+
        /** 清除内外边距 **/
 +
        body, h1, h3, h3, h4, h5, h6, hr, p, blockquote, /* structural elements 结构元素 */
 +
        dl, dt, dd, ul, ol, li, /* list elements 列表元素 */
 +
        pre, /* text formatting elements 文本格式元素 */
 +
        form, fieldset, legend, button, input, textarea, /* form elements 表单元素 */
 +
        th, td /* table elements 表格元素 */ {
 +
            margin: 0;
 +
            padding: 0;
 +
        }
  
 +
        /** 设置默认字体 **/
  
 +
        h1, h3, h3, h4, h5, h6 { font-size: 100%; }
 +
        address, cite, dfn, em, var { font-style: normal; } /* 将斜体扶正 */
 +
        code, kbd, pre, samp { font-family: courier new, courier, monospace; } /* 统一等宽字体 */
 +
        small { font-size: 12px; } /* 小于 12px 的中文很难阅读,让 small 正常化 */
  
<div class="column full_size">
+
        /** 重置列表元素 **/
<h1>Demonstrate</h1>
+
        ul, ol { list-style: none; }
<h3>Gold Medal Criterion #4</h3>
+
  
<p>
+
        /** 重置文本格式元素 **/
Teams that can show their system working under real world conditions are usually good at impressing the judges in iGEM. To achieve gold medal criterion #4, convince the judges that your engineered system works.
+
        a { text-decoration: none; }
<br><br>
+
        a:hover { text-decoration: underline; }
Your engineered system has to work under realistic conditions. Your system must comply with all <a href="https://2019.igem.org/Safety/Rules">rules</a> and <a href="https://2019.igem.org/Safety/Policies">policies</a> approved by the iGEM Safety Committee. Your system can derive from or make functional a previous iGEM project by your team or by another team. For multi-component projects, the judges may consider the function of individual components.
+
  
</p>
 
  
<p>
+
        /** 重置表单元素 **/
To be eligible for this award, you must add clear documentation to this page and delete the alert box at the top of this page.
+
        legend { color: #000; } /* for ie6 */
</p>
+
        fieldset, img { border: 0; } /* img 搭车:让链接里的 img 无边框 */
 +
        button, input, select, textarea { font-size: 100%; } /* 使得表单元素在 ie 下能继承字体大小 */
 +
        /* 注:optgroup 无法扶正 */
  
<p>
+
        /** 重置表格元素 **/
Please see the <a href="https://2019.igem.org/Judging/Medals">2019 Medals Page</a> for more information.
+
        table { border-collapse: collapse; border-spacing: 0; }
</p>
+
        #FudanBody .imgNoM img{
 +
            width:100%;
 +
        }
 +
        #FudanBody .imgNoM{
 +
            text-align:center;
 +
        }
 +
    </style>
 +
    <title>2019 Team:Fudan -Demonstrate</title>
 +
</head>
  
 +
<body>
 +
<!-- Fudan div at igem.org -->
 +
<div id="FudanWrapper" class="white">
 +
    <div id="FudanBody" class="white">
 +
        <header>
 +
            <!-- empty bar -->
 +
            <div id="emptyBar" style="position:relative;width: 100%;"></div>
  
 +
            <!-- Navigation bar -->
 +
            <!-- Dropdown and List elements in navigation bar -->
 +
            <!-- Slide-out navigator contents -->
 +
        </header>
  
