Line 1: | Line 1: | ||
<html> | <html> | ||
+ | <!-- 解决官网bug的 CSS --> | ||
<style> | <style> | ||
+ | /*消除官网坑爹样式*/ | ||
+ | body { | ||
+ | margin-top:-6px; | ||
+ | height: 100%; | ||
+ | width: 100%; | ||
+ | } | ||
+ | #HQ_page p { | ||
+ | font-size:16px; | ||
+ | font-family:"微软雅黑"; | ||
+ | } | ||
+ | #globalWrapper{ | ||
+ | margin: 0; | ||
+ | padding: 0; | ||
+ | } | ||
+ | #content{ | ||
+ | width: 100%; | ||
+ | padding: 0; | ||
+ | margin: -12px 0 0; | ||
+ | } | ||
+ | #top_title{ | ||
+ | display: none; | ||
+ | } | ||
+ | #sideMenu{ | ||
+ | display: none; | ||
+ | } | ||
+ | #content, | ||
+ | .vs-content, | ||
+ | .vs-wrapper section { | ||
+ | background-color: transparent !important; | ||
+ | } | ||
+ | </style> | ||
+ | <meta charset="utf-8"> | ||
+ | <meta name="viewport" content="width=device-width, initial-scale=1, shrink-to-fit=no"> | ||
+ | <meta name="description" content=""> | ||
+ | <meta name="author" content=""> | ||
+ | <link href="https://fonts.googleapis.com/css?family=Raleway:100,300,400,500,700,900" rel="stylesheet"> | ||
+ | <link href="https://2019.igem.org/Template:SEU/Home_CSS?action=raw&ctype=text/css" rel="stylesheet" type="text/css"> | ||
+ | <link href="https://2019.igem.org/Template:SEU/Home_CSS2?action=raw&ctype=text/css" rel="stylesheet" type="text/css"> | ||
+ | <header id="header"> | ||
+ | <div class="container-fluid"style="position:fixed;"> | ||
+ | <div class="navbar"> | ||
+ | <a href="#slide01" id="logo" title="SEU"> | ||
+ | SEU | ||
+ | </a> | ||
+ | <div class="navigation-row"> | ||
+ | <nav id="navigation"> | ||
+ | <button type="button" class="navbar-toggle"> <i class="fa fa-bars"></i> </button> | ||
+ | <div class="nav-box navbar-collapse"> | ||
+ | <ul class="navigation-menu nav navbar-nav navbars" id="nav"> | ||
+ | <li class="active"><a href="https://2019.igem.org/Team:SEU">Home</a></li> | ||
+ | <li><a href="https://2019.igem.org/Team:SEU/Team">Team</a> | ||
+ | <div class="popList"> | ||
+ | <a href="https://2019.igem.org/Team:SEU/Team">Team Members</a> | ||
+ | <a href="https://2019.igem.org/Team:SEU/Collaborations">Collaborations</a> | ||
+ | </div> | ||
+ | </li> | ||
+ | <li><a href="https://2019.igem.org/Team:SEU/Description">Project</a> | ||
+ | <div class="popList"> | ||
+ | <a href="https://2019.igem.org/Team:SEU/Description">Description</a> | ||
+ | <a href="https://2019.igem.org/Team:SEU/Design">Design</a> | ||
+ | <a href="https://2019.igem.org/Team:SEU/Experiments">Experiments</a> | ||
+ | <a href="https://2019.igem.org/Team:SEU/Notebook">Notebook</a> | ||
+ | <a href="https://2019.igem.org/Team:SEU/Contribution">Contribution</a> | ||
+ | <a href="https://2019.igem.org/Team:SEU/Results">Results</a> | ||
+ | <a href="https://2019.igem.org/Team:SEU/Demonstrate">Demonstrate</a> | ||
+ | <a href="https://2019.igem.org/Team:SEU/Improve">Improve</a> | ||
+ | <a href="https://2019.igem.org/Team:SEU/Attributions">Attributions</a> | ||
+ | </div> | ||
+ | </li> | ||
+ | <li><a href="https://2019.igem.org/Team:SEU/Parts">Parts</a> | ||
+ | <div class="popList"> | ||
+ | <a href="https://2019.igem.org/Team:SEU/Parts">Parts Overview</a> | ||
+ | <a href="https://2019.igem.org/Team:SEU/Basic_Part">Basic Parts</a> | ||
+ | <a href="https://2019.igem.org/Team:SEU/Composite_Part">Composite Parts</a> | ||
+ | <a href="https://2019.igem.org/Team:SEU/Part_Collection">Part Collection</a> | ||
+ | </div> | ||
+ | </li> | ||
+ | <li><a href="https://2019.igem.org/Team:SEU/Safety">Safety</a></li> | ||
+ | <li><a href="https://2019.igem.org/Team:SEU/Human_Practices">Human Practices</a> | ||
+ | <div class="popList"> | ||
+ | <a href="https://2019.igem.org/Team:SEU/Human_Practices">Human Practices</a> | ||
+ | <a href="https://2019.igem.org/Team:SEU/Public_Engagement">Public Engagement</a> | ||
+ | </div> | ||
+ | </li> | ||
