Difference between revisions of "Team:JiangnanU China/Model"

Line 2: Line 2:
 
<html>
 
<html>
 
<head>
 
<head>
     <meta charset="utf-8">
+
     <!-- 标题栏logo -->
     <title>JiangnanU_China</title>
+
    <link rel="icon" type="image/jpg"
 +
          href="https://static.igem.org/mediawiki/2019/3/34/T--JiangnanU_China--Logo-Web_version.jpg"/>
 +
     <!--    ////////////////////////-->
 +
    <style>
 +
        /*取消设置*/
 +
        #content {
 +
            line-height: unset;
 +
        }
 +
 
 +
        #globalWrapper {
 +
            font-size: unset;
 +
        }
 +
 
 +
        #HQ_page h1, h2, h3, h4, h5 {
 +
            margin: 0;
 +
            padding: 0;
 +
        }
 +
 
 +
        #HQ_page p {
 +
            font-size: inherit;
 +
            font-family: inherit;
 +
        }
 +
 
 +
        p, body {
 +
            margin: 0;
 +
            padding: 0;
 +
            line-height: initial;
 +
        }
 +
 
 +
        /*字体*/
 +
        @font-face {
 +
            font-family: 'Futura_Bold';
 +
            src: url('https://static.igem.org/mediawiki/2019/e/e0/T--JiangnanU_China--ziti_Futura_Bold.otf');
 +
        }
 +
 
 +
        @font-face {
 +
            font-family: 'FuturaFuturisC-Italic';
 +
            src: url('https://static.igem.org/mediawiki/2019/4/49/T--JiangnanU_China--FuturaFuturisC-Italic.otf');
 +
        }
 +
 
 +
        @font-face {
 +
            font-family: 'Futura-Medium-6';
 +
            src: url('https://static.igem.org/mediawiki/2019/1/11/T--JiangnanU_China--Futura-Medium-6.otf');
 +
        }
 +
 
 +
        .fb_48 {
 +
            font-family: Futura_Bold, sans-serif;
 +
            font-size: 2em;
 +
        }
 +
 
 +
        .fb_22 {
 +
            font-family: Futura_Bold, sans-serif;
 +
            font-size: 1.3em;
 +
        }
 +
 
 +
        .fb_72 {
 +
            font-family: Futura_Bold, sans-serif;
 +
            font-size: 4em;
 +
        }
 +
 
 +
        .fm_22 {
 +
            font-family: Futura-Medium-6, sans-serif;
 +
            font-size: 1.3em;
 +
        }
 +
 
 +
        .fmi_48 {
 +
            font-family: FuturaFuturisC-Italic, sans-serif;
 +
            font-size: 2em;
 +
        }
 +
 
 +
        /*常用css*/
 +
        /*分隔符*/
 +
        .split_small {
 +
            height: 32px;
 +
        }
 +
 
 +
        .split {
 +
            height: 64px;
 +
        }
 +
 
 +
        /*无书签正文*/
 +
        .contents {
 +
            margin: 5% 15% 15%;
 +
        }
 +
 
 +
        /*一排*/
 +
        .row {
 +
            display: flex;
 +
            flex-direction: row;
 +
        }
 +
 
 +
        /*一列*/
 +
        .column {
 +
            display: flex;
 +
            flex-direction: column;
 +
        }
 +
    </style>
 +
 
  
 
</head>
 
</head>
<body>
 
<p style="margin: 10%">
 
    ## Model
 
  
    This page is used by the judges to evaluate your team for the [medal
+
<body data-spy="scroll" data-target="#myScrollspy" data-offset="20">
    criterion](https://2019.igem.org/Judging/Medals) or [ award listed below](https://2019.igem.org/Judging/Awards).
+
  
     Delete this box in order to be evaluated for this medal criterion and/or award. See more information at [
+
<div class="container nowbg">
    Instructions for Pages for awards](https://2019.igem.org/Judging/Pages_for_Awards).
+
     <div class="row nowbg">
 +
        <div class="col-xs-12 col-sm-3 col-lg-3">
 +
            <nav id="myScrollspy" class="hidden-xs hidden-sm">
 +
                <ul class="nav nav-pills nav-stacked" data-spy="affix">
 +
                    <li><a href="#introduction">Introduction</a></li>
 +
                    <li><a href="#assumption">Assumption</a></li>
 +
                    <li><a href="#gra_ewm">GRA_EWM Model</a></li>
 +
                    <li><a href="#bp_ann">BP-ANN Model</a></li>
 +
                </ul>
 +
            </nav>
 +
        </div>
 +
        <div class="col-lg-8 col-md-8 col-sm-12 col-xs-12 nowbg" id="head">
 +
            <!--总览-->
 +
            <div class="split"></div>
 +
            <div class="split_small"></div>
  
