Difference between revisions of "Team:Mingdao/Description"

 
(47 intermediate revisions by 5 users not shown)
Line 2: Line 2:
 
<html>
 
<html>
 
<head>
 
<head>
  <link rel="stylesheet" href="https://stackpath.bootstrapcdn.com/font-awesome/4.7.0/css/font-awesome.min.css">
 
  <link rel="stylesheet" href="https://maxcdn.bootstrapcdn.com/bootstrap/4.3.1/css/bootstrap.min.css">
 
  <script src="https://ajax.googleapis.com/ajax/libs/jquery/3.4.1/jquery.min.js"></script>
 
  <script src="https://cdnjs.cloudflare.com/ajax/libs/popper.js/1.14.7/umd/popper.min.js"></script>
 
  <script src="https://maxcdn.bootstrapcdn.com/bootstrap/4.3.1/js/bootstrap.min.js"></script>
 
 
</head>
 
</head>
 
<body>
 
<body>
Line 14: Line 9:
  
 
<style>
 
<style>
@-webkit-keyframes bottom-qppear {
+
h5.card-title{
   from {border-bottom: 5px transparent solid;}
+
   font-size: 18px!important;
  to { border-bottom: 5px green solid;}
+
 
}
 
}
 
+
p.card-text {
/* Standard syntax */
+
   font-size: 15px!important;
@keyframes bottom-appear {
+
  from {border-bottom: 5px transparent solid;}
+
  to { border-bottom: 5px green solid;}
+
}
+
.nav-colored { background-color:#000; }
+
.nav-transparent { background-color:transparent;}
+
a.nav-link {
+
   font-size: 20px!important;
+
 
}
 
}
 +
 
p {
 
p {
 
   font-size: 20px!important;
 
   font-size: 20px!important;
 +
  line-height: 1.6;
 
}
 
}
 +
li{
 +
  line-height: 1.6;
 +
}
 +
 
nav ul li {
 
nav ul li {
 
   font-size: 20px!important;
 
   font-size: 20px!important;
Line 45: Line 37:
 
}
 
}
 
h6{
 
h6{
   color:#FFC300!important;
+
   color:#003399!important;
 +
  font-size:20px!important;
 
}
 
}
 
+
h1{
a.nav-link:hover {
+
   color:#007282!important;
   -webkit-animation-name: bottom-appear; /* Safari 4.0 - 8.0 */
+
font-size: 50px!important;
  -webkit-animation-duration: 0.5s; /* Safari 4.0 - 8.0 */
+
  animation-name: bottom-appear;
+
  animation-duration: 0.5s;
+
  border-bottom: 5px green solid;
+
 
}
 
}
 
+
h3{
/* Safari 4.0 - 8.0 */
+
   color: #ff9900!important;
@-webkit-keyframes bottom-qppear {
+
   font-size: 25px!important;
   from {border-bottom: 5px transparent solid;}
+
   to { border-bottom: 5px green solid;}
+
 
}
 
}
 
/* Standard syntax */
 
@keyframes bottom-appear {
 
  from {border-bottom: 5px transparent solid;}
 
  to { border-bottom: 5px green solid;}
 
}
 
 
/* Makes dropdown visible when hovered */
 
.dropdown:hover>.dropdown-menu {
 
  display: block;
 
}
 
 
 
</style>
 
</style>
  
 
<div class="jumbotron jumbotron-fluid m-0 p-0">
 
<div class="jumbotron jumbotron-fluid m-0 p-0">
     <img src="https://static.igem.org/mediawiki/2019/b/ba/T--Mingdao--2.png" class="img-fluid"  
+
     <img src="https://static.igem.org/mediawiki/2019/b/ba/T--Mingdao--2.png" class="img-fluid" style="width:100%">
 
</div>
 
</div>
 
+
</body>
<nav class="navbar navbar-expand-lg navbar-light sticky-top" style="background-color: #c9e8e1;">
+
</html>
  <a class="navbar-brand" href="https://2019.igem.org/Team:Mingdao">
+
{{:Team:Mingdao/navbar}}
    <img src="https://static.igem.org/mediawiki/2019/5/5d/T--Mingdao--logo.png" width="30" height="30" class="d-inline-block align-top" alt="">
+
<html>
    Mingdao
+
<body>
  </a>
+
  <button class="navbar-toggler" type="button" data-toggle="collapse" data-target="#navbarSupportedContent" aria-controls="navbarSupportedContent" aria-expanded="false" aria-label="Toggle navigation">
+
    <span class="navbar-toggler-icon"></span>
+
  </button>
+
 
