Difference between revisions of "Team:DUT China B/Results"

Line 58: Line 58:
 
     width: 22%;
 
     width: 22%;
 
     padding: 20% 0 10%;
 
     padding: 20% 0 10%;
      
+
     background-color:#1C2B42;
                background-color:#1C2B42;
+
     float: left;               
     float: left;
+
              
+
   
+
               
+
 
   }
 
   }
 
   #sides a{
 
   #sides a{
 
     text-decoration: none;
 
     text-decoration: none;
          color:#FFFFFF !important;
+
    color:#FFFFFF !important;
 
     font-size: 60px !important;
 
     font-size: 60px !important;
                positon:fixed;  
+
    positon:fixed;  
                top:20px;
+
    top:20px;
 
   }
 
   }
 
    
 
    
Line 82: Line 78:
 
     <ul id="menu">
 
     <ul id="menu">
 
         <li>
 
         <li>
             <a href="#Inspiration"><font size="5"  >Inspiration</font></a>
+
             <a href="#Transformants"><font size="4"  >Transformants and cultivation</font></a>
             <div style="text-align: center; width: 100%; height:40px"></div>
+
             <div style="text-align: center; width: 100%; height:20px"></div>
 
         </li>
 
         </li>
 
         <br>
 
         <br>
 
         <li>
 
         <li>
             <a href="#Background" ><font size="5" >Background</font></a>
+
             <a href="#Fluorescence" ><font size="4" >Fluorescence observation of mCerulean3 transformed Chlamydomonas Reinhardtii</font></a>
             <div style="text-align: center; width: 100%; height:40px"></div>
+
             <div style="text-align: center; width: 100%; height:20px"></div>
 
         </li>
 
         </li>
 
         <br>
 
         <br>
 
         <li>
 
         <li>
             <a href="#Chlamydomonas reinhardtii"><font size="5">Chlamydomonas reinhardtii</font></a>
+
             <a href="#>Motion"><font size="4">Motion characteristics of mCerulean3 transformed Chlamydomonas Reinhardtii</font></a>
              
+
            <div style="text-align: center; width: 100%; height:20px"></div>
 +
        </li>
 +
        <br>
 +
        <li>
 +
            <a href="#Measurement"><font size="4">Measurement of the movement features of Chlamydomonas Reinhardtii</font></a>
 +
             <div style="text-align: center; width: 100%; height:20px"></div>
 +
        </li>
 +
        <br>
 +
        <li>
 +
            <a href="#Characterization"><font size="4">Characterization of the mutant channel rhodopsin VchR from the Volvox</font></a>
 +
            <div style="text-align: center; width: 100%; height:20px"></div> 
 +
        </li>
 +
        <li>
 +
            <a href="#Renilla"><font size="4">Renilla luciferase</font></a>
 +
            <div style="text-align: center; width: 100%; height:20px"></div> 
 +
        </li>
 +
        <li>
 +
            <a href="#Nanoluc"><font size="4">Nanoluc</font></a>
 +
            <div style="text-align: center; width: 100%; height:20px"></div> 
 
         </li>
 
         </li>
      <br>
 
 
        
 
        
 
     </ul>
 
     </ul>
Line 101: Line 114:
 
   <div id="maintest">
 
   <div id="maintest">
 
    
 
    
    <div  class="cart">
+
      <div  class="cart">
      <h1  style="font-family: 'Times New Roman' !important; "><a name="Inspiration" >Transformants and cultivation</a><img src="https://static.igem.org/mediawiki/2019/9/98/T--DUT_China_B--INSPIRATION.svg" class="icon"> </h1>
+
        <h1  style="font-family: 'Times New Roman' !important; "><a name="Transformants" >Transformants and cultivation</a><img src="https://static.igem.org/mediawiki/2019/9/98/T--DUT_China_B--INSPIRATION.svg" class="icon"> </h1>
 
                  
 
                  
      <p style="font-family: 'Times New Roman' !important;  ">There are some representative generated transformants and cultivation of engineered Chlamydomonas Reinhardtii</p>
+
        <p style="font-family: 'Times New Roman' !important;  ">There are some representative generated transformants and cultivation of engineered Chlamydomonas Reinhardtii</p>
 
      
 
      
 
                 <div style="text-align: center; width: 100%; ">
 
                 <div style="text-align: center; width: 100%; ">
Line 112: Line 125:
 