    Mathematical models and computer simulations provide a great way to describe the function and operation of BioBrick
 
    Parts and Devices. Synthetic Biology is an engineering discipline, and part of engineering is simulation and
 
    modeling to determine the behavior of your design before you build it. Designing and simulating can be iterated many
 
    times in a computer before moving to the lab. This award is for teams who build a model of their system and use it
 
    to inform system design or simulate expected behavior in conjunction with experiments in the wetlab.
 
  
</p>
+
            <!--Lead IN-->
 +
            <div class="spcmkr" id="introduction"></div>
 +
            <div class="fb_72"><b>Lead In</b></div>
 +
            <!--            二级标题Introduction-->
 +
            <div class="split_small"></div>
 +
            <div class="fb_48"><b>Introduction</b></div>
 +
            <br/>
 +
            <div class="fm_22">
 +
                1. The stakeholders informing us that benefits matter most in application, we realized that it’s
 +
                essential to make our anti-phage strains grow as robust as original strain under the current
 +
                fermentation conditions. However, it’ s difficult to tell which strain grows most suitable or which
 +
                device has the least impact on cell growth from the growth curve graph of all those strains (Figure 1).
 +
                Therefore, we established a mathematical model to evaluate the growth properties of strains containing
 +
                different parts for the most suitable device in future application.
 +
            </div>
  