+
  <div class="collapse navbar-collapse" id="navbarSupportedContent">
+
    <ul class="navbar-nav mr-auto">
+
      <li class="nav-item">
+
        <a class="nav-link" href="https://2019.igem.org/Team:Mingdao">Home <i class="fa fa-home" aria-hidden="true"></i></a>
+
      </li>
+
      <li class="nav-item">
+
        <a class="nav-link" href="https://2019.igem.org/Team:Mingdao/Description">Project <i class="fa fa-file-word-o" aria-hidden="true"></i></a>
+
      </li>
+
      <li class="nav-item">
+
        <a class="nav-link" href="https://2019.igem.org/Team:Mingdao/Demonstrate">Experiment <i class="fa fa-flask" aria-hidden="true"></i></a>
+
      </li>
+
      <li class="nav-item">
+
        <a class="nav-link" href="https://2019.igem.org/Team:Mingdao/Model">Modeling <i class="fa fa-bar-chart" aria-hidden="true"></i></a>
+
      </li>
+
      <li class="nav-item">
+
        <a class="nav-link" href="https://2019.igem.org/Team:Mingdao/Applied_Design">Prototype <i class="fa fa-wrench" aria-hidden="true"></i></a>
+
      </li>
+
      <li class="nav-item">
+
        <a class="nav-link" href="https://2019.igem.org/Team:Mingdao/Achievement">Achievment <i class="fa fa-trophy" aria-hidden="true"></i></a>
+
      </li>
+
      <li class="nav-item dropdown">
+
        <a class="nav-link dropdown-toggle" href="https://2019.igem.org/Team:Mingdao/Parts" id="navbarDropdown" role="button" data-toggle="dropdown" aria-haspopup="true" aria-expanded="false">
+
          Parts <i class="fa fa-puzzle-piece" aria-hidden="true"></i>
+
        </a>
+
        <div class="dropdown-menu" aria-labelledby="navbarDropdown">
+
          <a class="dropdown-item" href="https://2019.igem.org/Team:Mingdao/Basic_Part">Basic Parts</a>
+
          <a class="dropdown-item" href="https://2019.igem.org/Team:Mingdao/Composite_Part">Composite Parts</a>
+
          <a class="dropdown-item" href="https://2019.igem.org/Team:Mingdao/Part_Collection">Part Collection</a>
+
        </div>
+
      </li>
+
      <li class="nav-item dropdown">
+
        <a class="nav-link dropdown-toggle" href="https://2019.igem.org/Team:Mingdao/Notebook" id="navbarDropdown" role="button" data-toggle="dropdown" aria-haspopup="true" aria-expanded="false">
+
          Notebook <i class="fa fa-book" aria-hidden="true"></i>
+
        </a>
+
        <div class="dropdown-menu" aria-labelledby="navbarDropdown">
+
          <a class="dropdown-item" href="https://2019.igem.org/Team:Mingdao/Notebook">Notebook</a>
+
          <a class="dropdown-item" href="https://2019.igem.org/Team:Mingdao/Safety">Safety</a>
+
        </div>
+
      </li>
+
      <li class="nav-item dropdown">
+
        <a class="nav-link dropdown-toggle" href="https://2019.igem.org/Team:Mingdao/Human_Practices" id="navbarDropdown" role="button" data-toggle="dropdown" aria-haspopup="true" aria-expanded="false">
+
          HP <i class="fa fa-handshake-o" aria-hidden="true"></i>
+
        </a>
+
        <div class="dropdown-menu" aria-labelledby="navbarDropdown">
+
          <a class="dropdown-item" href="https://2019.igem.org/Team:Mingdao/Human_Practices">Integrated Human Practices</a>
+
          <a class="dropdown-item" href="https://2019.igem.org/Team:Mingdao/Public_Engagement">Education and Public Engagement</a>
+
          <a class="dropdown-item" href="https://2019.igem.org/Team:Mingdao/Entrepreneurship">Entrepreneurship</a>
+
        </div>
+
      </li>
+
      <li class="nav-item dropdown active">
+
        <a class="nav-link dropdown-toggle" href="#" id="navbarDropdown" role="button" data-toggle="dropdown" aria-haspopup="true" aria-expanded="false">
+
          Team <i class="fa fa-user-circle" aria-hidden="true"></i>
+
        </a>
+
        <div class="dropdown-menu" aria-labelledby="navbarDropdown">
+
          <a class="dropdown-item" href="https://2019.igem.org/Team:Mingdao/Team">Members</a>
+
          <a class="dropdown-item" href="https://2019.igem.org/Team:Mingdao/Attributions">Attributions</a>
+
          <a class="dropdown-item" href="https://2019.igem.org/Team:Mingdao/Collaborations">Collaboration</a>
+
          <a class="dropdown-item" href="https://2019.igem.org/Team:Mingdao/InterLab">Interlab</a>
+
        </div>
+
      </li>
+
 