       </div>
 
       </div>
 
       <div class="cart">
 
       <div class="cart">
         <h1 style="font-family: 'Times New Roman' !important; "><a name="Background">Fluorescence observation of mCerulean3 transformed Chlamydomonas Reinhardtii</a> <img src="https://static.igem.org/mediawiki/2019/b/b7/T--DUT_China_B--difficultities.svg" class="icon"></h1>
+
         <h1 style="font-family: 'Times New Roman' !important; "><a name="Fluorescence">Fluorescence observation of mCerulean3 transformed Chlamydomonas Reinhardtii</a> <img src="https://static.igem.org/mediawiki/2019/b/b7/T--DUT_China_B--difficultities.svg" class="icon"></h1>
 
                  
 
                  
 
         <p style="font-family: 'Times New Roman' !important; ">Detect the intracellular fluorescence of mCerulean3 accumulated in the cytoplasm by Olympus FV-1000 laser confocal microscope.</p>
 
         <p style="font-family: 'Times New Roman' !important; ">Detect the intracellular fluorescence of mCerulean3 accumulated in the cytoplasm by Olympus FV-1000 laser confocal microscope.</p>
Line 119: Line 132:
 
           <!-- <center> <br> <p style="left:45%;position:relative;">nanorobot</p>  </center> -->
 
           <!-- <center> <br> <p style="left:45%;position:relative;">nanorobot</p>  </center> -->
 
         </div>
 
         </div>
         <h1 style="font-family: 'Times New Roman' !important; "><a name="Background">Motion characteristics of mCerulean3 transformed Chlamydomonas Reinhardtii</a> <img src="https://static.igem.org/mediawiki/2019/b/b7/T--DUT_China_B--difficultities.svg" class="icon"></h1>
+
      </div>
 +
      <div  class="cart">
 +
         <h1 style="font-family: 'Times New Roman' !important; "><a name="Motion">Motion characteristics of mCerulean3 transformed Chlamydomonas Reinhardtii</a> <img src="https://static.igem.org/mediawiki/2019/b/b7/T--DUT_China_B--difficultities.svg" class="icon"></h1>
 
         <p>1) The ultraviolet lamp is mixed with certain blue light. The wild type Chlamydomonas Reinhardtii has the characteristic that only blue light phototaxis. According to this characteristic, we tested the proportion of blue light in the ultraviolet lamps used in the experiment. Irradiate wild algae with 120.3 lx and 46.7 lx ultraviolet radiation to obtain the corresponding speed:0.0999 mm/s, 0.0647 mm/s;Substitute them into the model fitting illumination-velocity formula </P>
 
         <p>1) The ultraviolet lamp is mixed with certain blue light. The wild type Chlamydomonas Reinhardtii has the characteristic that only blue light phototaxis. According to this characteristic, we tested the proportion of blue light in the ultraviolet lamps used in the experiment. Irradiate wild algae with 120.3 lx and 46.7 lx ultraviolet radiation to obtain the corresponding speed:0.0999 mm/s, 0.0647 mm/s;Substitute them into the model fitting illumination-velocity formula </P>
 
         <div style="text-align: center; width: 100%; ">
 
         <div style="text-align: center; width: 100%; ">
 
           <img alt="" src="https://static.igem.org/mediawiki/2019/e/ed/T--DUT_China_B--mirco_robot.jpg" style="display: inline-block;width:50%;" />
 
           <img alt="" src="https://static.igem.org/mediawiki/2019/e/ed/T--DUT_China_B--mirco_robot.jpg" style="display: inline-block;width:50%;" />
           <center> <br> <p style="left:45%;position:relative;">(A1, A2: amount of blue light in ultraviolet lamps under different illumination;B1, B2: ultraviolet lamp illumination) </p></center>
+
           <center> <br> <p style="position:relative;">(A1, A2: amount of blue light in ultraviolet lamps under different illumination;B1, B2: ultraviolet lamp illumination) </p></center>
 
         </div>
 
         </div>
 
         <P>It is calculated that the proportion of blue light in the ultraviolet lamp used in the experiment is 14.6 %. </p>
 
         <P>It is calculated that the proportion of blue light in the ultraviolet lamp used in the experiment is 14.6 %. </p>
Line 138: Line 153:
 
