Difference between revisions of "Team:JiangnanU China/Results"

(Blanked the page)
Line 1: Line 1:
{{:Team:JiangnanU_China/Header}}
 
<html xmlns="http://www.w3.org/1999/html">
 
<head>
 
    <meta name="viewport" content="width=device-width, initial-scale=1">
 
    <meta charset="utf-8"/>
 
    <!--Font-->
 
    <!--    ////////////////////////-->
 
    <style>
 
        /*取消设置*/
 
        #content {
 
            line-height: unset;
 
        }
 
  
        #globalWrapper {
 
            font-size: unset;
 
        }
 
 
        #HQ_page h1, h2, h3, h4, h5 {
 
            margin: 0;
 
            padding: 0;
 
        }
 
 
        #HQ_page p {
 
            font-size: inherit;
 
            font-family: inherit;
 
        }
 
 
        p, body {
 
            margin: 0;
 
            padding: 0;
 
            line-height: initial;
 
            width: 100%;
 
            height: 100%;
 
        }
 
 
        /*字体*/
 
        @font-face {
 
            font-family: 'Futura_Bold';
 
            src: url('https://static.igem.org/mediawiki/2019/e/e0/T--JiangnanU_China--ziti_Futura_Bold.otf');
 
        }
 
 
        @font-face {
 
            font-family: 'FuturaFuturisC-Italic';
 
            src: url('https://static.igem.org/mediawiki/2019/4/49/T--JiangnanU_China--FuturaFuturisC-Italic.otf');
 
        }
 
 
        @font-face {
 
            font-family: 'Futura-Medium-6';
 
            src: url('https://static.igem.org/mediawiki/2019/1/11/T--JiangnanU_China--Futura-Medium-6.otf');
 
        }
 
 
        .fb_48 {
 
            font-family: Futura_Bold, sans-serif;
 
            font-size: 2em;
 
        }
 
 
        .fb_22 {
 
            font-family: Futura_Bold, sans-serif;
 
            font-size: 1.3em;
 
        }
 
 
        .fb_72 {
 
            font-family: Futura_Bold, sans-serif;
 
            font-size: 4em;
 
        }
 
 
        .fm_22 {
 
            font-family: Futura-Medium-6, sans-serif;
 
            font-size: 1.3em;
 
        }
 
 
        .fmi_48 {
 
            font-family: FuturaFuturisC-Italic, sans-serif;
 
            font-size: 2em;
 
        }
 
 
        /*常用css*/
 
        /*分隔符*/
 
        .split_small {
 
            height: 32px;
 
        }
 
 
        .split {
 
            height: 64px;
 
        }
 
 
        /*无书签正文*/
 
        .contents {
 
            margin: 5% 15% 15%;
 
        }
 
 
        /*一排*/
 
        .row {
 
            display: flex;
 
            flex-direction: row;
 
            margin: 0;
 
        }
 
 
        /*一列*/
 
        .column {
 
            display: flex;
 
            flex-direction: column;
 
        }
 
 
        .contents {
 
            margin: 0% 15% 15%;
 
        }
 
 
        .centers {
 
            justify-content: center;
 
        }
 
    </style>
 
 
    <style>
 
        .bgd {
 
            background-image: url('https://static.igem.org/mediawiki/2019/b/bc/T--JiangnanU_China--results_bgd.png');
 
            background-size: 100% 100%;
 
            background-position: center;
 
            background-repeat: no-repeat;
 
            width: 100%;
 
            height: 100vh;
 
            z-index: 0;
 
        }
 
    </style>
 
</head>
 
<body>
 
<div class="bgd" id="head">
 
    <div class="split_small"></div>
 
    <div class="split"></div>
 
    <div class="contents" style="color: white">
 
        <div class="column">
 
            <div class="centers">
 
                <div class="fb_72">
 
                    <b>Results</b>
 
                </div>
 
                <br/>
 
                <div class="fm_22">
 
                    In order to make <i>E. coli</i> in the laboratory resistant to phage infection, this year our team
 
                    first
 
                    found components that responded to phage infection through transcriptome analysis.
 
                    Then we found components that could make the bacteria resistant to phage infection through
 
                    literature search and mutagenesis screening.
 