+
    </ul>
+
  </div>
+
</nav>
+
  
 
<div class="row bg-white">
 
<div class="row bg-white">
Line 165: Line 71:
 
         <div id="problem-m-btn" class="path-dot" style="background-color: rgb(56, 94, 102);"></div>
 
         <div id="problem-m-btn" class="path-dot" style="background-color: rgb(56, 94, 102);"></div>
 
         <div class="pathWord path-word-sm">
 
         <div class="pathWord path-word-sm">
           <p>Problem</p>
+
           <p>Inspiration</p>
 
         </div>
 
         </div>
 
         </div>
 
         </div>
Line 177: Line 83:
 
         <div id="current-c-btn" class="path-dot" style="top: 100px; background-color: rgb(255, 255, 255);"></div>
 
         <div id="current-c-btn" class="path-dot" style="top: 100px; background-color: rgb(255, 255, 255);"></div>
 
         <div class="pathWord path-word-sm">
 
         <div class="pathWord path-word-sm">
           <p>Current Method</p>
+
           <p>Our Goal</p>
 
         </div>
 
         </div>
 
         </div>
 
         </div>
Line 189: Line 95:
 
         <div id="experi-c-btn" class="path-dot" style="top: 200px; background-color: rgb(255, 255, 255);"></div>
 
         <div id="experi-c-btn" class="path-dot" style="top: 200px; background-color: rgb(255, 255, 255);"></div>
 
         <div class="pathWord path-word-sm">
 
         <div class="pathWord path-word-sm">
           <p>Experiment Design</p>
+
           <p>Scientific Inquiry</p>
 
         </div>
 
         </div>
 
         </div>
 
         </div>
Line 201: Line 107:
 
         <div id="expect-s-btn" class="path-dot" style="top: 300px; background-color: rgb(255, 255, 255);"></div>
 
         <div id="expect-s-btn" class="path-dot" style="top: 300px; background-color: rgb(255, 255, 255);"></div>
 
         <div class="pathWord path-word-sm">
 
         <div class="pathWord path-word-sm">
           <p>Expected Result</p>
+
           <p>Prospect</p>
 
         </div>
 
         </div>
 
         </div>
 
         </div>
Line 212: Line 118:
 
         <div id="sign-t-btn" class="path-dot" style="top: 400px; background-color: rgb(255, 255, 255);"></div>
 
         <div id="sign-t-btn" class="path-dot" style="top: 400px; background-color: rgb(255, 255, 255);"></div>
 
         <div class="pathWord path-word-sm">
 
         <div class="pathWord path-word-sm">
           <p>Signification</p>
+
           <p>Reference</p>
 
         </div>
 
         </div>
 
         </div>
 
         </div>
Line 219: Line 125:
 
        
 
        
 
<div class="col-8 my-5 mr-5 ml-0">
 
<div class="col-8 my-5 mr-5 ml-0">
   <h1 id ="d-problem">Problem</h1>
+
   <h1 id ="d-problem">Inspiration</h1>
   <p>High concentration of carbon dioxide in enclosed space make people feel sleepy and even dizzy. This can even result in
+
   <p>In our hometown, Taiwan, the color of the sky often turns gray. The amount of PM2.5, which gradually gains attention, is not just a local problem but also a global issue. Those who are sensitive to air pollution usually feel uncomfortable and have to wear a mask all the time. To avoid that many people started to go indoors. However, indoor air quality was proved to be 10 times worse than outdoors but is still often ignored. In addition, people nowadays stay indoors more often. Thus, it’s crucial to solve these problems and do human practices to raise the awareness of indoor air quality. </p>
  <ol>
+
<h3><strong>Indoor Air Quality</strong></h3>
  <li>students falling asleep during class</li>
+
<p>Poor air quality significantly affects our daily lives. Gases, chemicals, and other pollutants in the air can cause headaches, eye irritations, allergies, fatigue, etc. The direct way to improve indoor air quality is to simply open the windows, but sometimes the air outdoors is even worse than the air indoors, and therefore we cannot open the window in these kinds of situations due to a plentiful amount of pollutants such as toxic gases and PM (particulate matter) particles outdoors. </p>
  <li>drivers falling asleep, causing accidents to happen</li>
+
 