 +
        <div id="pageContent" style="">
 +
 +
 +
            <div id="contentBanner" class="figureBanner orangeBg">
 +
                <div class="row">
 +
                    <div class="col s12 hide-on-med-and-up">
 +
                        <h1>Demonstration</h1>
 +
                    </div>
 +
                    <div class="col s12 hide-on-med-and-up">
 +
                        <span></span>
 +
                    </div>
 +
                </div>
 +
                <div id="figureBannerTitle" class="hide-on-small-only">
 +
                    <h1>Demonstration</h1>
 +
                    <p><span></span></p>
 +
                </div>
 +
                <div class="hide-on-small-only">
 +
                    <img src="https://static.igem.org/mediawiki/2018/a/a5/T--Fudan--title_demonstration.jpg">
 +
                    <svg width="10" height="10" xmlns="http://www.w3.org/2000/svg" style="position:absolute; left:0;top:0; width: 4%;height: 100%;">
 +
                        <defs>
 +
                            <linearGradient y2="0%" x2="100%" y1="0%" x1="0%" id="blackgraleft">
 +
                                <stop stop-color="rgb(0,0,0)" stop-opacity="1" offset="0%"/>
 +
                                <stop stop-color="rgb(0,0,0)" stop-opacity="0" offset="100%"/>
 +
                            </linearGradient>
 +
                        </defs>
 +
                        <g>
 +
                            <rect id="svg_1" fill="url(#blackgraleft)" height="100%" width="100%"/>
 +
                        </g>
 +
                    </svg>
 +
                    <svg width="10" height="10" xmlns="http://www.w3.org/2000/svg" style="position:absolute; right:0;top:0; width: 4%;height: 100%;">
 +
                        <defs>
 +
                            <linearGradient y2="0%" x2="100%" y1="0%" x1="0%" id="blackgraright">
 +
                                <stop stop-color="rgb(0,0,0)" stop-opacity="0" offset="0%"/>
 +
                                <stop stop-color="rgb(0,0,0)" stop-opacity="1" offset="100%"/>
 +
                            </linearGradient>
 +
                        </defs>
 +
                        <g>
 +
                            <rect id="svg_2" fill="url(#blackgraright)" height="100%" width="100%"/>
 +
                        </g>
 +
                    </svg>
 +
                </div>
 +
            </div>
 +
 +
            <!-- @@@@ main content of the page -->
 +
            <div class="container">
 +
                <main style="margin: 0">
 +
                    <div id="section1" class="section container">
 +
<h2>Video abstract</h2>
 +
<video class="responsive-video" style="margin-top:23px;" controls>
 +
    <source src="https://static.igem.org/mediawiki/2018/4/45/T--Fudan--demostrate-video.mp4" type="video/mp4">
 +
  </video>
 +
                        <h2>Transmembrane Logic
 +
                        </h2>
 +
                        <h3>Sensing and integrating various transmembrane signals is a key aspect of cellular decision making.
 +
                        </h3><p>
 +
                            For example, activation of CD8+ cells requires co-activation of TCR and CD28 molecules, meanwhile, this activation can be inhibited by the PD-1 pathway  <a href="https://www.ncbi.nlm.nih.gov/pubmed/28280247" target=_blank>(Hui et al., 2017)</a>. By abstracting this biological process, we can get: the activation of CD8+ cell = activated TCR AND (activated CD28 NIMPLY activated PD-1). Programming cells with predictable complex transmembrane signal inputs – customized intracellular signal outputs logic relationships are significant for expanding the widespread applications of mammalian cells, such as cellular immunotherapy <a href="https://www.ncbi.nlm.nih.gov/pubmed/24337479" target=_blank>(Fedorov et al., 2013;</a> <a href="https://www.ncbi.nlm.nih.gov/pubmed/23242161" target=_blank>Kloss et al., 2013;</a> <a href="https://www.ncbi.nlm.nih.gov/pubmed/26830879" target=_blank>Roybal et al., 2016a;</a> <a href="https://www.ncbi.nlm.nih.gov/pubmed/27693353" target=_blank>Roybal et al., 2016b), tissue patterning </a><a href="https://www.ncbi.nlm.nih.gov/pubmed/26830878" target=_blank>(Morsut et al., 2016;</a><a href="https://www.ncbi.nlm.nih.gov/pubmed/27693353" target=_blank>Roybal et al., 2016;</a> <a href="https://www.ncbi.nlm.nih.gov/pubmed/29853554" target=_blank>Toda et al., 2018)</a>.
 +
                        </p>
 +
                        <div class="expFigureHolder" style="width:100%">
 +
                            <img class="responsive-img" src="https://static.igem.org/mediawiki/2018/2/28/T--Fudan--results-1.svg">
 +
 +
                        </div>
 +
                        <h3>ENABLE: making cells even smarter
 +
                        </h3>
 +
                        <p><b>
 +
                            The ingenious design of nature makes us amazing, and inspires us to explore new possibilities. By designing the ENABLE (Engineered, Across-membrane, Binary Logic in Eukaryotes) system and achieving the first complete transmembrane binary Boolean logic in mammals, we could make the pupil outdo the master, make cells even smarter.
 +
                        </b></p>
 +
                    </div>
 +
                    <div id="section2" class="section container">
 +
                        <h2>Optimizing the Receptor, aims for reduced background activation
 +
                        </h2>
 +
                        <p>In order to be able to implement a custom multiplexed transmembrane signal input/output relationship, the first condition is that engineering modular receptor to enable it to recognize extracellular signals and transduce them into customized intracellular signals. <a href="https://www.nature.com/articles/nrc.2016.17" target=_blank>SynNotch</a> is a transmembrane receptor with high programmability. Therefore, we can use this tool to receive extracellular signals and output customized intracellular signals.
