Difference between revisions of "Team:XMU-China/Model"

Line 13: Line 13:
 
Firstly, to facilitate the analysis and calculation, all cells was described as spheres corresponding to their corresponding volume equivalent diameters de under the engineering concept (Hypothesis 1). The equivalent diameter$^{[2]}$ is expressed as follows:
 
Firstly, to facilitate the analysis and calculation, all cells was described as spheres corresponding to their corresponding volume equivalent diameters de under the engineering concept (Hypothesis 1). The equivalent diameter$^{[2]}$ is expressed as follows:
  
$$d_e=\sqrt[3]{\frac{6*V_p}{\pi}}\eqno{(1.1.1)}$$
+
$$d_e=\sqrt[3]{\frac{6*V_p}{\pi}} \eqno{(1.1.1)}$$
  
 
Vp: the volume of cells.\\
 
Vp: the volume of cells.\\
Line 22: Line 22:
  
 
$$\frac{\partial c(z,t)}{\partial t}=D*\nabla^2{c(z,t)}\eqno{(1.1.2)}$$
 
$$\frac{\partial c(z,t)}{\partial t}=D*\nabla^2{c(z,t)}\eqno{(1.1.2)}$$
 +
 +
        <script type="text/x-mathjax-config">MathJax.Hub.Config({tex2jax: {inlineMath: [ ['$','$'], ["\\(","\\)"] ],displayMath: [ ['$$','$$'], ["\\[","\\]"] ]}});</script>
 +
        <script type="text/javascript" src="path-to-MathJax/MathJax.js"></script>
 +
        <script type="text/x-mathjax-config">
 +
            var mathId = document.getElementById("post-content"); //选择公式识别范围
 +
MathJax.Hub.Config({
 +
    showProcessingMessages: false, //关闭js加载过程信息
 +
    messageStyle: "none", //不显示信息
 +
    extensions: ["tex2jax.js"],
 +
    jax: ["input/TeX", "output/HTML-CSS"],
 +
    tex2jax: {
 +
        inlineMath: [ ['$','$'], ["\\(","\\)"] ], //行内公式选择符
 +
        displayMath: [ ['$$','$$'], ["\\[","\\]"] ], //段内公式选择符
 +
        skipTags: ['script', 'noscript', 'style', 'textarea', 'pre','code','a'] //避开某些标签
 +
    },
 +
    "HTML-CSS": {
 +
        availableFonts: ["STIX","TeX"], //可选字体
 +
        showMathMenu: false //关闭右击菜单显示
 +
    }
 +
});
 +
MathJax.Hub.Queue(["Typeset",MathJax.Hub,mathId]);
 
</script>
 
</script>
 
         <script type="text/javascript" src="https://cdn.mathjax.org/mathjax/latest/MathJax.js?config=TeX-AMS_HTML,http://myserver.com/MathJax/config/local/local.js"></script>
 
         <script type="text/javascript" src="https://cdn.mathjax.org/mathjax/latest/MathJax.js?config=TeX-AMS_HTML,http://myserver.com/MathJax/config/local/local.js"></script>
 
</body>
 
</body>
 
 
    <div class="footer">
 
    <div class="footer">
 
<div class="footer_bottom">
 
<div class="footer_bottom">

Revision as of 08:10, 20 October 2019

\noindent\rule[0.25\baselineskip]{\textwidth}{1pt} Firstly, to facilitate the analysis and calculation, all cells was described as spheres corresponding to their corresponding volume equivalent diameters de under the engineering concept (Hypothesis 1). The equivalent diameter$^{[2]}$ is expressed as follows: $$d_e=\sqrt[3]{\frac{6*V_p}{\pi}} \eqno{(1.1.1)}$$ Vp: the volume of cells.\\ Secondly, the simple diffusion will reach a equilibrium state as both intracellular and extracellular concentions of inducers are the same. Since the cell volume in the solution occupies a so small proportion that the diffusion of inducers into the cell does not greatly affect the concentration in the whole solution. Therefore, it can be considered that the concentration of extracellular inducers is nearly unchanged (Hypothesis 2).\\ Meanwhile, Fick’s second law$^{[3]}$ shows: $$\frac{\partial c(z,t)}{\partial t}=D*\nabla^2{c(z,t)}\eqno{(1.1.2)}$$