  </ol>
+
<h3><strong>Air Purifiers</strong></h3>
  </p>
+
<p>The air purifiers can help a little by filtering some of these particles, but there are still issues on the filtration of CO2 and toxic gases such as volatile organic compounds (VOCs), as air purifiers cannot remove all of them through filtration. </p>
 
+
 
  <h1>Carbon Dioxide Analysis</h1>
+
<h3><strong>Investiations on CO2, VOCs, and their effects</strong></h3>
  <p>In order to prove the seriousness , we measured the CO​2​ concentration in enclosed spaces and analyzed the results.<br>
+
<p> CO2 and certain VOCs can hardly be dealt with through air purifiers and can cause problems to our health. High CO2 concentration indoors has an adverse effect on human performances, while a small amount of VOCs can easily cause a negative impact on us.
  If the concentration of CO​2​ is between:
+
</p>
 +
<br>
 +
<p>We measured the CO2 concentrations in common places indoors and learned a lot about how people feel about indoor air quality through human practices research.
 +
</p>
 +
 
 
   <ul>
 
   <ul>
     <li>350~1000 ppm, the air is fresh.</li>
+
     <li>450~700 ppm: the air is fresh, and doesn’t cause any effects to people</li>
     <li>1000~2000 ppm, people can sense that the air is turbid and start feeling drowsy.</li>
+
    <li>700~1000 ppm: people are more likely to get dissatisfied and brain stiffnesses </li>
     <li>2000~5000 ppm, people get headache,lethargy, sluggishness, heart beat hasten, and mild nausea. </li>
+
     <li>1000~2500 ppm: people can already sense that the air is turbid and feel drowsy </li>
     <li>above 5000 ppm, it may cause severe hypoxia or coma...</li>
+
     <li>2500~5000 ppm: people can get headache, lethargy, sluggishness, heartbeat hasten, and mild nausea</li>
 +
     <li>above 5000 ppm: it may cause severe hypoxia or coma</li>
 
   </ul>
 
   </ul>
  </p>
 
<div class="row">
 
  <div class="col-6">
 
    <img class="right" src="https://static.igem.org/mediawiki/2019/d/dc/T--Mingdao--Description-P1.jpeg" alt="" style="width:100%">
 
    <p style="text-align: center;">Figure(1)</p>
 
  </div>
 
 
    
 
    
  <div class="col-6">
+
<p> CO2 concentration analysis in common areas of our daily lives (e.g., the classroom, auditorium, table-tennis room, school bus, gym and the vehicle) was presented on the Human Practices page. <br>
    <p>Figure (1) is the result of our measurement in a simple single room (only one person is in the enclosed space with the air condition on.) According to the graph, the concentration had reached 1000 ppm in an hour. While the subject felt asleep, it slowly declined (We speculated that CO​2​ may leak out from the gaps, and the rate of venting is greater than the rate of producing.) It was untill the next day, the speed of breathing went back to normal.</p>
+
<br>
  </div>
+
As for VOCs such as benzene and chloroform, even a little of them will cause eye, nose and throat irritation, while if inhaled excess amount of them will cause damage to the liver, kidney and central nervous system. A brief exposure to 3000 ppm of benzene will lead to headache, 10000~20000 ppm will result in confusion and an increased heart rate, and prolonged exposure may cause death. Accordingly, the indoor concentrations of benzene are 3-4 times compared to outdoor concentrations. This is a crucial problem in our lives because people spend more time indoors nowadays.
  <div class="col-6">
+
<br>
  <p>Figure(2) is the result in a regular car with four people in. In eleven minutes, the concentration in the car had increased from 2353 ppm to 4660 ppm.The result shows if staying in a unventilated room for a long time will have bad influences to our health. (the more people there are, the more CO​2​ is produced.It may increase the rate of CO​2​ production and make the problem even worse.)The problem of excessive CO​2​ concentration is indeed widely exists in our daily life and may have badly influenced our health.So it is important for people to solve these problems.  
+
The problem of excessive CO​2 and VOCs​ indoors is indeed existing in our daily life and may have severely influenced our health, so we must come up with a solution to solve this problem.
  </p>
+
</p>
  </div>
+
<div class="col-6">
+
<p>
+
<img class="center" src="https://static.igem.org/mediawiki/2019/b/b2/T--Mingdao--Description-P2.jpeg" alt="" style="width:100%">
+
<p style="text-align: center;">Figure(2)
+
</div>
+
  