 +
            <div class="split_small"></div>
 +
            <img src="https://static.igem.org/mediawiki/2019/f/f9/T--JiangnanU_China--model_1.png" width="100%"
 +
                height="auto" alt="">
 +
            <div class="split_small"></div>
 +
 +
            <div class="fm_22">
 +
                2. The phage-induced promoters are vital in our genetic circuit, which would response the phage
 +
                stimulation and start transcription of <i>antP</i> and P-1 (antimicrobial peptide) against the phage
 +
                infection
 +
                (Figure 2). And the phage-induced promoters we used were selected from <i>E. coli</i>, so there might be
 +
                some
 +
                potential problems such as leakage and inclusion body due to the inappropriate promoter strength. Thus
 +
                we developed a quantitative design method for phage-induced promoters based on strength prediction using
 +
                artificial neural network, which allows us to choose or design promoters with desired strength without
 +
                extra experiments.
 +
            </div>
 +
 +
            <div class="split_small"></div>
 +
            <img src="https://static.igem.org/mediawiki/2019/e/e0/T--JiangnanU_China--model_2.png" width="100%"
 +
                height="auto" alt="">
 +
            <div class="split_small"></div>
 +
            <!--            二级标题Assumption-->
 +
            <div class="fb_48" id="assumption">
 +
                Assumption
 +
            </div>
 +
            <br/>
 +
            <div class="fm_22">
 +
                (1) The promoter strengths in the training set are the same using various vectors.
 +
                (2) The impact of parts in cell growth are relatively the same under different situation.
 +
            </div>
 +
 +
 +
            <!--GRA_EWM Model-->
 +
            <div class="spcmkr" id="gra_ewm"></div>
 +
            <div class="fb_72"><b>GRA_EWM Model</b></div>
 +
            <!--            二级标题Symbol Description-->
 +
            <div class="split_small"></div>
 +
            <div class="fb_48"><b>Symbol Description</b></div>
 +
            <br/>
 +
 +
            <div class="split_small"></div>
 +
            <img src="https://static.igem.org/mediawiki/2019/1/14/T--JiangnanU_China--model_3.png" width="100%"
 +
                height="auto" alt="">
 +
            <div class="split_small"></div>
 +
 +
            <!--            二级标题Weights Calculation of The Growth Curve-->
 +
            <div class="split_small"></div>
 +
            <div class="fb_48"><b>Weights Calculation of The Growth Curve</b></div>
 +
            <br/>
 +
 +
            <div class="split_small"></div>
 +
            <img src="https://static.igem.org/mediawiki/2019/2/26/T--JiangnanU_China--model_4.png" width="100%"
 +
                height="auto" alt="">
 +
            <div class="split_small"></div>
 +
 +
            <div class="split_small"></div>
 +
            <img src="https://static.igem.org/mediawiki/2019/d/da/T--JiangnanU_China--model_5.png" width="100%"
 +
                height="auto" alt="">
 +
            <div class="split_small"></div>
 +
 +
            <!--            二级标题Analysis of The Weight Distribution-->
 +
            <div class="split_small"></div>
 +
            <div class="fb_48"><b>Analysis of The Weight Distribution</b></div>
 +
            <br/>
 +
            <div class="fm_22">
 +
                As showed in Figure 3, the <i>OD600</i> measured after 4 hour to 10 hour were more useful. However, the
 +
                weight
 +
                given by the experts might consider plateau phase as an important period for industry fermentation.
 +
            </div>
 +
 +
            <!--            二级标题Grey Relational Analysis for Picking The Most Suitable Strain-->
 +
            <div class="split_small"></div>
 +
            <div class="fb_48"><b>Grey Relational Analysis for Picking The Most Suitable Strain</b></div>
 +
            <br/>
 +
 +
            <div class="split_small"></div>
 +
            <img src="https://static.igem.org/mediawiki/2019/c/c5/T--JiangnanU_China--model_6.png" width="100%"
 +
                height="auto" alt="">
 +
            <div class="split_small"></div>
 +
 +
            <div class="split_small"></div>
 +
            <img src="https://static.igem.org/mediawiki/2019/1/1b/T--JiangnanU_China--model_7.png" width="100%"
 +
                height="auto" alt="">
 +
            <div class="split_small"></div>
 +
 +
            <!--            二级标题Conclusion-->
 +
            <div class="split_small"></div>
 +
            <div class="fb_48"><b>Conclusion</b></div>
 +
            <br/>
 +
            <div class="fm_22">
 +
                Figure 4 demonstrates that the impact of the distinguishing coefficient on the result of GRA is very
 +
                significant. In particular, for all tested distinguishing coefficients, part <i>gntR</i> always ranks
 +
                first,
 +
                which means it is the most suitable part for future application.
 +
            </div>
 +
 +
            <!--BP-ANN Model-->
 +
            <div class="spcmkr" id=""></div>
 +
            <div class="fb_72"><b>BP-ANN Model</b></div>
 +
            <div class="split_small"></div>
 +
            <div class="fm_22">
 +
                Accurate and controllable regulatory elements like promoters are indispensable tools to quantitatively
 +
                regulate gene expression for rational pathway engineering, which means a promoter with proper strength
 +
                might be an easy solution to leakage and inclusion body. In order to select or design promoters with
 +
                desired strength without experiments, we developed a quantitative strength prediction method using
 +
                artificial neural network (ANN) with Neural Network Toolbox under Matlab environment.
 +
            </div>
 +
            <!--二级标题Construction of Early Phage-induced Promoter Strength Library-->
 +
            <div class="split_small"></div>
 +
            <div class="fb_48"><b>Construction of Early Phage-induced Promoter Strength Library</b></div>
 +
            <br/>
 +
            <div class="fm_22">
 +
                The endogenous promoters in <i>E.coli</i> BL21(DE3) we selected to respond to phage infection might
 +
                start
 +
                transcription without phage stimulation, so we selected 19 promoters with distributed strength from T4
 +
                phage mentioned in previous study as the phage-induced promoter library. (attachment: T4PE.docx)
 +
            </div>
 +
 +
            <!--二级标题Computational Platform Construction-->
 +
            <div class="split_small"></div>
 +
            <div class="fb_48"><b>Construction of Early Phage-induced Promoter Strength Library</b></div>
 +
            <br/>
 +
            <div class="fm_22">
 +
                Matlab2019b (Mathworks Inc., <a>https://www.mathworks.com/</a>) ran on a personal laptop with Windows 10
 +
                64-bit(Microsoft Inc., http://www.microsoft.com/) operation system. Neural Network Toolbox within Matlab
 +
                served as the basic tool for artificial neural network (ANN) model construction, data fitting and
 +
                prediction. All programs used in this work were designed and run upon Neural Network Toolbox and Matlab
 +
                environment.
 +
            </div>
 +
 +
            <!--二级标题Construction And Training of ANN Predicting Models-->
 +
            <div class="split_small"></div>
 +
            <div class="fb_48"><b>Construction And Training of ANN Predicting Models</b></div>
 +
            <br/>
 +
            <div class="fm_22">
 +
                The initial BP-ANN model was built by Neural Network Toolbox. The model contains four layers, including
 +
                an input layer, an output layer and two hidden layer. Neuron numbers of two hidden layer and a output
 +
                layer were 26, 5, 1 respectively. The initial weight for all neuron connections were randomly assigned
 +
                by Matlab functions. And other parameters were set as followed:
 +
            </div>
 +
 +
            <div class="split_small"></div>
 +
            <img src="https://static.igem.org/mediawiki/2019/a/ae/T--JiangnanU_China--model_8.png" width="100%"
 +
                height="auto" alt="">
 +
            <div class="split_small"></div>
 +
 +
            <div class="fm_22">
 +
                net = newff(minmax(p),[26,5,1],{'tansig', 'tansig', 'purelin'},'trainlm');
 +
                net.trainParam.epochs = 15000;
 +
                net.trainParam.mc = 0.98;
 +
                net.trainParam.goal = 1e-6;
 +
                net.trainParam.lr = 0.01;
 +
                And the original sequence data were translated to digital data and served as the input matrix according
 +
                to the following rules via python program (attachment: seqDigtal.py):
 +
            </div>
 +
 +
            <div class="split_small"></div>
 +
            <img src="https://static.igem.org/mediawiki/2019/3/35/T--JiangnanU_China--model_9.png" width="100%"
 +
                height="auto" alt="">
 +
            <div class="split_small"></div>
 +
 +
            <div class="fm_22">
 +
                Among all generated models, NET_26_5 (attachment: NET_26_5.mat) shows the highest correlation
 +
                coefficient values of 0.93336 for test set prediction, and its correlation coefficient values for
 +
                fitting the training data set reaches up to 0.99104. (Figure 3)
 +
            </div>
 +
 +
            <div class="split_small"></div>
 +
            <img src="https://static.igem.org/mediawiki/2019/6/65/T--JiangnanU_China--model_10.png" width="100%"
 +
                height="auto" alt="">
 +
            <div class="split_small"></div>
 +
 +
            <div class="fm_22">
 +
                And all the promoter prediction strengths were showed in Figure 4. (attachment:
 +
                pStrengthVsStrength.xlsx)
 +
            </div>
 +
 +
            <div class="split_small"></div>
 +
            <img src="https://static.igem.org/mediawiki/2019/3/32/T--JiangnanU_China--model_11.png" width="100%"
 +
                height="auto" alt="">
 +
            <div class="split_small"></div>
 +
 +
            <!--二级标题Conclusion-->
 +
            <div class="split_small"></div>
 +
            <div class="fb_48"><b>Conclusion</b></div>
 +
            <br/>
 +
            <div class="fm_22">
 +
                We could predict the designed promoter strength based on this BP-ANN model, which could save a lot time
 +
                for us to test millions of designed promoters.
 +
            </div>
 +
 +
            <!--            书签-->
 +
            <div class="split_small"></div>
 +
            <a href="#head"><img src="https://static.igem.org/mediawiki/2019/2/24/T--JiangnanU_China--host_back.png"
 +
                                alt="back" style="width: 6%;height:auto;margin-left: 46%"></a>
 +
        </div>
 +
    </div>
 +
</div>
 
