Difference between revisions of "Team:Cornell/Measurement"

m
 
Line 1: Line 1:
{{Cornell}}
 
 
<html>
 
<html>
  
 +
<head>
 +
  <style>
 +
    /* hides "Team:Cornell" and iGEM logo */
 +
    #top_title {
 +
      display: none;
 +
    }
  
<div class="clear"></div>
+
    /* removes padding below footer */
 +
    #globalWrapper {
 +
      padding: 0;
 +
    }
  
 +
    #content {
 +
      padding: 0px;
 +
      width: 100% !important;
 +
      margin-top: 0px;
 +
      margin-left: 0px;
 +
    }
  
 +
    /* removes default styling for home banner tagline */
 +
    #HQ_page p, .standard-page-content-list {
 +
      font-family: 'Open Sans', sans-serif;
 +
      font-size: 16px;
 +
      font-weight: 100;
 +
      color: #000;
 +
      padding-top: 0;
 +
      padding-bottom: 0;
 +
    }
  
 +
    /* removes small extra margin at very bottom below footer */
 +
    p {
 +
      margin: 0;
 +
    }
  
 +
    /* removes bullets from Toolkit dropdown menu */
 +
    ul {
 +
      list-style-image: none;
 +
    }
  
<div class="column full_size">
+
    /******************** ALL FONTS START ********************/
<h1>Measurement</h1>
+
    @import url('https://fonts.googleapis.com/css?family=Merriweather|Open+Sans:400,700|Raleway');
 +
    @font-face {
 +
        font-family: 'Futura';
 +
        src: url('../futura/futura\ medium\ bt.ttf');
 +
    }
  
<p>There are a lot of exciting parts in the Registry, but many parts have still not been characterized or need more characterization to make them more useful. Synthetic Biology needs great measurement approaches for characterizing parts, and efficient new methods for characterizing many parts at once. If you've done something exciting in the area of Measurement, describe it here!</p>
+
    body {
</div>
+
        font-family: 'Open Sans', sans-serif;
<div class="clear"></div>
+
    }
  
<div class="column two_thirds_size">
+
    .dropbtn, .dropdown-content {
<h3>Best Measurement Special Prize</h3>
+
        font-size: 16px;
<p>If you've done excellent work in measurement, you should consider nominating your team for this special prize. Designing great measurement approaches for characterizing new or existing parts or developing and implementing an efficient new method for characterizing thousands of parts are good examples.
+
    }
 +
 
 +
    .standard-page-banner > svg > text, .standard-page-content-title, .standard-page-side-bar-wrapper, .standard-page-content-subheading {
 +
        font-family: 'Futura', sans-serif;
 +
    }
 +
 
 +
    .tile-title {
 +
        font-family: 'Futura', sans-serif;
 +
    }
 +
 
 +
    /******************** ALL FONTS END ********************/
 +
 
 +
    html,
 +
    body {
 +
        width: 100%;
 +
        height: 100%;
 +
        margin: 0;
 +
        padding: 0;
 +
        overflow-x: hidden;
 +
    }
 +
 
 +
    body {
 +
        background-size: 40px 40px;
 +
    }
 +
 
 +
    p {
 +
        color: #000;
 +
    }
 +
 
 +
    nav {
 +
        padding-top: 30px;
 +
        padding-bottom: 30px;
 +
        padding-right: 100px;
 +
        background-color: #a0e0bd;
 +
    }
 +
 
 +
    .nav-bar-logo {
 +
        vertical-align: top;
 +
        display: inline-block;
 +
        float: left;
 +
        margin-left: 80px;
 +
        margin-top: -5px;
 +
    }
 +
 
 +
    .nav-bar-logo img {
 +
        width: 140px;
 +
    }
 +
 
 +
    .home-banner-wrapper {
 +
        position: relative;
 +
        background: #a0e0bd;
 +
        height: 675px;
 +
        width: 100%;
 +
        margin-top: -5px;
 +
    }
 +
 
 +
    .home-banner-logo {
 +
        height: 200px;
 +
        position: absolute;
 +
        left: 75px;
 +
        bottom: 55px;
 +
        z-index: 1;
 +
        background-color: rgba(160, 224, 189, 0.5);
 +
        box-shadow: 10px -10px 50px 10px rgba(160, 224, 189, 0.75);
 +
    }
 +
 
 +
    .home-banner-plants {
 +
        position: absolute;
 +
        top: 10px;
 +
        right: -10;
 +
        bottom: 20px;
 +
        height: 680px;
 +
        width: 1400px;
 +
    }
 +
 
 +
    .dropbtn {
 +
        background-color: transparent;
 +
        text-decoration: none;
 +
        padding: 15px;
 +
        margin: 0px;
 +
        font-size: 15px;
 +
        border: none;
 +
        color: #fff;
 +
    }
 +
 