+ | <li><a href="https://2019.igem.org/Team:SEU/Entrepreneurship">Awards</a> | ||
+ | <div class="popList"> | ||
+ | <a href="https://2019.igem.org/Team:SEU/Entrepreneurship">Entrepreneurship</a> | ||
+ | <a href="https://2019.igem.org/Team:SEU/Hardware">Hardware</a> | ||
+ | <a href="https://2019.igem.org/Team:SEU/Measurement">Measurement</a> | ||
+ | <a href="https://2019.igem.org/Team:SEU/Model">Model</a> | ||
+ | <a href="https://2019.igem.org/Team:SEU/Plant">Plant</a> | ||
+ | <a href="https://2019.igem.org/Team:SEU/Software">Software</a> | ||
+ | </div> | ||
+ | </li> | ||
+ | <li><a href="https://igem.org/2019_Judging_Form?team=SEU">Judging Form</a></li> | ||
+ | </ul> | ||
+ | </div> | ||
+ | </nav> | ||
+ | </div> | ||
+ | </div> | ||
+ | </div> | ||
+ | </header> | ||
− | / | + | <video autoplay muted loop id="BGVideo"> |
− | / | + | <source src="https://static.igem.org/mediawiki/2019/b/bf/T--SEU--BGVideo.mp4" type="video/mp4"> |
− | + | </video> | |
− | + | <div id="fullpage" class="fullpage-default"> | |
− | + | <div class="section animated-row" data-section="slide01"> | |
− | + | <div class="section-inner"> | |
− | + | <div class="welcome-box"> | |
− | # | + | <span class="welcome-first animate" data-animate="fadeInUp" style="color:#fff">Welcome to</span> |
− | + | <h1 class="welcome-title animate" data-animate="fadeInUp" style="color:#fff">SEU</h1> | |
− | + | <div class="row justify-content-center"> | |
− | + | <div class="col-md-8"> | |
− | + | <figure class="about-img animate" data-animate="fadeInUp"><img src="https://static.igem.org/mediawiki/2019/7/70/T--SEU--home_tempo.png" class="rounded" alt=""></figure> | |
− | + | </div> | |
− | + | </div> | |
− | + | <br><br> | |
− | + | <div class="scroll-down next-section animate data-animate="fadeInUp"" style="color:#fff"><span>Scroll Down</span><img src="https://static.igem.org/mediawiki/2019/b/b4/T--SEU--scroll.png" alt=""></div> | |
− | + | </div> | |
− | + | </div> | |
− | + | </div> | |
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | # | + | |
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | </ | + | |
− | + | ||
− | + | <div class="section animated-row" data-section="slide02"> | |
− | + | <div class="section-inner"> | |
+ | <div class="about-section"> | ||
+ | <div class="row justify-content-center"> | ||
+ | <div class="col-md-8 wide-col-laptop"> | ||
+ | <div class="row"> | ||
+ | <div class="row justify-content-center"> | ||
+ | <div class="col-md-8"> | ||
+ | <div class="about-contentbox"> | ||
+ | <div class="animate" data-animate="fadeInUp"> | ||
+ | <span style="color:#fff">Project</span> | ||
+ | <h2>Description</h2> | ||
+ | <p>This project is based on one of our previously published article [1]. Artificial intelligence is one prevailing research field in recent years, but most of the implementations are on traditional silicon-based computers or chips. Is it possible to use biochemical materials to implement such systems? Our previous paper provides one possible method, but it is validated by only simulations. In this project, we aim to implement such a system in wet experiments. Also, to aid the design of such systems, we will develop a small software to automatically generate required DNA topological structures.</p> | ||
+ | <p>In our system, the concentrations of some input DNA species will be regarded as the input to the neural network. Some mathematical calculations are performed in solutions (weighted summation, activation, etc.) and the output of the neural network is the concentration of some certain DNA strands, similarly.</p> | ||
+ | <p>There are various possible applications of this technology. For example, as it utilizes only DNA, a type of bio-friendly material, with small modifications it may be integrated to other biosystems to create biochemistry robots.</p> | ||
− | + | <h2>Preliminaries</h2> | |