                </div>
 
 
                <div class="split"></div>
 
                <div class="split"></div>
 
                <!--                View more-->
 
                <a href="#phage" style="text-decoration: none">
 
                    <div class="row" style="align-content: center;color: white;">
 
                        <img
 
                                src="https://static.igem.org/mediawiki/2019/0/09/T--JiangnanU_China--host_liubianxing.png"
 
                                alt="back" style="width: 6%;height:auto;">
 
                        <div class="fb_48" style="margin-left: 2%;margin-top: 1%">View all</div>
 
                    </div>
 
                </a>
 
 
            </div>
 
        </div>
 
    </div>
 
</div>
 
 
 
<div class="split"></div>
 
<div class="contents" id="phage">
 
    <div class="column">
 
        <div class="centers">
 
 
            <div class="fb_72">
 
                Phage Isolation
 
            </div>
 
            <div class="split_small"></div>
 
            <div class="fm_22">
 
                We added 1 μL of phage-infected fermentation broth to a plate containing <i>E. coli</i> BL21.
 
                <br/>
 
                After proper culture for a period of time, plaque appeared on the plate (Fig.1.)
 
                <br/>
 
                We isolated the phages from the plate and photographed them using a projective electron microscope (Fig.
 
                2).
 
                <br/>
 
                We finally determined that the T4 phages infected our fermentation broth by sequencing the genome of the
 
                phages.
 
            </div>
 
            <div class="split_small"></div>
 
            <img src="https://static.igem.org/mediawiki/2019/2/2a/T--JiangnanU_China--results_2.png"
 
                style="width: 100%;height: auto;">
 
            <div class="split_small"></div>
 
 
            <!--第二部分-->
 
            <div class="split"></div>
 
            <div class="fb_72"><b>Selection of Inducible Promoters</b></div>
 
            <div class="split"></div>
 
            <div class="fb_48">
 
                1.Selection
 
            </div>
 
            <div class="split_small"></div>
 
            <div class="fm_22">
 
                In order to screen inducible promoters, we first made the one-step growth curve of phages (Fig. 3).
 
                After that, we selected two time points of phage infection for 5min (in the incubation period of phage
 
                infection)and phage infection for 20min (in the outbreak period of phage infection)through the one-step
 
                growth curve of phage.
 
                By analyzing transcriptome data,we selected inducible promoter P<i>putA</i> (Fig.4) for 5 min and
 
                inducible
 
                promoter P<i>glcF</i> (Fig.5) for 20 min.
 
            </div>
 
            <div class="split_small"></div>
 
            <img src="https://static.igem.org/mediawiki/2019/e/e2/T--JiangnanU_China--results_3.png"
 
                style="width: 100%;height: auto;">
 
            <div class="split_small"></div>
 
            <img src="https://static.igem.org/mediawiki/2019/e/e8/T--JiangnanU_China--results_1.png"
 
                style="width: 100%;height: auto;">
 
 
            <!--            第二部分-->
 
            <div class="split_small"></div>
 
            <div class="fb_48">
 
                2. Characterization
 
            </div>
 
            <div class="split_small"></div>
 
            <div class="fm_22">
 
                In <i>E. coli</i> BL21,we connected the green fluorescence gene <i>gfp</i> with the inducible promoter P<i>putA</i>
 
                for 5 min
 
                (Fig.6) and the red fluorescence gene <i>mCherry</i> with the inducible promoter P<i>glcF</i> for 20 min
 
                (Fig.7) in
 
                our genetic circuits.
 
                After infecting the bacteria with phages for the corresponding time, we observed that the infected cells
 
                gave off green and red fluorescence respectively.
 
 
            </div>
 
            <div class="split_small"></div>
 
            <img src="https://static.igem.org/mediawiki/2019/b/be/T--JiangnanU_China--results_0.png"
 
                style="width: 100%;height: auto;">
 
            <div class="split_small"></div>
 
 
 
            <!--            第三部分-->
 
            <div class="split_small"></div>
 
            <div class="fb_48">
 
                3. Anti-phage Parts
 
            </div>
 
            <div class="split_small"></div>
 
            <div class="fm_22">
 
                When we had components that responded to phage infection, we searched for anti-phage parts through
 
                literature search and mutagenesis screening.
 