 +
    @media (max-width: 1050px) {
 +
        .dropbtn {
 +
            font-size: 12px;
 +
        }
 +
    }
 +
 
 +
    .dropdown {
 +
        position: relative;
 +
        vertical-align: top;
 +
        display: inline-block;
 +
        float: right;
 +
    }
 +
 
 +
    .dropdown ul {
 +
        list-style-type: none;
 +
    }
 +
 
 +
    .dropdown a {
 +
        position: relative;
 +
        display: inline-block;
 +
        color: #e8b023;
 +
        text-decoration: none;
 +
    }
 +
 
 +
    .dropdown-content {
 +
        display: none;
 +
        position: absolute;
 +
        background-color: #016c64;
 +
        color: #ffffff;
 +
        width: 200px;
 +
        font-size: 14px;
 +
        box-shadow: 0px 8px 16px 0px rgba(0, 0, 0, 0.2);
 +
        z-index: 1;
 +
    }
 +
 
 +
    .dropdown-content a:hover {
 +
        background-color: #a0e0bd !important;
 +
    }
 +
 
 +
    .toolkit-dropdown-content {
 +
        width: 630px;
 +
        left: -160px;
 +
    }
 +
 
 +
    .modeling-dropdown-content {
 +
        left: -40px;
 +
    }
 +
 
 +
    .human-dropdown-content {
 +
        left: 12px;
 +
    }
 +
 
 +
    .outreach-dropdown-content {
 +
        width: 230px;
 +
        left: -40px;
 +
    }
 +
 
 +
    .team-dropdown-content {
 +
        width: 140px;
 +
        left: -35px;
 +
    }
 +
 
 +
    .dropdown-content a {
 +
        color: #ffffff;
 +
        padding: 12px 16px;
 +
        text-decoration: none !important;
 +
        display: block;
 +
    }
 +
 
 +
    .wet-lab-list-title,
 +
    .doc-list-title,
 +
    .pd-list-title {
 +
        padding-top: 12px;
 +
        padding-left: 16px;
 +
        padding-bottom: 14px;
 +
    }
 +
 
 +
    .nav-second-col {
 +
        margin-left: 30px;
 +
    }
 +
 
 +
    .nav-third-col {
 +
        margin-left: 30px;
 +
    }
 +
 
 +
    .dropbtn:hover,
 +
    .active-page {
 +
        color: #016c64;
 +
        transition-duration: 0.5s;
 +
    }
 +
 
 +
    .dropdown-content a:hover {
 +
        color: #016c64;
 +
        background-color: #ffffff;
 +
    }
 +
 
 +
    .dropdown:hover .dropdown-content {
 +
        display: block;
 +
    }
 +
 
 +
    footer {
 +
        padding: 35px;
 +
        position: relative;
 +
        text-align: center;
 +
        background-color: #a0e0bd;
 +
    }
 +
 
 +
    .footer-wrapper {
 +
        margin: auto;
 +
        display: inline-block;
 +
    }
 +
 
 +
    .icon-wrapper {
 +
        display: inline-block;
 +
        position: relative;
 +
        padding-right: 18px;
 +
        padding-left: 18px;
 +
        border-right: 0.5px solid white;
 +
    }
 +
 
 +
    .icon-wrapper-last {
 +
        border-right: none;
 +
    }
 +
 
 +
    .icon {
 +
        margin: 16px;
 +
    }
 +
 
 +
    .icon img {
 +
        height: 24px;
 +
    }
 +
 
 +
    /*Start Styles for Standard Page*/
 +
    .standard-page-banner {
 +
            background-image: url(https://static.igem.org/mediawiki/2019/1/19/T--Cornell--wet-lab-demonstrate-banner.jpeg);
 +
    background-size: cover;
 +
    fill: black;
 +
font-size: 10pt;
 +
    }
 +
 
 +
    .standard-page-side-bar-content-wrapper {
 +
        padding: 5% 0;
 +
    }
 +
 
 +
    .standard-page-side-bar>li>a {
 +
        text-decoration: none;
 +
        color: #016C64;
 +
        font-size: 16px;
 +
    }
 +
 
 +
    .standard-page-side-bar {
 +
        list-style-type: none;
 +
        padding-left: 15px;
 +
        padding-right: 15px;
 +
        vertical-align: middle;
 +
        margin: 40px !important;
 +
    }
 +
 
 +
    .standard-page-side-bar>li {
 +
        margin-bottom: 15px;
 +
    }
 +
 
 +
    .standard-page-content-title {
 +
        font-size: 24px;
 +
        color: #000 !important;
 +
        position: relative;
 +
    }
 +
 
 +
    .green-accent-line-left {
 +
        border: #a0e0bd solid 1px;
 +
        display: block;
 +
        float: left;
 +
        margin: 1em auto 1em auto;
 +
        width: 80px;
 +
    }
 +
 