− | + | <p>DNA strands have been proved a powerful medium to perform computation. Previous researches [2], [3] have shown some interesting applicatoins of such materials, which implemented a "probabilistic switch" and a pattern recognition machine, respectively.</p> | |
− | + | <p>In this project, we plan to utilize a similar approach to conduct our experiment, implement a neural network using biochemical materials and validate our previous theory.</p> | |
− | + | <h2>References</h2> | |
− | + | <p>[1]C. Fang, Z. Shen, Z. Zhang, X. You and C. Zhang, "Synthesizing a Neuron Using Chemical Reactions," 2018 IEEE International Workshop on Signal Processing Systems (SiPS), Cape Town, 2018, pp. 187-192.</p> | |
− | + | <p></p> | |
+ | <p>[2]Wilhelm, Daniel, Jehoshua Bruck, and Lulu Qian. "Probabilistic switching circuits in DNA." Proceedings of the National Academy of Sciences 115.5 (2018): 903-908.</p> | ||
+ | <p></p> | ||
+ | <p>[3]Cherry, Kevin M., and Lulu Qian. "Scaling up molecular pattern recognition with DNA-based winner-take-all neural networks." Nature 559.7714 (2018): 370.</p> | ||
+ | <p></p> | ||
+ | </div> | ||
+ | </div> | ||
+ | </div> | ||
+ | <div class="col-md-8"> | ||
+ | <figure class="about-img animate" data-animate="fadeInUp"><img src="https://static.igem.org/mediawiki/2019/5/5b/T--SEU--descrip.png" class="rounded" alt=""></figure> | ||
+ | </div> | ||
+ | </div> | ||
+ | </div> | ||
+ | </div> | ||
+ | </div> | ||
+ | </div> | ||
+ | </div> | ||
+ | </div> | ||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
+ | </div> | ||
+ | </div> | ||
+ | <script src="https://2019.igem.org/Template:SEU/Home_JS?action=raw&ctype=text/javascript" type="text/javascript"></script> | ||
</html> | </html> |
Revision as of 16:43, 16 September 2019
SEU
Description
This project is based on one of our previously published article [1]. Artificial intelligence is one prevailing research field in recent years, but most of the implementations are on traditional silicon-based computers or chips. Is it possible to use biochemical materials to implement such systems? Our previous paper provides one possible method, but it is validated by only simulations. In this project, we aim to implement such a system in wet experiments. Also, to aid the design of such systems, we will develop a small software to automatically generate required DNA topological structures.
In our system, the concentrations of some input DNA species will be regarded as the input to the neural network. Some mathematical calculations are performed in solutions (weighted summation, activation, etc.) and the output of the neural network is the concentration of some certain DNA strands, similarly.
There are various possible applications of this technology. For example, as it utilizes only DNA, a type of bio-friendly material, with small modifications it may be integrated to other biosystems to create biochemistry robots.
Preliminaries
DNA strands have been proved a powerful medium to perform computation. Previous researches [2], [3] have shown some interesting applicatoins of such materials, which implemented a "probabilistic switch" and a pattern recognition machine, respectively.
In this project, we plan to utilize a similar approach to conduct our experiment, implement a neural network using biochemical materials and validate our previous theory.
References
[1]C. Fang, Z. Shen, Z. Zhang, X. You and C. Zhang, "Synthesizing a Neuron Using Chemical Reactions," 2018 IEEE International Workshop on Signal Processing Systems (SiPS), Cape Town, 2018, pp. 187-192.
[2]Wilhelm, Daniel, Jehoshua Bruck, and Lulu Qian. "Probabilistic switching circuits in DNA." Proceedings of the National Academy of Sciences 115.5 (2018): 903-908.
[3]Cherry, Kevin M., and Lulu Qian. "Scaling up molecular pattern recognition with DNA-based winner-take-all neural networks." Nature 559.7714 (2018): 370.