Difference between revisions of "Team:DTU-Denmark/Human Practices"

Line 406: Line 406:
 
          
 
          
 
     </footer>
 
     </footer>
<img src="https://static.igem.org/mediawiki/2019/9/91/T--DTU-Denmark--biggrants.svg" title="The logos of our three biggest supporters, DTU Blue Dot, Novo Nordisk fonden and Otto Mønsted fonden" alt="The logos of our three biggest supporters, DTU Blue Dot, Novo Nordisk fonden and Otto Mønsted fonden" style="margin: 20px;max-width:50%;margin-right:auto; margin-left:auto;display: block;
+
<img class="footergrants" src="https://static.igem.org/mediawiki/2019/9/91/T--DTU-Denmark--biggrants.svg" title="The logos of our three biggest supporters, DTU Blue Dot, Novo Nordisk fonden and Otto Mønsted fonden" alt="The logos of our three biggest supporters, DTU Blue Dot, Novo Nordisk fonden and Otto Mønsted fonden">
    height:auto;z-index:5;">
+
<img class="footersponsors" src="https://static.igem.org/mediawiki/2019/d/d9/T--DTU-Denmark--sponsorsfooter.svg" title="The logos of all of our sponsors, DTU, BioNordica, Eurofins Genomics, Qiagen, NEB New England biolabs, IDT Integrated DNA technologies and Twist bioscience" alt="The logos of all of our sponsors, DTU, BioNordica, Eurofins Genomics, Qiagen, NEB New England biolabs, IDT Integrated DNA technologies and Twist bioscience">
<img src="https://static.igem.org/mediawiki/2019/d/d9/T--DTU-Denmark--sponsorsfooter.svg" title="The logos of all of our sponsors, DTU, BioNordica, Eurofins Genomics, Qiagen, NEB New England biolabs, IDT Integrated DNA technologies and Twist bioscience" alt="The logos of all of our sponsors, DTU, BioNordica, Eurofins Genomics, Qiagen, NEB New England biolabs, IDT Integrated DNA technologies and Twist bioscience" style="margin: 20px;max-width:100%;margin-right:auto; margin-left:auto;display: block;
+
    height:auto;z-index:5;">
+
 
</div></div>
 
</div></div>
  

Revision as of 17:02, 19 October 2019

Human Practices

The creation of a library of promoters may not be very applicable in the everyday life of most people, but the library can certainly have a great impact on many people’s lives as well as contributing to several of UN's Sustainable Development Goals (SDGs).

Human Practices

As mentioned in the project description, filamentous fungi are important producers of proteins and biological compounds in industry. Although they are very important, filamentous fungi are heavily underrepresented in the iGEM competition. We think this is very unfortunate, and therefore we developed the tools to fill this gap.
At DTU we are specialists in using filamentous fungi as a chassis in synthetic biology and we have shared this knowledge on this wiki. Our efforts include:

  • A promoter library
  • Auxotrophic selection marker for Aspergillus spp.
  • Homology regions for genomic integration in Aspergillus niger
  • Protocols for growing, protoplasting, and transforming filamentous fungi
  • Notes on growing filamentous fungi in larger equipment like; biolector, shake flasks, and bioreactors.

Fermentation safety

During the project, we will be using bioreactors to verify our promoters. This introduces new challenges in safely handling our organism and the larger equipment. The production of spores by Aspergillus niger and many other filamentous fungi is dependent on external conditions of the fermentation. That is why, during our work with fermentation, only members who had received training in bioreactors participated in the experiment. These team members wore safety goggles, gloves, and lab coats whenever entering the fermentation platform and made sure that qualified personnel were on-site for help and advice if needed.

We have identified 5 main goals that our project contributes to. We call these our primary SDGs. Following this, we have further 3 goals that are affected by our efforts in the primary goals.