         </div>
 
         </div>
 
         <P>When the blue illuminance is 9.1lx, the mCerulean3 transformed Chlamydomonas Reinhardtii move faster under UV light than that under blue light. So we believe that endogenous blue light also can induce the directed movement of Chlamydomonas.</p>
 
         <P>When the blue illuminance is 9.1lx, the mCerulean3 transformed Chlamydomonas Reinhardtii move faster under UV light than that under blue light. So we believe that endogenous blue light also can induce the directed movement of Chlamydomonas.</p>
         <h1 style="font-family: 'Times New Roman' !important; "><a name="Background">Measurement of the movement features of Chlamydomonas Reinhardtii</a> <img src="https://static.igem.org/mediawiki/2019/b/b7/T--DUT_China_B--difficultities.svg" class="icon"></h1>
+
      </div>
 +
      <div  class="cart">
 +
         <h1 style="font-family: 'Times New Roman' !important; "><a name="Measurement">Measurement of the movement features of Chlamydomonas Reinhardtii</a> <img src="https://static.igem.org/mediawiki/2019/b/b7/T--DUT_China_B--difficultities.svg" class="icon"></h1>
 
                  
 
                  
 
         <p style="font-family: 'Times New Roman' !important; ">1. The speed of wild C. Reinhardtii under 11.46lx blue light was measured, and the results were shown in table 1.</p>
 
         <p style="font-family: 'Times New Roman' !important; ">1. The speed of wild C. Reinhardtii under 11.46lx blue light was measured, and the results were shown in table 1.</p>
Line 165: Line 182:
 
         <div style="text-align: center; width: 100%; ">
 
         <div style="text-align: center; width: 100%; ">
 
           <img alt="" src="https://static.igem.org/mediawiki/2019/e/ed/T--DUT_China_B--mirco_robot.jpg" style="display: inline-block;width:50%;" />
 
           <img alt="" src="https://static.igem.org/mediawiki/2019/e/ed/T--DUT_China_B--mirco_robot.jpg" style="display: inline-block;width:50%;" />
           <center> <br> <p style="left:45%;position:relative;">Figure 1. Velocity - illumination curve of wild C. Reinhardtii under blue light</p>  </center>   
+
           <center> <br> <p style="position:relative;">Figure 1. Velocity - illumination curve of wild C. Reinhardtii under blue light</p>  </center>   
 
         </div>
 
         </div>
         <h1 style="font-family: 'Times New Roman' !important; "><a name="Background">Characterization of the mutant channel rhodopsin VchR from the Volvox</a> <img src="https://static.igem.org/mediawiki/2019/b/b7/T--DUT_China_B--difficultities.svg" class="icon"></h1>
+
      </div>
 +
      <div  class="cart">
 +
         <h1 style="font-family: 'Times New Roman' !important; "><a name="Characterization">Characterization of the mutant channel rhodopsin VchR from the Volvox</a> <img src="https://static.igem.org/mediawiki/2019/b/b7/T--DUT_China_B--difficultities.svg" class="icon"></h1>
 
         <p style="font-family: 'Times New Roman' !important; ">In the video, VchR-engineered C. Reinhardtii were seen to move under orange light( 590nm, 25.4lx) while the wild type C. Reinhardtii showed no apparent movement.</p>
 
         <p style="font-family: 'Times New Roman' !important; ">In the video, VchR-engineered C. Reinhardtii were seen to move under orange light( 590nm, 25.4lx) while the wild type C. Reinhardtii showed no apparent movement.</p>
 
         <!-- 插入视频 -->
 
         <!-- 插入视频 -->
Line 174: Line 193:
 
           <img alt="" src="https://static.igem.org/mediawiki/2019/e/ed/T--DUT_China_B--mirco_robot.jpg" style="display: inline-block;width:50%;" />
 
           <img alt="" src="https://static.igem.org/mediawiki/2019/e/ed/T--DUT_China_B--mirco_robot.jpg" style="display: inline-block;width:50%;" />
 
           <center> <br>  
 
           <center> <br>  
             <p style="left:45%;position:relative;">Control Group:Without external blue light of 480nm, 25.4lx</p>
+
             <p style=";position:relative;">Control Group:Without external blue light of 480nm, 25.4lx</p>
             <p style="left:45%;position:relative;">Experiment Group:Under external blue light of 480nm, 25.4lx</p>
+
             <p style="position:relative;">Experiment Group:Under external blue light of 480nm, 25.4lx</p>
 