 +
    .standard-page-content-subheading {
 +
        font-size: 18px;
 +
        font-weight: 1;
 +
        color: #000;
 +
        padding-top: 40px;
 +
        padding-bottom: 0;
 +
    }
 +
 
 +
    .standard-page-content-section {
 +
        margin-top: 40px;
 +
        margin-bottom: 40px;
 +
    }
 +
 
 +
.figures-caption {
 +
width: 60%;
 +
padding-top: 30px;
 +
padding-left: 30px;
 +
}
 +
 
 +
    /*End Style for Standard Page*/
 +
    /******************** STANDARD PAGE GRID START ********************/
 +
    nav {
 +
        grid-area: navbar;
 +
    }
 +
 
 +
    .nav-bar-main-menu .dropdown:nth-child(5) .dropdown-contentx {
 +
        display: grid;
 +
        grid-template-columns: auto auto auto;
 +
    }
 +
 
 +
    .nav-first-col {
 +
        display: inline-grid;
 +
    }
 +
 
 +
    .nav-second-col {
 +
        display: inline-grid;
 +
    }
 +
 
 +
    .nav-third-col {
 +
        display: inline-grid;
 +
    }
 +
 
 +
    footer {
 +
        grid-area: footer;
 +
    }
 +
 
 +
    .standard-page-wrapper {
 +
        display: grid;
 +
        grid-template-columns: auto;
 +
        grid-template-rows: 100px 550px auto 100px;
 +
        grid-template-areas: 'navbar' 'standardpagebanner' 'standardpagesidebarcontent' 'footer';
 +
    }
 +
 
 +
    .standard-page-banner {
 +
        grid-area: standardpagebanner;
 +
    }
 +
 
 +
    .standard-page-side-bar-content-wrapper {
 +
        display: inline-grid;
 +
        grid-area: standardpagesidebarcontent;
 +
        grid-template-columns: 7.5% 20% 65% 7.5%;
 +
        grid-template-areas: '. standardpagesidebar standardpagecontent .';
 +
    }
 +
 
 +
    .standard-page-side-bar-wrapper {
 +
        grid-area: standardpagesidebar;
 +
    }
 +
 
 +
    .standard-page-content-wrapper {
 +
        grid-area: standardpagecontent;
 +
    }
 +
 
 +
    a.icon {
 +
        padding: 0 !important;
 +
    }
 +
    /******************** STANDARD PAGE GRID END ********************/
 +
  </style>
 +
    <title>Team:Cornell - 2019.igem.org</title>
 +
 
