Line 426: | Line 426: | ||
<td style="border: 0px !important;"><img src="https://static.igem.org/mediawiki/2019/a/a0/T--DUT_China_B--1.1.svg" class="img-responsive" alt=""></td> | <td style="border: 0px !important;"><img src="https://static.igem.org/mediawiki/2019/a/a0/T--DUT_China_B--1.1.svg" class="img-responsive" alt=""></td> | ||
</tr> | </tr> | ||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
<tr style="border: 0px !important;"> | <tr style="border: 0px !important;"> | ||
− | <td style="border: 0px !important;"><p style="width:80%;height:100%;position:relative;top:-200px; font-size:1.5rem;font-family: 'Times New Roman' !important; color:white;"> | + | <td style="border: 0px !important;"><p style="width:80%;height:100%;position:relative;top:-200px; font-size:1.5rem;font-family: 'Times New Roman' !important; color:white;">The Design of Molecular Light Converter<br><br>We combined optically polymeric protein with split Ranilla luciferase, realizing the recovery of complete luciferase and the activation of blue light under the control of infrared light. This molecular light converter will produce blue light inside C.Reinhardtii and thus activate the algae.(Check out our Design)</p></td> |
<td style="border: 0px !important;"><img src="https://static.igem.org/mediawiki/2019/6/66/T--DUT_China_B--1.3.svg" class="img-responsive" alt=""></td> | <td style="border: 0px !important;"><img src="https://static.igem.org/mediawiki/2019/6/66/T--DUT_China_B--1.3.svg" class="img-responsive" alt=""></td> | ||
</tr> | </tr> | ||
Line 440: | Line 433: | ||
<td style="border: 0px !important;"><img src="https://static.igem.org/mediawiki/2019/6/67/T--DUT_China_B--1.4.svg" class="img-responsive" alt=""></td> | <td style="border: 0px !important;"><img src="https://static.igem.org/mediawiki/2019/6/67/T--DUT_China_B--1.4.svg" class="img-responsive" alt=""></td> | ||
− | <td style="border: 0px !important;"><p style="width:80%;height:100%;position:relative;top:-200px; font-size:1.5rem;font-family: 'Times New Roman' !important; color:white;"> | + | <td style="border: 0px !important;"><p style="width:80%;height:100%;position:relative;top:-200px; font-size:1.5rem;font-family: 'Times New Roman' !important; color:white;">Application & Human Practices<br><br>Red light controlled C.Reinhardtii can be mainly used as a cell-based miro-robot to work in medical areas. In the meantime, we also hope to extend the application area of it. We interviewed specialist in different fields, exploring the possibility of future utilization. Through public researches, we have learnt about the public acceptance of Chlamydomonas cell robots for medical applications. (Learn more in our HP)</p></td> |
</tr> | </tr> | ||
− | + | <tr style="border: 0px !important;"> | |
+ | <td style="border: 0px !important;"><img src="https://static.igem.org/mediawiki/2019/0/03/T--DUT_China_B--1.2.svg" class="img-responsive" alt=""></td> | ||
+ | <td style="border: 0px !important;"><p style="width:80%;height:100%;position:relative;top:-200px; font-size:1.5rem;font-family: 'Times New Roman' !important; color:white;">Our Achievements<br><br>We extended the motility control of Chlamydomonas, realizing the motility control of C.Reinhaedtii by red light, and showed possibility of further motility control by different lights. We also provided the concept of molecular optical converter. In addition, the method of protein splitting was applied in condition control, which extended the application of protein splitting. (See our Awards)</p></td> | ||
+ | </tr> | ||
</tbody> | </tbody> | ||
</table> | </table> |
Revision as of 14:01, 16 October 2019
We want to achieve red light navigated movement in Chlamydomonas Reinhardtii, making it easier to function as cell micro-robots. With about 10 um size and strong motion ability, C.Reinhartii is the ideal chassis organism for operation.
Applications and Bottlenecks of Cell-based Micro-robots |
|
The Design of Molecular Light Converter |
|
Application & Human Practices |
|
Our Achievements |