           </center>   
 
           </center>   
 
         </div>
 
         </div>
Line 181: Line 200:
 
           <img alt="" src="https://static.igem.org/mediawiki/2019/e/ed/T--DUT_China_B--mirco_robot.jpg" style="display: inline-block;width:50%;" />
 
           <img alt="" src="https://static.igem.org/mediawiki/2019/e/ed/T--DUT_China_B--mirco_robot.jpg" style="display: inline-block;width:50%;" />
 
           <center> <br>  
 
           <center> <br>  
             <p style="left:45%;position:relative;">Control Group:Without external orange light of 590nm</p>
+
             <p style="position:relative;">Control Group:Without external orange light of 590nm</p>
             <p style="left:45%;position:relative;">Experiment Group:Under external orange light of 590nm</p>
+
             <p style="position:relative;">Experiment Group:Under external orange light of 590nm</p>
 
           </center>   
 
           </center>   
 
         </div>
 
         </div>
         <h1 style="font-family: 'Times New Roman' !important; "><a name="Background">Renilla luciferase</a> <img src="https://static.igem.org/mediawiki/2019/b/b7/T--DUT_China_B--difficultities.svg" class="icon"></h1>
+
      </div>
 +
      <div  class="cart">
 +
         <h1 style="font-family: 'Times New Roman' !important; "><a name="Renilla">Renilla luciferase</a> <img src="https://static.igem.org/mediawiki/2019/b/b7/T--DUT_China_B--difficultities.svg" class="icon"></h1>
 
         <p style="font-family: 'Times New Roman' !important; ">The effect of incubation time on luminescence intensity is shown in Table 1 and Figure 1.As can be seen from the figure and table, the relative luminescence intensity increased with the increase of incubation time, and the growth rate was faster in the first 10 minutes, so the incubation time of subsequent experiments was determined to be 10 minutes.</p>
 
         <p style="font-family: 'Times New Roman' !important; ">The effect of incubation time on luminescence intensity is shown in Table 1 and Figure 1.As can be seen from the figure and table, the relative luminescence intensity increased with the increase of incubation time, and the growth rate was faster in the first 10 minutes, so the incubation time of subsequent experiments was determined to be 10 minutes.</p>
 
         <p style="font-family: 'Times New Roman' !important; ">Table 1 relationship between luminescence intensity of Rluc crude enzyme solution and incubation time</p>
 
         <p style="font-family: 'Times New Roman' !important; ">Table 1 relationship between luminescence intensity of Rluc crude enzyme solution and incubation time</p>
Line 191: Line 212:
 
           <img alt="" src="https://static.igem.org/mediawiki/2019/e/ed/T--DUT_China_B--mirco_robot.jpg" style="display: inline-block;width:50%;" />
 
           <img alt="" src="https://static.igem.org/mediawiki/2019/e/ed/T--DUT_China_B--mirco_robot.jpg" style="display: inline-block;width:50%;" />
 
           <center> <br>  
 
           <center> <br>  
             <p style="left:45%;position:relative;">Blank control: crude enzyme solution 2900ul+ 100ul water</p>
+
             <p style="position:relative;">Blank control: crude enzyme solution 2900ul+ 100ul water</p>
             <p style="left:45%;position:relative;">relative luminescence intensity: crude enzyme solution luminescence/blank control luminescence</p>
+
             <p style="position:relative;">relative luminescence intensity: crude enzyme solution luminescence/blank control luminescence</p>
 
           </center>   
 
           </center>   
 
         </div>
 
         </div>
Line 198: Line 219:
 
           <img alt="" src="https://static.igem.org/mediawiki/2019/e/ed/T--DUT_China_B--mirco_robot.jpg" style="display: inline-block;width:50%;" />
 
           <img alt="" src="https://static.igem.org/mediawiki/2019/e/ed/T--DUT_China_B--mirco_robot.jpg" style="display: inline-block;width:50%;" />
 
           <center> <br>  
 
           <center> <br>  
             <p style="left:45%;position:relative;">Figure 1 relationship between luminescence intensity of Rluc crude enzyme solution and incubation time</p>
+
             <p style="position:relative;">Figure 1 relationship between luminescence intensity of Rluc crude enzyme solution and incubation time</p>
 