            </div>
 
            <div class="split_small"></div>
 
            <div class="fm_22">
 
                3.1 Anti-phage part from literature
 
                <br/>
 
                Through literature search, we found a resistant protein AbpAB that can resist T4 phage. Protein AbpAB
 
                can impair the synthesis of the phage DNA and late gene transcripts, which resulted in poor expression
 
                of late proteins and consequently no phage propagation. AbpAB have no effect on the bacterial growth(Fig
 
                8.) which is important to the industry. However, protein AbpAB didn’t work well as we expected(Fig 9.).
 
            </div>
 
            <div class="split_small"></div>
 
            <img src="https://static.igem.org/mediawiki/2019/b/b4/T--JiangnanU_China--result_4.png"
 
                style="width: 100%;height: auto;">
 
            <div class="split_small"></div>
 
            <div class="fm_22">
 
                3.2. Anti-phage part from mutation screening
 
                <br/>
 
                To get more efficient phage resistant parts, we used the ARTP(Atmospheric and room temperature plasma)
 
                mutagenesis system to obtain a large number of mutant strains. Then we co-cultured the mutant strains
 
                with the phage and screened the mutant strains that could resist phage infection. In the screening
 
                process, we continuously verified their resistance, eliminated the bacterial strains with degraded
 
                resistance and retained the ones with excellent resistance. Then we obtained 8 mutant strains which were
 
                resistant to phage and four key mutation sites (nuoE, yhjH, rzpD, and gntR) through comparation of
 
                genome (Fig. 10). Resistance tests on these key sites were performed respectively(Fig 11.). According to
 
                the advice of corporate stakeholders, if the Genetic Modified (GM) strain is to be applied in industry,
 
                our components cannot have a great influence on bacterial growth. Since it is not possible to directly
 
                see from the figure which component has the least influence on the growth of the bacteria, we use the
 
                Grey Relation Analysis(GRA) method to analyze the growth curve(Fig 12.) of the bacteria connecting the
 
                various components. We used the Entropy Weight Method (EWM) to determine the weight of each growth point
 
                to select the most similarly modified strain (the highest correlation), which is the component that has
 
                the least impact on bacterial growth. At the same time, after consulting the industry experts, we
 
                revised the weights according to the experts' recommendations to evaluate the components again, making
 
                them more in line with the real situation of production, that is, the most suitable components for
 
                industrial production. Using GRA's two evaluations of the four components at different weights, we
 
                selected the component gntR.(Fig 13.)
 
            </div>
 
            <div class="split_small"></div>
 
            <img src="https://static.igem.org/mediawiki/2019/7/73/T--JiangnanU_China--result_5.png"
 
                style="width: 100%;height: auto;">
 
            <div class="split_small"></div>
 
            <img src="https://static.igem.org/mediawiki/2019/3/3c/T--JiangnanU_China--result_6.png"
 
                style="width: 100%;height: auto;">
 
            <div class="split_small"></div>
 
            <img src="https://static.igem.org/mediawiki/2019/1/16/T--JiangnanU_China--result_7.png"
 
                style="width: 100%;height: auto;">
 
            <div class="split_small"></div>
 
            <img src="https://static.igem.org/mediawiki/2019/3/31/T--JiangnanU_China--result_8.png"
 
                style="width: 100%;height: auto;">
 
            <div class="split_small"></div>
 
            <div class="fm_22">
 
                3.3. Cascade of protein AbpAB and GntR
 
                <br/>
 
                First, resistant proteins AbpAB and GntR were verified by SDS-PAGE(Fig 14.)Then,We connected gntR with
 
                abpAB in pET-28a plasmid , and transformed them into E. coli BL21. We co-expressed abpAB and gntR, and
 
                subsequently obtained a recombinant strain that is resistant to phage(Fig 15.). The result showed that
 
                two proteins works better together.
 