 +
                        </p><p>
 +
                            Good tools are prerequisite to the successful execution of a job. In order to make SynNotch more suitable as a tool for receiving complex extracellular signals, we have optimized it. Please visit <a href="/Team:Fudan-TSI/Optimization">Optimization page</a> for more details.
 +
                        </p>
 +
                    </div>
 +
                    <div id="section3" class="section container">
 +
                        <h2>Three-layer design for dual transmembrane signals
 +
 +
                        </h2>
 +
                        <p>The expression of membrane proteins on the cell membrane is limited. Our modeling tells us how to make cells sensitive to the limited signal molecules, and perform function efficiently is the key to make the transmembrane logic gate system work.
 +
 +
                        </p><p> Based on this, we developed the ENABLE system with a 3-layers design: Receptor, Amplifier, and Combiner. By adding an intermediate layer, the “Amplifier” layer, we are able to effectively amplify the transmembrane signal, thus enabling our intracellular components to effectively travel logic functions.
 +
 +
                    </p><p>    The 3-layer design principle underlying ENABLE empowers any future development of transmembrane logic circuits, thus contributes a foundational advance to synthetic biology.
 +
 +
                    </p>
 +
                        <div class="expFigureHolder" style="width:50%;margin: 23px auto 0 auto">
 +
                            <img class="responsive-img" src="https://static.igem.org/mediawiki/2018/a/a3/T--Fudan--results-3.svg">
 +
 +
                        </div>
 +
                    </div>
 +
                    <div id="section4" class="section container">
 +
                        <h2>Unified intracellular logic gates layout
 +
 +
                        </h2>
 +
                        <p>In order to be able to receive dual transmembrane signals and produce complete binary Boolean logic, we designed a set of interactive grammar for the interaction between the "Amplifier" layer and the "Combiner" layer within the cell membrane. This grammar consists mainly of the following elements, a transcription system based on the activating-form, silencing-from or NIMPLY-form promoters (the three are collectively referred to as a synthetic transcription factor-promoter pairs based transcription system); intein-based protein in vivo fusion systems, proteolytic enzyme-based protein in vivo destruction systems (the two are collectively referred to as a protein fusion/destruction-based transcription factor logic). We have test them and report in <a href="/Team:Fudan-TSI/Results">Results page</a>, as well as on <b>parts.igem</b> pages.
 +
                        </p>
 +
<div class="expFigureHolder" style="width:60%;margin: 23px auto 0 auto">
 +
                            <img class="responsive-img" src="https://static.igem.org/mediawiki/2018/e/ec/T--Fudan--stack.gif">
 +
 +
                        </div>
 +
                    </div>
 +
                    <div id="section5" class="section container">
 +
                        <h2>ENABLE logic gates
 +
                        </h2>
 +
                        <p>Below we show experimental verifications of six (OR, NOR, AND, NAND, IMPLY, NIMPLY) of the eight truly binary logics.
 +
                        </p>
 +
                        <div class="expFigureHolder" style="width:100%">
 +
                            <img class="responsive-img" src="https://static.igem.org/mediawiki/2018/5/56/T--Fudan--LG.svg">
 +
 +
                        </div>
 +
                        <p>Here, we use the OR gate as a proof of concept for a three-layer transmembrane binary Boolean logic during tissue patterning.
 +
                        </p>
 +
                        <p> Through dynamic and static observations, we can see that the Receiver cell with transmembrane OR gate can be activated by two Sender cells expressing different membrane antigens.
 +
                        </p>
 +
                        <div class="row">
 +
                            <img class="col s12 m4" src="https://static.igem.org/mediawiki/2018/9/98/T--Fudan--demon-1.png">
 +
                            <img class="col s12 m4" src="https://static.igem.org/mediawiki/2018/d/d1/T--Fudan--results-rgb2.gif">
 +
                        </div>
 +
 +
                        <h2>Public engagement and education
 +
                        </h2>
 +
                        <p>Our <a href="/Team:Fudan-TSI/Human_Practices">human practice</a> activities include <a href="/Team:Fudan-TSI/Public_Engagement">dialogues (debate and interviews), presentations</a>, <a href="/Team:Fudan-TSI/Bio-Art">Bio-Art display</a> and <a href="/Team:Fudan-TSI/Public_Engagement">hands-on practices</a>, all of which centered around farseeing. We want to unlock the creativity and intelligence in as many people as possible. Fully engaged with the public, we motivated by their openness and willingness, which reminds us why we initiated the research and why we work hard in the lab - for the good of the people, including ourselves.
 +
                        </p>
 +
                    </div>
 +
 +
<div class="expFigureHolder" style="width:100%">
 +
    <img class="responsive-img" src="https://static.igem.org/mediawiki/2018/8/84/T--Fudan--LC-gj-use.png" />
 +
    <p>In our GJ presentation (10/25 Room 311 9:00-9:25), we used the image above to show other how to use our ENABLE toolbox.</p>
 