 +
 
 +
    <!-- JS -->
 +
    <script src="https://2019.igem.org/Team:Cornell/jquerymin?action=raw&ctype=text/javascript"></script>
 +
</head>
 +
<!--NOTE: REMEMBER TO CHANCE active-page CLASS TO CORRECT DROPDOWN-->
 +
<body>
 +
    <div class ="standard-page-wrapper">
 +
        <!------------------------ NAV BAR START ------------------------>
 +
        <nav>
 +
            <div class="nav-bar-wrapper">
 +
                <div class="nav-bar-logo">
 +
                        <a href="https://2019.igem.org/Team:Cornell"><img src="https://static.igem.org/mediawiki/2019/9/94/T--Cornell--Logo.png" alt="reHAB"></a>
 +
                </div>
 +
                <div class="nav-bar-main-menu">
 +
                    <div class="dropdown">
 +
                        <button class="dropbtn">TEAM</button>
 +
                        <div class="dropdown-content team-dropdown-content">
 +
                            <a href="https://2019.igem.org/Team:Cornell/Team">BIOS</a>
 +
                            <a href="https://2019.igem.org/Team:Cornell/Sponsors">SPONSORS</a>
 +
                            <a href="https://2019.igem.org/Team:Cornell/Attributions">ATTRIBUTIONS</a>
 +
                        </div>
 +
                    </div>
 +
                    <div class="dropdown">
 +
                        <button class="dropbtn">OUTREACH</button>
 +
                        <div class="dropdown-content outreach-dropdown-content">
 +
                            <a href="https://2019.igem.org/Team:Cornell/Public_Engagement">EDUCATION & ENGAGEMENT</a>
 +
                            <a href="https://2019.igem.org/Team:Cornell/Collaborations">COLLABORATIONS</a>
 +
                        </div>
 +
                    </div>
 +
                    <div class="dropdown">
 +
                        <button class="dropbtn">HUMAN PRACTICES</button>
 +
                        <div class="dropdown-content human-dropdown-content">
 +
                            <a href="https://2019.igem.org/Team:Cornell/Human_Practices">INTEGRATED PRACTICES</a>
 +
                            <a href="https://2019.igem.org/Team:Cornell/Policies">POLICIES</a>
 +
                            <a href="https://2019.igem.org/Team:Cornell/Entrepreneurship">ENTREPRENEURSHIP</a>
 +
                        </div>
 +
                    </div>
 +
                    <div class="dropdown">
 +
                        <button class="dropbtn"
 +
                            onclick="location.href='https://2019.igem.org/Team:Cornell/Model'">MODELING</button>
 +
                    </div>
 +
                    <div class="dropdown">
 +
                        <button class="dropbtn active-page">TOOLKIT</button>
 +
                        <div class="dropdown-content toolkit-dropdown-content">
 +
                            <ul>
 +
                                <div class="nav-first-col">
 +
                                    <li class="wet-lab-list-title"><b>WET LAB</b></li>
 +
                                    <li><a href="https://2019.igem.org/Team:Cornell/Foundations">FOUNDATIONS</a></li>
 +
                                    <li><a href="https://2019.igem.org/Team:Cornell/Demonstrate">DEMONSTRATE</a></li>
 +
                                    <li><a href="https://2019.igem.org/Team:Cornell/Parts">PARTS</a></li>
 +
                                    <li><a href="https://2019.igem.org/Team:Cornell/BasicParts">BASIC PARTS</a></li>
 +
                                    <li><a href="https://2019.igem.org/Team:Cornell/CompositeParts">COMPOSITE PARTS</a></li>
 +
                                </div>
 +
                                <div class="nav-second-col">
 +
                                    <li class="pd-list-title"><b>PRODUCT DEVELOPMENT</b></li>
 +
                                    <li><a href="https://2019.igem.org/Team:Cornell/DesignProcess">DESIGN PROCESS</a></li>
 +
                                    <li><a href="https://2019.igem.org/Team:Cornell/Hardware">HARDWARE</a></li>
 +
                                </div>
 +
                                <div class="nav-third-col">
 +
                                    <li class="doc-list-title"><b>DOCUMENTATION</b></li>
 +
                                    <li><a href="https://2019.igem.org/Team:Cornell/Notebook">NOTEBOOK</a></li>
 +
                                    <li><a href="https://2019.igem.org/Team:Cornell/Safety">SAFETY</a></li>
 +
                                </div>
 +
                            </ul>
 +
                        </div>
 +
                    </div>
 +
                    <div class="dropdown">
 +
                        <button class="dropbtn"
 +
                            onclick="location.href='https://2019.igem.org/Team:Cornell/Description'">ABOUT</button>
 +
                    </div>
 +
                    <div class="dropdown">
 +
                        <button class="dropbtn"
 +
                            onclick="location.href='https://2019.igem.org/Team:Cornell'">HOME</button>
 +
                    </div>
 +
                </div>
 +
            </div>
 +
        </nav>
 +
        <!------------------------ NAV BAR END ------------------------>
 +
        <!------------------------ STANDARD PAGE BANNER START ------------------------>
 +
        <header class="standard-page-banner">
 +
            <svg viewBox="0 0 100 100" width=100% height=100%>
 +
                <text text-anchor="middle" alignment-baseline="middle" x=50% y=50%>Measurement</text>
 +
            </svg>
 +
        </header>
 +
        <!------------------------ STANDARD PAGE BANNER END ------------------------>
 +
        <!------------------------ STANDARD PAGE SIDE BAR + CONTENT START ------------------------>
 +
        <div class="standard-page-side-bar-content-wrapper">
 +
            <!------------------------ STANDARD PAGE SIDE BAR START ------------------------>
 +
            <div class="standard-page-side-bar-wrapper">
 +
                <ul class="standard-page-side-bar">
 +
                    <li><a href="#pageheading1">Measurement</a></li>
 +
                </ul>
 +
            </div>
 +
            <!------------------------ STANDARD PAGE SIDE BAR END ------------------------>
 +
            <!------------------------ STANDARD PAGE CONTENT START ------------------------>
 +
            <div class="standard-page-content-wrapper">
 +
                <div class="standard-page-content-section">
 +
                    <div class="standard-page-content-title"><div id="pageheading1"> Measurement</div></div>
 +
                    <hr class="green-accent-line-left">
 +
                    <div class="standard-page-content-subheading">Aptamer and Standard Curve</div>
 +
                    <p class="standard-page-content-text">
 +
                        We have developed a detection system which uses the colorimetric properties of gold nanoparticles(AuNPs) as well as their interactions with ssDNA aptamers to simply and rapidly detect the concentration of microcystin-LR (MC-LR) with high sensitivity and specificity. Unlike other microcystin detection methods like enzyme-linked immunosorbent assay (ELISA) and high-performance liquid chromatography (HPLC), this system not only has a quick turnaround time, but also requires minimal specialized skill and equipment [1]. Accurate microcystin concentrations can be determined in two hours with little more than a spectrophotometer.
 +
<br><br>
 +
                    </p>
 +
                    <p class="standard-page-content-text">
 +
                        The MC-LR specific aptamer used for the system is a 60 nucleotide long single stranded DNA aptamer (<a href="http://parts.igem.org/Part:BBa_K2960000">BBa_k2960000</a>). These were conjugated with 10 nm AuNPs suspended in a citrate buffer. Citrate is a negatively charged ion that prevents the gold nanoparticles from aggregating into larger particles.
 +
<br><br>
 +
                    </p>
 +
                    <p class="standard-page-content-text">
 +
                        Normally, gold nanoparticles with a diameter on the order of 10 nm are a deep red color; however, when exposed to an excess salt solution, the ions reduce the charge shielding that the citrate buffer provides and thus allows the AuNPs to aggregate into larger particles [3] whose light absorption properties are different due to surface plasmon resonance [2].
 +
<br> <br>
 +
                    </p>
 +
                    <p class="standard-page-content-text">
 +
                        In our system, we use sodium chloride with our DNA aptamer and AuNPs as was demonstrated by Li et al. [6]. When AuNPs are mixed with sodium chloride and aptamer, the negatively charged ssDNA aptamer binds to the AuNPs and provides charge shielding and prevents aggregation, preserving their red color. If there is microcystin present, the DNA aptamer will specifically prefer to bind to the microcystin, leaving the AuNP’s exposed to salt and allowing them to aggregate and change color.<br> <br>
 +
                    </p>
 +
                    <p class="standard-page-content-text">
 +
                        As shown by Li et al., the color change has a linear relationship with the concentration of microcystin-LR toxin (MC-LR) [6]. Our aptamer preferentially binds to MC-LR, so when a solution of MC-LR is introduced into the aptamer and AuNP solution, MC-LR outcompetes the AuNPs for binding to the aptamer. This removes the protection from the AuNPs, allowing them to aggregate. Unlike the rightward shift in peak absorbance described by Li et al., we observed instead a decrease in the absorbance for higher concentrations of microcystin, with little to no change in peak absorbance [6]. This may be because higher concentrations of microcystin increase AuNP aggregation and make them absorb less high energy wavelengths, as the solution turns violet. We plotted a standard curve, which also shows a linear relationship (Figure 1). We determined that the ideal wavelength at which to measure microcystin concentration is 520 nm (peak absorbance) since the differences at this wavelength showed the most linear relationship with microcystin concentration.  
 