<h1  id="d-current">Current method</h1>
+
 
 +
<h1  id="d-current">Our Goal</h1>
 +
<h3><strong>Current way to reduce CO2/VOCs concentration</strong></h3>
 
<p>
 
<p>
We have gone to National Chung Hsing University, Taichung, Taiwan to search for current methods and come up with a better way.
+
We consulted experts in order for us to understand the current methods to reduce CO2/VOCs concentration. We went to meet the professors in National Chung Hsing University and Tunghai University to find out the physical and chemical methods, respectively. We also invited an expert in algae culture from biotech industry to have a discussion with us to discover the biological approach in dealing with this issue.
  
<img class="center" src="https://static.igem.org/mediawiki/2019/6/65/T--Mingdao--Description-P3.jpeg" alt="" style="width:60%">
 
  
<h6>Physics-Physical absorption: </h6>
+
<h6><strong>Physical absorption:</strong></h6>
<ul>
+
<p>One of the current physical ways is utilizing organic solvents like propylene carbonate, and using solid absorbents such as carbon or Zeolite to absorb CO2 pr VOCs. The methods aren't feasible due to the demand of much energy and high temperature during the process of absorption and desorption. In addition, the materials have a limited regeneration time because of the corrosion by oxidative solvents.</p>
  <li>Using organic or inorganic solvents(For example: Propylene Carbonate,, and ocean water.) as absorbents</li>
+
  <li>Using solid absorbents, such as carbon or Zeollte to absorb carbon dioxide</li>
+
  <li>Disadvantages:
+
  <ol>
+
  <li>The absorption is deteriorated due to the sulfide, causing the number of regeneration to lessen.</li>
+
  <li>The absorption isn't effective </li>
+
  </ol>
+
  </li>
+
</ul>
+
  
<h6>Chemistry-​Chemical absorption:</h6>
+
<h6><strong>Chemical absorption:</strong></h6>
<ul>
+
<p>The chemical materials with CO2/ VOCs-binding or -holding capacities are used to capture solvents including monoethanolamine, potassium carbonate and chilled ammonia, etc. The complexity of the system makes it difficult to achieve a consistent and optimal performance.
  <li>The chemical reaction between the absorbent and carbon dioxide is used to recycle CO​2​,and the reverse reaction is used to regenerate the absorbent.</li>
+
  <li>Disadvantage: There are many operational variables, making it more cumbersome to operate.</li>
+
</ul>
+
<h6>Biology-Biological absorption:</h6>
+
<div class="col-12 p-0 m-0">
+
<ul>
+
<li>Taking advantage of photosynthesis in plants.</li>
+
<li>Disadvantages:
+
  <ol>
+
    <li>The efficiency is low</li>
+
    <li>The caring is time-consuming.</li>
+
    <li>The growing condition of the plants are unpredictable</li>
+
  </ol>
+
</li>
+
</ul>
+
</div>
+
<h6>Our approach:</h6>
+
<p>Since the solubility of CO​2​ is low in water, we combine biology and chemistry method, inserting the gene that can produce carbonic anhydrase(CA, which can increase the solubility of CO​2​ in water) into ​<I>bacillus subtilis</I>. T​hen use light and high photosynthesis efficiency algae to purify the water quality.
+
 
</p>
 
</p>
  
<h6>Comparison:</h6>
+
<h6><strong>Biological absorption:</strong></h6>
<p>
+
<p>The biological way is to take advantage of photosynthesis in plants or microalgae but with limited efficiency. Some kinds of indoor potted plants are found and can remove VOCs, but very slowly.
Physics and chemical methods must be done in lab, while our approach can be used in any place. The physics method needs very large space in the application place especially, comparing to our device, it’s light and portable.</p>
+
<br>
 +
The table below shows the advantages and disadvantages of current methods and a comparison to our idea in this project.
 +
</p>
  