</div>
 
</div>
 +
<div class="expFigureHolder" style="width:100%">
 +
    <img class="responsive-img" src="https://static.igem.org/mediawiki/2018/b/bc/T--Fudan--LC-gj-unlimited.png" />
 +
    <p>In our GJ presentation (10/25 Room 311 9:00-9:25), we used the image above to demonstrate the unlimited potential of mammalian cell computation: complex logic in one cells, distributed computing using CellBricks, and cell messengers travel far distance.</p>
 +
</div><br/><br/><br/>
 +
                </main>
 +
            </div>
 +
            <!-- @@@@ end of main content of the page -->
  
 +
            <!--Abstract on content page-->
 +
            <div id="abstractContent" class="z-depth-2">
 +
                <a href="#!"><img alt=alt="project summary" src="https://static.igem.org/mediawiki/2018/9/96/T--Fudan--X.svg"></a>
 +
                <div class="container">
 +
                    <h2 style="margin: 0;padding: 10px 0;">Project Summary</h2>
 +
                    <p style="margin: 0">Contact-dependent signaling is critical for multicellular biological
 +
                        events, yet customizing contact-dependent signal transduction between
 +
                        cells remains challenging. Here we have developed the ENABLE toolbox, a
 +
                        complete set of transmembrane binary logic gates. Each gate consists of
 +
                        3 layers: Receptor, Amplifier, and Combiner. We first optimized synthetic
 +
                        Notch receptors to enable cells to respond to different signals across the
 +
                        membrane reliably. These signals, individually amplified intracellularly by
 +
                        transcription, are further combined for computing. Our engineered zinc finger-based
 +
                        transcription factors perform binary computation and output designed products.
 +
                        In summary, we have combined spatially different signals in mammalian cells,
 +
                        and revealed new potentials for biological oscillators, tissue engineering,
 +
                        cancer treatments, bio-computing, etc. ENABLE is a toolbox for constructing
 +
                        contact-dependent signaling networks in mammals. The 3-layer design principle
 +
                        underlying ENABLE empowers any future development of transmembrane logic circuits,
 +
                        thus contributes a foundational advance to Synthetic Biology.
 +
                    </p>
 +
                </div>
 +
            </div>
 +
 +
            <!-- Floating Btns -->
 +
            <div class="floatingBtn">
 +
                <a href="#!" id="abstractBtn" class="btn">
 +
                    <i class="fa fa-sticky-note" style="font-size: 30px;line-height: 50px"></i>
 +
                </a>
 +
                <a href="#FudanWrapper" class="btn">
 +
                    <i class="fa fa-angle-up" style="font-size: 48px;line-height: 45px"></i>
 +
                </a>
 +
            </div>
 +
 +
            <!-- Footer with sponsors and contact methods -->
 +
            <footer id="FudanFooter" class="page-footer grey">
 +
                <div class="container">
 +
                    <div class="row">
 +
                        <div id="sponsor" class="col m3 s12 row">
 +
                            <a href="https://2018.igem.org/Team:Fudan" target="_blank"><img alt="2018 Team:Fudan logo white" class="col s3 m6 l3" style="position:relative; padding: 0 0.3rem; margin:-0.15rem 0; left: -0.45rem;" src="https://static.igem.org/mediawiki/2018/7/73/T--Fudan--teamLogoWhite.png">
 +
                            </a><a href="http://www.fudan.edu.cn/en/" target="_blank"><img class="col s3 m6 l3" alt="Fudan University" src="https://static.igem.org/mediawiki/2018/f/f7/T--Fudan--schoolLogo.png">
 +
                        </a><a href="http://life.fudan.edu.cn/" target="_blank"><img class="col s3 m6 l3" style="margin-bottom: 4%;/* 该图比其他小一点,排版需要 */" alt="School of Life Sciences, Fudan University" src="https://static.igem.org/mediawiki/2018/1/1d/T--Fudan--schoolOfLifeSciencesIcon.png">
 +
                        </a><a href="http://www.yfc.cn/en/" target="_blank"><img class="col s3 m6 l3" style="padding: 0.15rem 0.9rem;" alt="Yunfeng Capital" src="https://static.igem.org/mediawiki/2018/e/e2/T--Fudan--yunfengLogo.png">
 +
                        </a>
 +
                            <h3 class="col s12" style="text-align: left; color: rgba(255, 255, 255, 0.8); font-size: 18px">ENABLE: making cells even smarter</h3>
 +
                        </div>
 +
                        <div id="usefulLinks" class="col m9 s12 row">
 +
                            <div class="col s12 l6 row">
 +
                                <div class="col s12 m4 active">
 +
                                    <span>Project</span>
 +
                                    <ul>
 +
                                        <li><a href="/Team:Fudan-TSI/Description">Background</a></li>