Primary goals

Goal 8: Decent work and economic growth This goal focuses on the economic development, measured by the growth of GDP, education and financial institutions. We specifically focus on goal 8.2: "Achieve higher levels of economic productivity through diversification, technological upgrading and innovation, including through a focus on high-value added and labour-intensive sectors"
Here we can improve the economic productivity of fermentations by using our promoter library to conduct metabolic engineering in an important production organism, Aspergillus niger. Furthermore, as our research is open-source, it invites others to build upon a solid biotechnological foundation and spearhead new innovation in ever-increasing markets.

Goal 9: Industry, innovation and infrastructure This goal is focused on the development of sustainable industry and infrastructure, especially in developing countries. In this regard, our project has a lot to offer.
Goal 9.4 revolves around the addition of value without a large increase in CO2 output. The goal states: "... upgrade infrastructure and retrofit industries to make them sustainable, with increased resource-use efficiency and greater adoption of clean and environmentally sound technologies and industrial processes…". The use of our promoter library, and other biotechnological tools, allows for tighter control over the production of many important products, where resource efficiency is a key aspect.

In addition to this, we are also working towards goal 9.5 to "...Enhance scientific research, upgrade the technological capabilities of industrial sectors in all countries…" and "...encourage innovation…".
Here we contribute to the ability of other scientists to efficiently conduct research in filamentous fungi and by providing the foundation for others to build novel and innovative solutions in their community using filamentous fungi.

Goal 12: Responsible consumption and production This development goal is centered around the minimization of waste products and material use in addition to increasing recycling. We are specifically focusing on goal 12.2 and 12.5 that works to achieve "...efficient use of natural resources." and "...substantially reduce waste generation through prevention, reduction, recycling and reuse." We are contributing to this by improving the resource efficiency of fermentation of fermentation by offering tighter control over the metabolism of the filamentous fungi used. Furthermore, our promoter library opens the opportunity for others to develop more efficient ways of using waste products in industrial fermentation by giving them the basic tools needed for more advanced biotechnological research.

Goal 15: Life on land This development goal focuses on the protection, restoration, and sustainable management of terrestrial resources. We are focusing on a subsection of 15.6, that concerns itself with the sharing of genetic resources and the ease of access to these these. We are doing this by publishing everything as open-source so everyone has equal access to our methods and results.

Goal 17: Partnerships for the goals The partnerships for the completion of the sustainable development goals are important for the realization of these most important tasks of our generation. With our participation in the iGEM competition, we are doing our part in achieving goal 17.6, 17.7, and 17.8, collectively known as the technology goals.

Secondary goals

The secondary goals are not directly affected by our projects, but the promoter library can be used by others to improve the world in amazing ways.

Goal 3: Good health and well-being The introduction of tighter metabolic control in the use of filamentous fungi could allow for higher production, which in turn would hopefully translate into lower prices and wider distribution of important products. Included in this is both industrial products andbiopharmaceuticals, which are highly needed everywhere in the world.[1]

Goal 7: Affordable and clean energy The addition to new and improved tools in biotechnology our promoters could be used to improveme biofuels, which offer a good alternative to fossil fuels.Biofuels are essential in the sustainable development of the energy production of the future.

Goal 14: Life below water The marine environment is susceptible to the pollution of heavy industry. Biotechnology offers multiple ways to minimize this pollution. One of these is by shifting traditional chemical processes towards production in biological organisms. A classic example of this is the production of citric acid, which is hugely important in many industries. When first produced, it was gathered from citrus fruits, but it soon became more efficient to produce it in filamentous fungi, more specifically Aspergillus niger. The next step in this evolution of increased production is to optimize the fungal strains to produce as much citric acid as possible. Conventional methods can only achieve a certain level of production. The use of genetic engineering allows for production to reach the highest yields possible. This is just one example, many more exist and their number will only grow when we learn to harness the innate potential of the biological resources available to us.

The logos of our three biggest supporters, DTU Blue Dot, Novo Nordisk fonden and Otto Mønsted fonden The logos of all of our sponsors, DTU, BioNordica, Eurofins Genomics, Qiagen, NEB New England biolabs, IDT Integrated DNA technologies and Twist bioscience