<br><br>
 
<br><br>
To compete for the <a href="https://2019.igem.org/Judging/Awards">Best Measurement prize</a>, please describe your work on this page and also fill out the description on the <a href="https://2019.igem.org/Judging/Judging_Form">judging form</a>.
+
                    </p>
 +
<img src="https://static.igem.org/mediawiki/2019/f/f9/T--Cornell--wet-lab-graph.png" alt="wetlab1" style="width:400px">
 +
<img src="https://static.igem.org/mediawiki/2019/0/01/T--Cornell--WetLab1.png" alt="wetlab2" style="width:400px"><br>
 +
<div class="figures-caption"><b>Figure 1. </b>The plot on the left shows the standard curve for concentrations between 0 nM and 100 nM, typical concentrations of MC-LR found in the field. The log of concentration of microcystin is plotted on the x axis, with absorption at 520 nm plotted on the y axis. The linear relationship was best modeled by the equation log[Absorbance] = -0.0076 * log[MC-LR (nM)] - 0.4171 where x is absorbance at 520 nm (R<sup>2</sup> = 0.9854). The plot on the right shows the distinct absorption spectra for each concentration of microcystin. </div><br>
 +
 
 +
                    <p class="standard-page-content-text">
 +
This system has a quick turnaround time, and microcystin concentration can be determined in about 2 hours. The nanoparticles incubate with the salt and aptamer for 15 minutes and then it all incubates with a sample for at least two hours, all at room temperature. Longer incubation times were tested and these tests showed that the steady state absorbance is reached by 2 hours of incubation, as shown in Figure 2.  
 
<br><br>
 
<br><br>
You must also delete the message box on the top of this page to be eligible for this prize.
+
</p>
  
 +
<img src="https://static.igem.org/mediawiki/2019/f/fd/T--Cornell--WetLab3.png" alt="wetlab3" style="width:600px"><br>
 +
<div class="figures-caption"><b>Figure 2.</b> Absorbance spectra taken 1 hour, 2 hours, and 4 hours after incubating the AuNP, aptamer, and salt solution with an MC-LR sample.
 +
</div><br>
 +
                    <p class="standard-page-content-text">
 +
To test the specificity of the AuNP-Aptamer system, we analyzed tap water from Ithaca, New York, which is hard water that contains many ions and minerals, but no detectable levels of microcystin. Figure 3 shows that there is no difference in the system between very pure nuclease free water and tap water. This suggests that the specificity of our system for detecting MC-LR concentration is high, as other ions and minerals appear to have no effect on the affinity of the aptamer for the AuNPs. It also suggests that small amounts of other ions and minerals have little to no effect on the aggregation of the AuNPs.
 +
<br><br>
 