           </center>   
 
           </center>   
 
         </div>
 
         </div>
Line 204: Line 225:
 
         <div style="text-align: center; width: 100%; ">
 
         <div style="text-align: center; width: 100%; ">
 
           <center> <br>  
 
           <center> <br>  
             <p style="left:45%;position:relative;">Table 2 relationship between luminescence intensity of Rluc crude enzyme solution and substrate concentration</p>
+
             <p style="position:relative;">Table 2 relationship between luminescence intensity of Rluc crude enzyme solution and substrate concentration</p>
 
           </center>
 
           </center>
 
           <img alt="" src="https://static.igem.org/mediawiki/2019/e/ed/T--DUT_China_B--mirco_robot.jpg" style="display: inline-block;width:50%;" />
 
           <img alt="" src="https://static.igem.org/mediawiki/2019/e/ed/T--DUT_China_B--mirco_robot.jpg" style="display: inline-block;width:50%;" />
 
           <center> <br>  
 
           <center> <br>  
             <p style="left:45%;position:relative;">Blank control: crude enzyme solution + water (same volume as substrate)</p>
+
             <p style="position:relative;">Blank control: crude enzyme solution + water (same volume as substrate)</p>
             <p style="left:45%;position:relative;">Relative luminescence intensity: crude enzyme solution luminescence/blank control luminescence</p>
+
             <p style="position:relative;">Relative luminescence intensity: crude enzyme solution luminescence/blank control luminescence</p>
 
           </center>   
 
           </center>   
 
         </div>
 
         </div>
Line 215: Line 236:
 
           <img alt="" src="https://static.igem.org/mediawiki/2019/e/ed/T--DUT_China_B--mirco_robot.jpg" style="display: inline-block;width:50%;" />
 
           <img alt="" src="https://static.igem.org/mediawiki/2019/e/ed/T--DUT_China_B--mirco_robot.jpg" style="display: inline-block;width:50%;" />
 
           <center> <br>  
 
           <center> <br>  
             <p style="left:45%;position:relative;">Figure 2 relationship between luminescence intensity of Rluc crude enzyme solution and substrate concentration</p>
+
             <p style="position:relative;">Figure 2 relationship between luminescence intensity of Rluc crude enzyme solution and substrate concentration</p>
 
           </center>   
 
           </center>   
 
         </div>
 
         </div>
 
         <p style="font-family: 'Times New Roman' !important; ">In Rluc-engineered C. Reinhardtii ,the luminescence intensity at 480 nm was measured as 2.263, 2.372, 2.341 and 2.380. Compared with the blank control (2.213) with no substrate and only water, there is no significant difference. We concluded that the membrane permeability of C. Reinhardtii cells was poor. It is necessary to increase incubation time or adopt other measures to increase membrane permeability.</p>
 
         <p style="font-family: 'Times New Roman' !important; ">In Rluc-engineered C. Reinhardtii ,the luminescence intensity at 480 nm was measured as 2.263, 2.372, 2.341 and 2.380. Compared with the blank control (2.213) with no substrate and only water, there is no significant difference. We concluded that the membrane permeability of C. Reinhardtii cells was poor. It is necessary to increase incubation time or adopt other measures to increase membrane permeability.</p>
         <h1 style="font-family: 'Times New Roman' !important; "><a name="Background">Nanoluc</a> <img src="https://static.igem.org/mediawiki/2019/b/b7/T--DUT_China_B--difficultities.svg" class="icon"></h1>
+
      </div>
 +
      <div  class="cart">
 +
         <h1 style="font-family: 'Times New Roman' !important; "><a name="Nanoluc">Nanoluc</a> <img src="https://static.igem.org/mediawiki/2019/b/b7/T--DUT_China_B--difficultities.svg" class="icon"></h1>
 
         <p style="font-family: 'Times New Roman' !important; ">According to the above experimental protocol, we measured the enzyme-catalyzed luminescence intensity of the predicted split site and the split site in old part. The results are shown in table 1. The relative luminescence intensity of st-1 and sc-1 is significantly different from which of st-2 and sc-2. It could be inferred that the split site predicted by the model is better. Our subsequent experiments can be guided by the model to cut luciferase more precisely.</p>
 