<table class="table">
+
<center><img src="https://static.igem.org/mediawiki/2019/0/08/T--Mingdao--project11.png" alt="" style="width:800px;"></center>
  <thead class="thead-light">
+
<p>Compared to other absorption approaches, our product can reduce CO2 and VOCs concentration efficiently, which is a function that traditionl air purifiers don't have, and it only requires little space and power.</p>
    <tr>
+
      <th scope="col">#</th>
+
      <th scope="col"> Requirement </th>
+
      <th scope="col"> Advantage </th>
+
      <th scope="col"> Disadvantage </th>
+
    </tr>
+
  </thead>
+
  <tbody>
+
    <tr>
+
      <th scope="row">Physical absorption</th>
+
      <td>(1) high pressure</br>(2) low temperature</td>
+
      <td>(1) can be used again</br>(2) the higher the pressure is, (low temperature) the higher the efficiency is</td>
+
      <td>(1) demand is difficult to meet</br>(2) only suitable for places with high CO2 pressure</td>
+
    </tr>
+
    <tr>
+
      <th scope="row">Chemical absorption</th>
+
      <td>chemicals</td>
+
      <td>high efficiency</td>
+
      <td>(1) can’t be used repeatedly</br>(2) by products is corrosive</td>
+
    </tr>
+
    <tr>
+
      <th scope="row">Biological absorption</th>
+
      <td>(1) sunlight</br>(2) air </br>(3) water</td>
+
      <td>(1) environmental friendly</br>(2) low risk</td>
+
      <td>(1) low efficiency</br>(2) caring is required</td>
+
    </tr>
+
    <tr>
+
      <th scope="row">Our approach</th>
+
      <td> electricity </td>
+
      <td>(1) portable</br>(2) easy to clean</br>(3) increasing the solubility of CO​2 ​in water</td>
+
      <td>need to clean every day</td>
+
    </tr>
+
  </tbody>
+
</table>
+
  
 +
<h3><strong>Our approach in Synthetic Biology - Microalgae Purification System with Bio-active Enzymes</strong></h3>
 +
<p>We thought about applying synthetic biology to develop a photobioreactor system consisting of microalgae (or cyanobacteria) with a few kinds of enzymes produced by genetically engineered Bacillus subtilis. The system is more efficient in improving indoor air quality than traditional air purifiers which are unable to remove CO2 and VOCs. </p>
  
<h1  id="d-experi">Experiment design </h1>
+
        <center><img src="https://static.igem.org/mediawiki/2019/6/6a/T--Mingdao--project12.png" alt="" style="width:800px;"></center>
<p>
+
We use Bacillus to secrete enzymes out of the bacteria to achieve continuous production of CA enzyme without destroying the cell wall. As for algae, we choose cyanobacteria to match the appropriate temperature and illuminance to achieve better result. </p>
+
  
<h6>Procedure:</h6>
+
<h1  id="d-experi">Scientific Inquiry For Our Project </h1>
 