</p>
 
</p>
 +
<img src="https://static.igem.org/mediawiki/2019/b/b9/T--Cornell--WetLab4.png" alt="wetlab4" style="width:600px"><br>
 +
<div class="figures-caption"><b>Figure 3.</b> The absorbance spectra of two AuNP, NaCl, and aptamer solutions. The one in blue contains molecular bio-grade nuclease-free water while the one in orange contains tap water. There is little difference if any between the two spectra, as the two appear overlayed.
 +
</div><br>
 +
                    <p class="standard-page-content-text">
 +
In order to maximize the sensitivity of the reHAB detection system, salt and aptamer concentrations were optimized for the range of MC-LR concentrations that may be present in harmful algal blooms, being between 0 nM and 1 µM [4,5]. The optimal aptamer and salt conditions were observed to be 2 µM and .5 M, respectively, as shown in Figures 3 and 4.
 +
<br><br>
 +
</p>
 +
                    <p class="standard-page-content-text">
 +
As observable in Figure 4, as salt concentration decreases, the difference in the magnitude of the peak absorbance at 520 nm from adding MC-LR increases. This means that it appears as if our detection system is the most sensitive at low salt concentrations. It is worth mentioning that 1M, 2M, 3M, and 4M salt concentrations were tested together at 1 µM MC-LR, whereas .5M and 5M salt concentrations were tested separately from these other four at an MC-LR concentration of 0.1 µM. Following the trend observed above, one would expect that 0.5M NaCl produces the best sensitivity. It is clearly more sensitive than 5M NaCl. In comparing the sensitivity of our system with 0.5M NaCl with the concentrations of 1, 2, 3, and 4M NaCl, we can use some of the data from our standard curve to justify our pick of 0.5M NaCl as the most sensitive. According to our graph, the absorbance difference at 520 nm between 0 nM MC-LR and 0.1 µM for 0.5 M NaCl is 0.0246 OD. Because we have demonstrated that higher MC-LR concentration causes a more pronounced depression in our absorbance peak at 520 nm, it is reasonable to extrapolate that at MC-LR concentration of 1 µM will cause a much larger depression than the previously observed 0.1 µM. Therefore we decided on using 0.5 M NaCl.
  
</div>
+
<br><br>
 
+
</p>
 
+
<img src="https://static.igem.org/mediawiki/2019/4/47/T--Cornell--WetLab5.png" alt="Wet Lab" style="width:600px"><br>
<div class="column third_size">
+
<img src="https://static.igem.org/mediawiki/2019/c/c0/T--Cornell--DemonstrateFigures4.png" alt="Wet Lab" style="width:600px"><br>
<div class="highlight decoration_A_full">
+
<div class="figures-caption"> <b>Figure 4. </b>Upper figure shows salt optimization data over 0.5, 1, 2, 3, 4, 5 M NaCl. The optimal concentration for determining the concentration of microcystin is 0.5 M NaCl, since it shows the largest difference in spectrum with and without microcystin. Lower image shows a preliminary test to see the color changes due to salt induction, and how the aptamer protects the AuNPs from aggregating. Top row contains aptamer, and increasing salt concentrations. The bottom row has the same respective salt concentrations, but no aptamer.
<h3>Inspiration</h3>
+
</div><br>
<p>You can look at what other teams did to get some inspiration! <br />
+
                    <p class="standard-page-content-text">
Here are a few examples:</p>
+
It was determined that the aptamer concentration made no consistent difference in detecting microcystins. Figure 5 is a series of graphs, each of which represent measurements for a different concentration of DNA aptamer: 2 µM, 20 µM, and 200 µM. Each demonstrate the absorbance values observed across a range of MC-LR concentrations. Note that the y-axis contains relative units which describe the difference in absorbance values before and after adding a sample of MC-LR or just water, in the case of the “0 nM” spectrum. Absorbance was measured across a 300-700 nm spectrum. There is a lack of consistent differences before and after adding microcystin due to increased aptamer concentration, so a lower concentration of 2 μM is used in our system.
<ul>
+
<br><br>
<li><a href="https://2018.igem.org/Team:UC_Davis/Measurement">2018 UC Davis</a></li>
+
</p>
<li><a href="https://2017.igem.org/Team:TUDelft/Measurement">2017 TUDelft</a></li>
+
<img src="https://static.igem.org/mediawiki/2019/3/32/T--Cornell--WetLab6.png" alt="Wet Lab" style="width:850px"><br>
<li><a href="https://2016.igem.org/Team:Stanford-Brown">2016 Stanford-Brown</a></li>
+
<div class="figures-caption"> <b>Figure 5. </b>Difference between before and after adding a sample containing either 0, 10, 100, or 1000 nM of MC-LR. Increasing concentration of aptamer (left to right) has no consistent effect on the spectra, so 2 μM solution of DNA aptamer was used.
<li><a href="https://2016.igem.org/Team:Genspace">2016 Genspace</a></li>
+
</div><br>
<li><a href="https://2015.igem.org/Team:William_and_Mary">2015 William and Mary</a></li>
+
<li><a href="https://2014.igem.org/Team:Aachen">2014 Aachen  </a></li>
+
</ul>
+
</div>
+
</div>
+
  