 +
                                        <li><a href="/Team:Fudan-TSI/Design">Design</a></li>
 +
                                        <li><a href="/Team:Fudan-TSI/Protocols">Experiments</a></li>
 +
                                        <li><a href="/Team:Fudan-TSI/Demonstrate">Results</a></li>
 +
                                        <li><a href="/Team:Fudan-TSI/Judging">iGEM judging</a></li>
 +
                                    </ul>
 +
                                </div>
 +
                                <div class="col s12 m4">
 +
                                  <span><a href="/Team:Fudan-TSI/Parts">BioBricks</a></span>
 +
                                    <ul>
 +
                                        <li><a href="/Team:Fudan-TSI/Basic_Part">Basic parts</a></li>
 +
                                        <li><a href="/Team:Fudan-TSI/Composite_Part">Composite parts</a></li>
 +
                                        <li><a href="/Team:Fudan-TSI/Part_Collection">Part collection</a></li>
 +
                                        <li><a href="/Team:Fudan-TSI/Improve">Parts improvement</a></li>
 +
                                    </ul>
 +
                                </div>
 +
                                <div class="col s12 m4">
 +
                                    <span>Lab</span>
 +
                                    <ul>
 +
                                        <li><a href="/Team:Fudan-TSI/Interlab">iGEM interLab</a></li>
 +
                                        <li><a href="/Team:Fudan-TSI/Notebook">Notebook</a></li>
 +
                                        <li><a href="/Team:Fudan-TSI/Protocols">Protocols</a></li>
 +
                                        <li><a href="/Team:Fudan-TSI/Measurement">Quantification</a></li>
 +
                                        <li><a href="/Team:Fudan-TSI/Safety">Safety</a></li>
 +
                                    </ul>
 +
                                </div>
 +
                            </div>
 +
                            <div class="col s12 l6 row">
 +
                                <div class="col s12 m4">
 +
                                    <span>not-sure</span>
 +
                                    <ul>
 +
                                        <li><a href="/Team:Fudan-TSI/Applied_Design">Applied design</a></li>
 +
                                        <li><a href="/Team:Fudan-TSI/Hardware">Hardware</a></li>
 +
                                        <li><a href="/Team:Fudan-TSI/Model">Model</a></li>
 +
                                        <li><a href="/Team:Fudan-TSI/Software">Software</a></li>
 +
                                    </ul>
 +
                                </div>
 +
                                <div class="col s12 m4">
 +
                                    <span>Outreach</span>
 +
                                    <ul>
 +
                                        <li><a href="/Team:Fudan-TSI/Collaborations">Collaborations</a></li>
 +
                                        <li><a href="/Team:Fudan-TSI/Human_Practices">Human practices</a></li>
 +
                                        <li><a href="/Team:Fudan-TSI/Public_Engagement">Public engagement</a></li>
 +
                                        <li><a href="/Team:Fudan-TSI/HP">Why we do this</a></li>
 +
                                    </ul>
 +
                                </div>
 +
                                <div class="col s12 m4">
 +
                                    <span>Team</span>
 +
                                    <ul>
 +
                                        <li><a href="/Team:Fudan-TSI/Attributions">Attributions</a></li>
 +
                                        <li><a href="https://2018.igem.org/Team:Fudan/Heritage" target=_blank>Heritage</a></li>
 +
                                        <li><a href="/Team:Fudan-TSI/Team">Members</a></li>
 +
                                    </ul>
 +
                                </div>
 +
                            </div>
 +
                        </div>
 +
                    </div>
 +
                </div>
 +
                <div class="footer-copyright">
 +
                    <div class="container">
 +
                        <div class="contactUS row">
 +
                          <div class="col s12 m6 l4"><i class="fa fa-location-arrow"></i> Life Sci Bldg E301, 2005 Songhu Rd, Shanghai
 +
                          </div><div class="col s12 m6 l2"><i class="fa fa-fax"></i> +86-21-31246727
 +
                          </div><div class="col s12 m6 l2"><i class="fa fa-envelope-o"></i> igem@fudan.edu.cn
 +
                          </div><div class="col s12 m6 l4"><i class="fa fa-twitter"></i> <i class="fa fa-wechat"></i> Fudan_iGEM
 +
                          </div>
 +
                        </div>
 +
                    </div>
 +
                </div>
 +
            </footer>
 +
 +
        </div>
 +
    </div>
 +
</div>
  