<ol>
 
<ol>
  <li>Insert the gene that can produce carbonic anhydrase(CA) into ​<I>bacillus subtilis​</I></Ii>
+
  <li class="mt-5"> <strong>Plants perform poorer photosynthesis and CO2 fixation rate than microalgae. The plants also take up a lot of space. </strong>
  <li>Use light and high photosynthesis efficiency algae to purify the water quality.</Ii>
+
        <center><img src="https://static.igem.org/mediawiki/2019/4/4b/T--Mingdao--project13.png" alt="" style="width:700px;"></center>
 +
          <br>We did some research about indoor plants to reduce CO2. But after some calculations, we obtained 2777 potted plants needed for the CO2 exhaled by one person at any time.
 +
  </li>
 +
  <li class="mt-5"><strong>Micro-algae can remove CO2 with higher efficiency but still has a wide space demand.  </strong>
 +
        <center><img src="https://static.igem.org/mediawiki/2019/1/1c/T--Mingdao--re1.png" alt="" style="width:700px;"></center>
 +
      <br>In order to figure out the efficiency of CO2 removal with microalgae, we studied the related papers and got the number of 16 m<sup>2</sup>/day/person. It’s not feasible to build up such a volume for one person in a limited space.
 +
  </li>
 +
  <li class="mt-5"><strong>Thinking based on Synthetic Biology theories, we searched for enzymes to facilitate the microalgae purification system.  </strong>
 +
      <ul>
 +
<li><strong>Carbonic anhydrase (CA): </strong>CA is an enzyme that catalyzes the reaction of converting gaseous CO2 to dissolved bicarbonate, which can easily be taken up by microalgae in the culture media. <br>
 +
<center><img src="https://static.igem.org/mediawiki/2019/0/08/T--Mingdao--project14.png" alt="" style="width:600px;"></center>
 +
</li>
 +
<li><strong>Cytochrome P450 2E1 (CYP2E1): </strong>CYP2E1 can break down benzene and chloroform (i.e., VOCs) to small molecules such as phenol and CO2, respectively, which can be absorbed and metabolized by microalgae.</li>
 +
</ul>
 +
<center><img src="https://static.igem.org/mediawiki/2019/f/f9/T--Mingdao--project15.png" alt="" style="width:800px;"></center>
 +
  </li>
 +
  <li class="mt-5"><strong>Make like an iGEMer.  </strong>We plan to genetically engineer Bacillus subtilis 168, which is a GRAS (Generally Recognized as Safe (GRAS)) strain. We design a BioBrick with genes of GFP, CA and CYP2E1 under Bacillus promoter of PliaI, which can be controlled and induced by bacitracin. We construct the expression cassette onto pSB1C3 as BioBrick parts and onto pBS0E as a replicative plasmid in Bacillus subtilis.  
 +
<center><img src="https://static.igem.org/mediawiki/2019/a/ab/T--Mingdao--project16.png" alt="" style="width:800px;"></center>
 +
<br>Furthermore, we will use the Bacillus total lysates as biocatalysts instead of the purified proteins because of its ability to lower the technical difficulty and reduce the cost of production. </li>
 
</ol>
 
</ol>
<div class="row" style="width:500px;">
 
<div class="col-12">
 
<h1>Gene cloning</h1>
 
</div></div>
 
<div class="col-12 p-0 m-0">
 
<h6>Part collection:</h6>
 
</div>
 
<p><strong>pBS0EP​liaI ​ promoter / pBS0E </strong></br>
 
  <strong>BGSCID: ​<a href="http://www.bgsc.org/getdetail.php?bgscid=ECE742">ECE742</a></strong></br>
 
PliaI is an inducible promoter from B. subtilis, and it was first developed in <a href="https://www.ncbi.nlm.nih.gov/pubmed/24295448">The Bacillus BioBrick Box 2.0​</a>.We have got this part from BGSC(​<a href="http://www.bgsc.org/">http://www.bgsc.org/​</a>).</br>
 
<br>
 
<strong>shine dalgarno / pSB1C3</strong></br>
 
Sequence:AAAGGAGGAA</br>
 
It’s within the primer we designed to replicate the CA (Synpcc1792_1388 & Sypcc1447) sequence.</br>
 
<br>
 
<strong>CA (​<a href="https://www.genome.jp/dbget-bin/www_bget?syf:Synpcc7942_1388">Synpcc7942_1388​ </a>& ​<a href="https://www.genome.jp/dbget-bin/www_bget?syf:Synpcc7942_1447">Synpcc7942_1447​</a>)</strong></br>
 
We have got the algae which has the CA sequence from National Chiao Tung University, Taiwan. With PCR(Polymerase chain reaction), the CA part is able to connect with the primer. To compare the different rate of dissolving carbon dioxide, we used Synpcc7942_1388 & Synpcc7942_1447 sequence respectively.</br>
 
<br>
 
<strong>Terminator / pSB1C3 </strong></br>
 
<strong>part: ​<a href="http://parts.igem.org/Part:BBa_B0015">BBa_B0015</a></strong></br>
 
This is the most commonly used terminator in gene cloning with the consisting of Double terminator BBa_B0010 and BBa_B0012. We also get this part from iGEM Jamboree in its Spring 2019 Distribution-2019 Kit Plate 3.
 
</br>
 
<img class="center" src="https://static.igem.org/mediawiki/2019/c/ca/T--Mingdao--Description-P4.jpeg" alt="" style="width:60%">
 
</p>
 
<div class="col-12 p-0 m-0">
 
  
<h1  id="d-expect">Expected results</h1>
 
</div>
 
<ul>
 
<li> reduce the concentration of CO​2​ in enclosed space efficiently</li>
 
<li>portable</li>
 
<li>moderately sized</li>
 
<li>intelligence control is available (IoT)</li>
 
<li>algae in the device can be used again</li>
 
</ul>
 
<div class="col-12 p-0 m-0">
 
<h1>Conclusion </h1>
 
</div>
 
<p>
 
In order to solve the high concentration of carbon dioxide in enclosed space, we invented our product to deal with the problem simply (without special equipments). The followings are the methods and the advantages of our device.
 