 +
                </div>
 +
            </div>
 +
            <!------------------------ STANDARD PAGE CONTENT END ------------------------>
 +
        </div>
 +
        <!------------------------ STANDARD PAGE SIDE BAR + CONTENT END ------------------------>
 +
        <!------------------------ FOOTER START ------------------------>
 +
        <footer>
 +
            <div class="footer-wrapper">
 +
                <div class="icon-wrapper">
 +
                    <a class="icon" href="http://facebook.com/cornelligem"><img src="https://static.igem.org/mediawiki/2019/4/44/T--Cornell--Facebook.png"></a>
 +
                </div>
 +
                <div class="icon-wrapper">
 +
                    <a class="icon" href="http://twitter.com/cugem"><img src="https://static.igem.org/mediawiki/2019/8/80/T--Cornell--Twitter.png"></a>
 +
                </div>
 +
                <div class="icon-wrapper">
 +
                    <a class="icon" href="https://www.instagram.com/cugem/"><img src="https://static.igem.org/mediawiki/2019/3/37/T--Cornell--Instagram.png"></a>
 +
                </div>
 +
                <div class="icon-wrapper icon-wrapper-last">
 +
                    <a class="icon" href="https://www.youtube.com/channel/UCJt-5JfyoucUJXC1EsTllhg"><img src="https://static.igem.org/mediawiki/2019/3/3c/T--Cornell--Youtube.png"></a>
 +
                </div>
 +
            </div>
 +
        </footer>
 +
        <!------------------------ FOOTER END ------------------------>
 +
    </div>
 +
</body>
  
 
</html>
 
</html>

Latest revision as of 23:01, 21 October 2019

Team:Cornell - 2019.igem.org

Measurement
Measurement

Aptamer and Standard Curve

We have developed a detection system which uses the colorimetric properties of gold nanoparticles(AuNPs) as well as their interactions with ssDNA aptamers to simply and rapidly detect the concentration of microcystin-LR (MC-LR) with high sensitivity and specificity. Unlike other microcystin detection methods like enzyme-linked immunosorbent assay (ELISA) and high-performance liquid chromatography (HPLC), this system not only has a quick turnaround time, but also requires minimal specialized skill and equipment [1]. Accurate microcystin concentrations can be determined in two hours with little more than a spectrophotometer.

The MC-LR specific aptamer used for the system is a 60 nucleotide long single stranded DNA aptamer (BBa_k2960000). These were conjugated with 10 nm AuNPs suspended in a citrate buffer. Citrate is a negatively charged ion that prevents the gold nanoparticles from aggregating into larger particles.

Normally, gold nanoparticles with a diameter on the order of 10 nm are a deep red color; however, when exposed to an excess salt solution, the ions reduce the charge shielding that the citrate buffer provides and thus allows the AuNPs to aggregate into larger particles [3] whose light absorption properties are different due to surface plasmon resonance [2].

In our system, we use sodium chloride with our DNA aptamer and AuNPs as was demonstrated by Li et al. [6]. When AuNPs are mixed with sodium chloride and aptamer, the negatively charged ssDNA aptamer binds to the AuNPs and provides charge shielding and prevents aggregation, preserving their red color. If there is microcystin present, the DNA aptamer will specifically prefer to bind to the microcystin, leaving the AuNP’s exposed to salt and allowing them to aggregate and change color.

As shown by Li et al., the color change has a linear relationship with the concentration of microcystin-LR toxin (MC-LR) [6]. Our aptamer preferentially binds to MC-LR, so when a solution of MC-LR is introduced into the aptamer and AuNP solution, MC-LR outcompetes the AuNPs for binding to the aptamer. This removes the protection from the AuNPs, allowing them to aggregate. Unlike the rightward shift in peak absorbance described by Li et al., we observed instead a decrease in the absorbance for higher concentrations of microcystin, with little to no change in peak absorbance [6]. This may be because higher concentrations of microcystin increase AuNP aggregation and make them absorb less high energy wavelengths, as the solution turns violet. We plotted a standard curve, which also shows a linear relationship (Figure 1). We determined that the ideal wavelength at which to measure microcystin concentration is 520 nm (peak absorbance) since the differences at this wavelength showed the most linear relationship with microcystin concentration.

wetlab1 wetlab2
Figure 1. The plot on the left shows the standard curve for concentrations between 0 nM and 100 nM, typical concentrations of MC-LR found in the field. The log of concentration of microcystin is plotted on the x axis, with absorption at 520 nm plotted on the y axis. The linear relationship was best modeled by the equation log[Absorbance] = -0.0076 * log[MC-LR (nM)] - 0.4171 where x is absorbance at 520 nm (R2 = 0.9854). The plot on the right shows the distinct absorption spectra for each concentration of microcystin.