         <p style="font-family: 'Times New Roman' !important; ">According to the above experimental protocol, we measured the enzyme-catalyzed luminescence intensity of the predicted split site and the split site in old part. The results are shown in table 1. The relative luminescence intensity of st-1 and sc-1 is significantly different from which of st-2 and sc-2. It could be inferred that the split site predicted by the model is better. Our subsequent experiments can be guided by the model to cut luciferase more precisely.</p>
 
         <div style="text-align: center; width: 100%; ">
 
         <div style="text-align: center; width: 100%; ">
 
           <center>
 
           <center>
             <p style="left:45%;position:relative;">able 1. comparison of nanoLuc catalyzed coelenterazine luminescence at different split sites</p>
+
             <p style="position:relative;">able 1. comparison of nanoLuc catalyzed coelenterazine luminescence at different split sites</p>
 
           </center>
 
           </center>
 
           <img alt="" src="https://static.igem.org/mediawiki/2019/e/ed/T--DUT_China_B--mirco_robot.jpg" style="display: inline-block;width:50%;" />
 
           <img alt="" src="https://static.igem.org/mediawiki/2019/e/ed/T--DUT_China_B--mirco_robot.jpg" style="display: inline-block;width:50%;" />
 
           <center> <br>  
 
           <center> <br>  
             <p style="left:45%;position:relative;">Blank contrast:2700 μl mixed crude enzyme +300 μl deionized water </p>
+
             <p style="position:relative;">Blank contrast:2700 μl mixed crude enzyme +300 μl deionized water </p>
 
           </center>
 
           </center>
 
           <center>
 
           <center>
             <p style="left:45%;position:relative;">Relative luminous intensity:Crude enzyme luminescence /(Blank contrast luminescence×Protein concentration of crude enzyme solution)</p>
+
             <p style="position:relative;">Relative luminous intensity:Crude enzyme luminescence /(Blank contrast luminescence×Protein concentration of crude enzyme solution)</p>
 
           </center>     
 
           </center>     
 
         </div>
 
         </div>

Revision as of 10:44, 21 October 2019

Document
parts

Transformants and cultivation

There are some representative generated transformants and cultivation of engineered Chlamydomonas Reinhardtii

Fluorescence observation of mCerulean3 transformed Chlamydomonas Reinhardtii

Detect the intracellular fluorescence of mCerulean3 accumulated in the cytoplasm by Olympus FV-1000 laser confocal microscope.

Motion characteristics of mCerulean3 transformed Chlamydomonas Reinhardtii

1) The ultraviolet lamp is mixed with certain blue light. The wild type Chlamydomonas Reinhardtii has the characteristic that only blue light phototaxis. According to this characteristic, we tested the proportion of blue light in the ultraviolet lamps used in the experiment. Irradiate wild algae with 120.3 lx and 46.7 lx ultraviolet radiation to obtain the corresponding speed:0.0999 mm/s, 0.0647 mm/s;Substitute them into the model fitting illumination-velocity formula


(A1, A2: amount of blue light in ultraviolet lamps under different illumination;B1, B2: ultraviolet lamp illumination)

It is calculated that the proportion of blue light in the ultraviolet lamp used in the experiment is 14.6 %.

2) Measure the velocity of mCerulean3 transformed Chlamydomonas Reinhardtii movement under ultraviolet light. And measure the time that engineering algae move 1 mm under different illuminance.

Take the movement of engineering algae with illumination of 62.3 lx as an example (speed 0.124mm /s). According to equation (2), the illumination of blue light in ultraviolet light at this time is about 9.1 lx.

3) Illuminate the engineered algae with 9.1 lx pure blue light and calculate its movement speed.

When the blue illuminance is 9.1lx, the mCerulean3 transformed Chlamydomonas Reinhardtii move faster under UV light than that under blue light. So we believe that endogenous blue light also can induce the directed movement of Chlamydomonas.

Measurement of the movement features of Chlamydomonas Reinhardtii

1. The speed of wild C. Reinhardtii under 11.46lx blue light was measured, and the results were shown in table 1.

Control Group:C. Reinhardtii moving without exogenous blue light (480nm, 11.46lx)

Experiment Group:C. Reinhardtii moving under exogenous blue light (480nm, 11.46lx)

The movement of wild C. Reinhardtii under 12.00lx blue light and 12.00lx red light is shown in video. It can be seen that wild C. Reinhardtii showed obvious phototropism under blue light, but none under red light. Our project will focus on broadening the photosensitive spectrum of C. Reinhardtii.