  
 +
<!-- Javascript files -->
 +
<!-- Materialize 1.0.0-rc.2 -->
 +
<script src="https://2019.igem.org/wiki/index.php?title=Template:Fudan-TSI/materialize.js&action=raw&ctype=text/javascript"></script>
  
 +
<!-- Javascript -->
 +
<script src="https://2019.igem.org/wiki/index.php?title=Template:Fudan-TSI/Fudan-js.js&action=raw&ctype=text/javascript"></script>
  
 +
</body>
 
</html>
 
</html>

Revision as of 06:26, 29 August 2019

<script src="https://ajax.aspnetcdn.com/ajax/jQuery/jquery-1.11.3.min.js"></script> 2019 Team:Fudan -Demonstrate

Demonstration

Demonstration

Video abstract

Transmembrane Logic

Sensing and integrating various transmembrane signals is a key aspect of cellular decision making.

For example, activation of CD8+ cells requires co-activation of TCR and CD28 molecules, meanwhile, this activation can be inhibited by the PD-1 pathway (Hui et al., 2017). By abstracting this biological process, we can get: the activation of CD8+ cell = activated TCR AND (activated CD28 NIMPLY activated PD-1). Programming cells with predictable complex transmembrane signal inputs – customized intracellular signal outputs logic relationships are significant for expanding the widespread applications of mammalian cells, such as cellular immunotherapy (Fedorov et al., 2013; Kloss et al., 2013; Roybal et al., 2016a; Roybal et al., 2016b), tissue patterning (Morsut et al., 2016;Roybal et al., 2016; Toda et al., 2018).