            </div>
 
            <div class="split_small"></div>
 
            <img src="https://static.igem.org/mediawiki/2019/a/a8/T--JiangnanU_China--result_9.png"
 
                style="width: 100%;height: auto;">
 
            <div class="split_small"></div>
 
            <img src="https://static.igem.org/mediawiki/2019/5/59/T--JiangnanU_China--result_10.png"
 
                style="width: 100%;height: auto;">
 
            <div class="split_small"></div>
 
 
            <!--            第四部分-->
 
            <div class="split_small"></div>
 
            <div class="fb_48">
 
                4. Assembly and application
 
            </div>
 
            <div class="split_small"></div>
 
            <div class="fm_22">
 
                In order to prevent the phage from escaping the attack of our resistant protein, we connected a kill
 
                switch p-1 (BBa_K628000) with the 20 min induction promoter(Fig 16).
 
            </div>
 
            <div class="split_small"></div>
 
            <img src="https://static.igem.org/mediawiki/2019/a/ac/T--JiangnanU_China--result_11.png"
 
                style="width: 100%;height: auto;">
 
            <div class="split_small"></div>
 
            <div class="fm_22">
 
                We inoculated E. coli BL21 and recombinant E. coli BL21-pET28a-PputA-abpAB-gntR-PglcF-P-1 in LB liquid
 
                medium to raise the logarithmic growth phase, i.e. OD 0.6-0.8 . Then the fresh phage solution was
 
                inoculated at the same time and continuous cultured for 1-2 h. As a result, it was found that the
 
                recombinant grew well.(Fig 17.).
 
            </div>
 
            <div class="split_small"></div>
 
            <img src="https://static.igem.org/mediawiki/2019/d/d5/T--JiangnanU_China--result_12.png"
 
                style="width: 100%;height: auto;">
 
            <div class="split_small"></div>
 
            <div class="fm_22">
 
                In addition, we cooperated with Ningxia EPPEN BIOTECH CO.,LTD (http://www.eppen.com.cn) to carry out
 
                small-scale and pilot test fermentation experiments of resistant strain in the special fermentation
 
                laboratory of Jiangnan University. This ensured that our experiments were controllable without any phage
 
                and engineered bacteria leaking.
 
                <br />
 
                We transferred the constructed plasmid into an engineering bacteria strain producing γ-aminobutyric acid
 
                (GABA).
 
                <br />
 
                The fermentation laboratory is subjected to UV irradiation and ozone fumigation prior to formal
 
                fermentation to remove phage that may be present. The E. coli BL21-pET28a-PputA-abpAB-gntR-PglcF-P-1, E.
 
                coli BL21-pET28a-PputA-abpAB and the control (E. coli BL21) were added T4 phage after six hours of
 
                culture, and the fermentation was continued for 10 hours. During the fermentation, the OD was measured,
 
                and the effects of the phage on the three were observed.
 
                <br />
 
                Then we used whole-cell transformation with a combination of resistant strain E. coli
 
                BL21-pET28a-PputA-abpAB-gntR-PglcF-P-1, and we got a good whole-cell transformation ability of the
 
                resistant strain (Figure 18).
 
                <br />
 
                From the results, our resistant composite part has great advantages in the production of γ-aminobutyric
 
                acid and are not threatened by T4 phage. The productivity of γ-aminobutyric acid is 278.3 g/L, and the
 
                molar conversion rate is really high, reaching 98.4%(Table 1.), which means that the circuit we built
 
                can be used in production without any impact (Figure 19).
 
            </div>
 
            <div class="split_small"></div>
 
            <img src="https://static.igem.org/mediawiki/2019/7/7a/T--JiangnanU_China--result_13.png"
 
                style="width: 100%;height: auto;">
 
            <div class="split_small"></div>
 
            <img src="https://static.igem.org/mediawiki/2019/9/95/T--JiangnanU_China--result_14.png"
 
                style="width: 100%;height: auto;">
 
            <div class="split_small"></div>
 
            <!--            书签-->
 
            <div class="split_small"></div>
 
            <a href="#head"><img src="https://static.igem.org/mediawiki/2019/2/24/T--JiangnanU_China--host_back.png"
 
                                alt="back" style="width: 6%;height:auto;margin-left: 46%"></a>
 
        </div>
 
    </div>
 
</div>
 
</body>
 
</html>
 
{{:Team:JiangnanU_China/Footer}}
 

Revision as of 00:04, 21 October 2019