Team:Waterloo/Description

Project Inspiration and Description

Bronze Medal Criterion #4

Pesticide usage and regulations in Canada have recently come under scrutiny and have caught our attention. Despite playing an important role in protecting crops, pesticides can also negatively impact the immediate rhizosphere of plants by inhibiting the process of root nodule formation. Rhizobacteria are soil bacteria that form beneficial relationships with agriculturally important legume crops. These microorganisms form root nodules and fix nitrogen gas into ammonia, a requirement for plant growth. Farmers using pesticides then need to apply more synthetic nitrogen fertilizers instead of relying on biologically fixed nitrogen. The runoff from these fertilizers can cause major environmental damage in the form of nutrient pollution. Our team therefore aims to minimize the use of ammonia-supplemented fertilizers. To do this, we are engineering rhizobia to have the ability to form root nodules in the presence of pesticides. We will confer resistance by either altering target receptors for the pesticide, or by biologically transforming the pesticide to dampen its toxicity. The aim is to identify the impact these changes will have on root nodule fixation by the engineered rhizobium, with the goal of allowing root nodule formation in the presence of pesticides. Agriculture is a large component of our local community, and providing constructive synthetic biology solutions that support current agricultural practices is fundamental to the inspiration of this year’s project. This project hopes to allow farmers to reduce their use of harmful fertilizers while still using pesticides to ensure high crop yields.

References

  • Bers, Karolien & Leroy, Baptiste & Breugelmans, Philip & Albers, Pieter & Lavigne, Rob & Sørensen, Sebastian R. & Aamand, Jens & Mot, René & Ruddy, Wattiez & Springael, Dirk. (2011). A Novel Hydrolase Identified by Genomic-Proteomic Analysis of Phenylurea Herbicide Mineralization by Variovorax sp. Strain SRS16. Applied and environmental microbiology. 77. 8754-64. 10.1128/AEM.06162-11.
  • Hussain, S., Siddique, T., Saleem, M., Arshad, M., & Khalid, A. (2009). Chapter 5 Impact of Pesticides on Soil Microbial Diversity, Enzymes, and Biochemical Reactions. Advances in Agronomy, 159-200. doi:10.1016/s0065-2113(09)01005-0