2. Measurement of illuminance influence on the experiments

It is known that illuminance affects the movement characteristics of C. Reinhardtii. A light too strong will cause light avoidance movement. In a certain range, illuminance has a certain relationship with the movement speed. The movement speed of wild C. Reinhardtii was measured under different illuminance, and the results were shown in table 2, and the corresponding illumination-velocity curve was obtained, as shown in figure 1. The illumination-velocity function is obtained:

.The speed of movement of C. Reinhardtii is logarithmically related to illuminance. When the illuminance reaches about 500.00lx, chlamydia will produce light avoidance movement. In this experiment, the maximum illuminance of blue light source is 89.70lx.

Control Group:C. Reinhardtii moving without exogenous orange light (about 590nm)

Experiment Group: C. Reinhardtii moving under exogenous orange light (about 590nm)


Figure 1. Velocity - illumination curve of wild C. Reinhardtii under blue light

Characterization of the mutant channel rhodopsin VchR from the Volvox

In the video, VchR-engineered C. Reinhardtii were seen to move under orange light( 590nm, 25.4lx) while the wild type C. Reinhardtii showed no apparent movement.

Under standard protocols of C. Reinhardtii movement measuring, the movement data of VchR -engineered C. Reinhardtii is showed in table 1,2. As we can see from the table, VchR -engineered C. Reinhardtii is able to move under light of 590nm.The moving speed of C. Reinhardtii declines with light intensity, until showing random movement pattern at 32.6lx with almost none phototaxis pattern. Compared with the data of 480nm light, we can learn that VCHR responses in light of 590nm more weakly than 480nm.


Control Group:Without external blue light of 480nm, 25.4lx

Experiment Group:Under external blue light of 480nm, 25.4lx


Control Group:Without external orange light of 590nm

Experiment Group:Under external orange light of 590nm

Renilla luciferase

The effect of incubation time on luminescence intensity is shown in Table 1 and Figure 1.As can be seen from the figure and table, the relative luminescence intensity increased with the increase of incubation time, and the growth rate was faster in the first 10 minutes, so the incubation time of subsequent experiments was determined to be 10 minutes.

Table 1 relationship between luminescence intensity of Rluc crude enzyme solution and incubation time


Blank control: crude enzyme solution 2900ul+ 100ul water

relative luminescence intensity: crude enzyme solution luminescence/blank control luminescence


Figure 1 relationship between luminescence intensity of Rluc crude enzyme solution and incubation time

The effect of coelenterazine concentration on luminescence intensity is shown in Figure 2, Table 2. As can be seen from the figure and table, the maximum luminescence intensity appeared at the substrate of 10 μM, so the subsequent experimental coelenterin substrate concentration was determined to be 10 μM.


Table 2 relationship between luminescence intensity of Rluc crude enzyme solution and substrate concentration


Blank control: crude enzyme solution + water (same volume as substrate)

Relative luminescence intensity: crude enzyme solution luminescence/blank control luminescence


Figure 2 relationship between luminescence intensity of Rluc crude enzyme solution and substrate concentration

In Rluc-engineered C. Reinhardtii ,the luminescence intensity at 480 nm was measured as 2.263, 2.372, 2.341 and 2.380. Compared with the blank control (2.213) with no substrate and only water, there is no significant difference. We concluded that the membrane permeability of C. Reinhardtii cells was poor. It is necessary to increase incubation time or adopt other measures to increase membrane permeability.

Nanoluc

According to the above experimental protocol, we measured the enzyme-catalyzed luminescence intensity of the predicted split site and the split site in old part. The results are shown in table 1. The relative luminescence intensity of st-1 and sc-1 is significantly different from which of st-2 and sc-2. It could be inferred that the split site predicted by the model is better. Our subsequent experiments can be guided by the model to cut luciferase more precisely.

able 1. comparison of nanoLuc catalyzed coelenterazine luminescence at different split sites


Blank contrast:2700 μl mixed crude enzyme +300 μl deionized water

Relative luminous intensity:Crude enzyme luminescence /(Blank contrast luminescence×Protein concentration of crude enzyme solution)