ENABLE: making cells even smarter

The ingenious design of nature makes us amazing, and inspires us to explore new possibilities. By designing the ENABLE (Engineered, Across-membrane, Binary Logic in Eukaryotes) system and achieving the first complete transmembrane binary Boolean logic in mammals, we could make the pupil outdo the master, make cells even smarter.

Optimizing the Receptor, aims for reduced background activation

In order to be able to implement a custom multiplexed transmembrane signal input/output relationship, the first condition is that engineering modular receptor to enable it to recognize extracellular signals and transduce them into customized intracellular signals. SynNotch is a transmembrane receptor with high programmability. Therefore, we can use this tool to receive extracellular signals and output customized intracellular signals.

Good tools are prerequisite to the successful execution of a job. In order to make SynNotch more suitable as a tool for receiving complex extracellular signals, we have optimized it. Please visit Optimization page for more details.

Three-layer design for dual transmembrane signals

The expression of membrane proteins on the cell membrane is limited. Our modeling tells us how to make cells sensitive to the limited signal molecules, and perform function efficiently is the key to make the transmembrane logic gate system work.

Based on this, we developed the ENABLE system with a 3-layers design: Receptor, Amplifier, and Combiner. By adding an intermediate layer, the “Amplifier” layer, we are able to effectively amplify the transmembrane signal, thus enabling our intracellular components to effectively travel logic functions.

The 3-layer design principle underlying ENABLE empowers any future development of transmembrane logic circuits, thus contributes a foundational advance to synthetic biology.

Unified intracellular logic gates layout

In order to be able to receive dual transmembrane signals and produce complete binary Boolean logic, we designed a set of interactive grammar for the interaction between the "Amplifier" layer and the "Combiner" layer within the cell membrane. This grammar consists mainly of the following elements, a transcription system based on the activating-form, silencing-from or NIMPLY-form promoters (the three are collectively referred to as a synthetic transcription factor-promoter pairs based transcription system); intein-based protein in vivo fusion systems, proteolytic enzyme-based protein in vivo destruction systems (the two are collectively referred to as a protein fusion/destruction-based transcription factor logic). We have test them and report in Results page, as well as on parts.igem pages.

ENABLE logic gates

Below we show experimental verifications of six (OR, NOR, AND, NAND, IMPLY, NIMPLY) of the eight truly binary logics.

Here, we use the OR gate as a proof of concept for a three-layer transmembrane binary Boolean logic during tissue patterning.

Through dynamic and static observations, we can see that the Receiver cell with transmembrane OR gate can be activated by two Sender cells expressing different membrane antigens.

Public engagement and education

Our human practice activities include dialogues (debate and interviews), presentations, Bio-Art display and hands-on practices, all of which centered around farseeing. We want to unlock the creativity and intelligence in as many people as possible. Fully engaged with the public, we motivated by their openness and willingness, which reminds us why we initiated the research and why we work hard in the lab - for the good of the people, including ourselves.

In our GJ presentation (10/25 Room 311 9:00-9:25), we used the image above to show other how to use our ENABLE toolbox.

In our GJ presentation (10/25 Room 311 9:00-9:25), we used the image above to demonstrate the unlimited potential of mammalian cell computation: complex logic in one cells, distributed computing using CellBricks, and cell messengers travel far distance.




alt="project

Project Summary

Contact-dependent signaling is critical for multicellular biological events, yet customizing contact-dependent signal transduction between cells remains challenging. Here we have developed the ENABLE toolbox, a complete set of transmembrane binary logic gates. Each gate consists of 3 layers: Receptor, Amplifier, and Combiner. We first optimized synthetic Notch receptors to enable cells to respond to different signals across the membrane reliably. These signals, individually amplified intracellularly by transcription, are further combined for computing. Our engineered zinc finger-based transcription factors perform binary computation and output designed products. In summary, we have combined spatially different signals in mammalian cells, and revealed new potentials for biological oscillators, tissue engineering, cancer treatments, bio-computing, etc. ENABLE is a toolbox for constructing contact-dependent signaling networks in mammals. The 3-layer design principle underlying ENABLE empowers any future development of transmembrane logic circuits, thus contributes a foundational advance to Synthetic Biology.