</body>
 
</body>
 +
 +
 +
<script>
 +
    var slideIndex = 1;
 +
    showSlides(slideIndex);
 +
 +
    function plusSlides(n) {
 +
        showSlides(slideIndex += n);
 +
    }
 +
 +
    function currentSlide(n) {
 +
        showSlides(slideIndex = n);
 +
    }
 +
 +
    function showSlides(n) {
 +
        var i;
 +
        var slides = document.getElementsByClassName("mySlidesslideshow");
 +
        var dots = document.getElementsByClassName("demoslideshow");
 +
        var captionslideshowgrnblText = document.getElementById("captionslideshowgrnbl");
 +
        if (n > slides.length) {
 +
            slideIndex = 1
 +
        }
 +
        if (n < 1) {
 +
            slideIndex = slides.length
 +
        }
 +
        for (i = 0; i < slides.length; i++) {
 +
            slides[i].style.display = "none";
 +
        }
 +
        for (i = 0; i < dots.length; i++) {
 +
            dots[i].className = dots[i].className.replace(" activeslideshow", "");
 +
        }
 +
        slides[slideIndex - 1].style.display = "block";
 +
        dots[slideIndex - 1].className += " activeslideshow";
 +
        captionslideshowgrnblText.innerHTML = dots[slideIndex - 1].alt;
 +
    }
 +
</script>
 
</html>
 
</html>

Revision as of 03:14, 19 October 2019

JiangNan