This system has a quick turnaround time, and microcystin concentration can be determined in about 2 hours. The nanoparticles incubate with the salt and aptamer for 15 minutes and then it all incubates with a sample for at least two hours, all at room temperature. Longer incubation times were tested and these tests showed that the steady state absorbance is reached by 2 hours of incubation, as shown in Figure 2.

wetlab3
Figure 2. Absorbance spectra taken 1 hour, 2 hours, and 4 hours after incubating the AuNP, aptamer, and salt solution with an MC-LR sample.

To test the specificity of the AuNP-Aptamer system, we analyzed tap water from Ithaca, New York, which is hard water that contains many ions and minerals, but no detectable levels of microcystin. Figure 3 shows that there is no difference in the system between very pure nuclease free water and tap water. This suggests that the specificity of our system for detecting MC-LR concentration is high, as other ions and minerals appear to have no effect on the affinity of the aptamer for the AuNPs. It also suggests that small amounts of other ions and minerals have little to no effect on the aggregation of the AuNPs.

wetlab4
Figure 3. The absorbance spectra of two AuNP, NaCl, and aptamer solutions. The one in blue contains molecular bio-grade nuclease-free water while the one in orange contains tap water. There is little difference if any between the two spectra, as the two appear overlayed.

In order to maximize the sensitivity of the reHAB detection system, salt and aptamer concentrations were optimized for the range of MC-LR concentrations that may be present in harmful algal blooms, being between 0 nM and 1 µM [4,5]. The optimal aptamer and salt conditions were observed to be 2 µM and .5 M, respectively, as shown in Figures 3 and 4.

As observable in Figure 4, as salt concentration decreases, the difference in the magnitude of the peak absorbance at 520 nm from adding MC-LR increases. This means that it appears as if our detection system is the most sensitive at low salt concentrations. It is worth mentioning that 1M, 2M, 3M, and 4M salt concentrations were tested together at 1 µM MC-LR, whereas .5M and 5M salt concentrations were tested separately from these other four at an MC-LR concentration of 0.1 µM. Following the trend observed above, one would expect that 0.5M NaCl produces the best sensitivity. It is clearly more sensitive than 5M NaCl. In comparing the sensitivity of our system with 0.5M NaCl with the concentrations of 1, 2, 3, and 4M NaCl, we can use some of the data from our standard curve to justify our pick of 0.5M NaCl as the most sensitive. According to our graph, the absorbance difference at 520 nm between 0 nM MC-LR and 0.1 µM for 0.5 M NaCl is 0.0246 OD. Because we have demonstrated that higher MC-LR concentration causes a more pronounced depression in our absorbance peak at 520 nm, it is reasonable to extrapolate that at MC-LR concentration of 1 µM will cause a much larger depression than the previously observed 0.1 µM. Therefore we decided on using 0.5 M NaCl.

Wet Lab
Wet Lab
Figure 4. Upper figure shows salt optimization data over 0.5, 1, 2, 3, 4, 5 M NaCl. The optimal concentration for determining the concentration of microcystin is 0.5 M NaCl, since it shows the largest difference in spectrum with and without microcystin. Lower image shows a preliminary test to see the color changes due to salt induction, and how the aptamer protects the AuNPs from aggregating. Top row contains aptamer, and increasing salt concentrations. The bottom row has the same respective salt concentrations, but no aptamer.

It was determined that the aptamer concentration made no consistent difference in detecting microcystins. Figure 5 is a series of graphs, each of which represent measurements for a different concentration of DNA aptamer: 2 µM, 20 µM, and 200 µM. Each demonstrate the absorbance values observed across a range of MC-LR concentrations. Note that the y-axis contains relative units which describe the difference in absorbance values before and after adding a sample of MC-LR or just water, in the case of the “0 nM” spectrum. Absorbance was measured across a 300-700 nm spectrum. There is a lack of consistent differences before and after adding microcystin due to increased aptamer concentration, so a lower concentration of 2 μM is used in our system.

Wet Lab
Figure 5. Difference between before and after adding a sample containing either 0, 10, 100, or 1000 nM of MC-LR. Increasing concentration of aptamer (left to right) has no consistent effect on the spectra, so 2 μM solution of DNA aptamer was used.