</p>
 
  
<h1>Application </h1>
+
<h1 id="d-expect">Prospect</h1>
<p>
+
<p>In the future, we will put more efforts on making more multifunctional enzymes to remove other indoor air pollutants to make indoor air fresh.</p>
Since our device is portable, it can be used everywhere.The followings are the places that often contains high CO​2 ​concentration and can be easily improve by using our device.<ul>
+
  <li>public transportation</li>
+
  <li>classroom</li>
+
  <li>gym</li>
+
  <li>office</li>
+
  <li>cafeteria</li>
+
  <li>house</li>
+
</ul>
+
<div class="col-12 p-0 m-0">
+
<h1 id="d-sign">Signification</h1>
+
</div>
+
<ul>
+
  <li>Differ from physics or chemistry way, our product can work without special experimental equipments </li>
+
  <li>Portable and can be used everywhere </li>
+
  <li>The device operates in a circulation way and is easy to clean up </li>
+
  <li>The algae we produce can be used in different aspects(ex.fertilizer) </li>
+
  <li>Improve indoor air quality in an environmentally friendly way </li>
+
</ul>
+
<div class="col-12 p-0 m-0">
+
<h1>Product design </h1>
+
</div>
+
  
<img class="center" src="https://static.igem.org/mediawiki/2019/3/39/T--Mingdao--Description-P5.jpeg" alt="" style="width:80%; height:85%;">
+
<h1 id="d-sign">Reference</h1>
  
</br>
+
<ol>
<div class="col-12 p-0 m-0">
+
  <li>Chen, P.H., Liu, H.L., Chen, Y.J., Cheng, H., Lin, W.L., Yeh, C.H., Chang, C.H., 2012. Enhancing CO2 bio-mitigation by genetic engineering of cyanobacteria. Energy and Environmental Science 5, 8318–8327.
<h1>Reference </h1>
+
</li>
</div>
+
  <li>Satish, Usha, et al. “Is CO2an Indoor Pollutant? Direct Effects of Low-to-Moderate CO2Concentrations on Human Decision-Making Performance.” Environmental Health Perspectives, vol. 120, no. 12, 2012, pp. 1671–1677., doi:10.1289/ehp.1104789.
<p>
+
</li>
Chen, P.H., Liu, H.L., Chen, Y.J., Cheng, H., Lin, W.L., Yeh, C.H., Chang, C.H., 2012. Enhancing CO2 bio-mitigation by genetic engineering of cyanobacteria. Energy and Environmental Science 5, 8318–8327.
+
  <li>“Volatile Organic Compounds' Impact on Indoor Air Quality.” EPA, Environmental Protection Agency, 6 Nov. 2017, https://www.epa.gov/indoor-air-quality-iaq/volatile-organic-compounds-impact-indoor-air-quality.
</p>
+
</li>
 +
  <li>“Agency for Toxic Substances and Disease Registry.” Centers for Disease Control and Prevention, Centers for Disease Control and Prevention, https://www.atsdr.cdc.gov/.
 +
</li>
 +
  <li>a SELECTED POLLUTANTS - Euro.who.int. http://www.euro.who.int/__data/assets/pdf_file/0009/128169/e94535.pdf.
 +
</li>
 +
<li>Carbon Dioxide Capture by Chemical Absorption: A Solvent Comparison Study
 +
</li>
 +
<li>Ozturk, B., and D. Yilmaz. “Absorptive Removal of Volatile Organic Compounds from Flue Gas Streams.” Process Safety and Environmental Protection, vol. 84, no. 5, 2006, pp. 391–398., doi:10.1205/psep05003.
 +
</li>
 +
<li>Study of the removal difference in indoor particulate matter and volatile organic compounds through the application of plants</li>
 +
</ol>
  
 
</div>
 
</div>
Line 430: Line 238:
 
     $("#problem-m-btn").click(function() {
 
     $("#problem-m-btn").click(function() {
 
       $('html, body').animate({
 
       $('html, body').animate({
           scrollTop: $("#d-problem").offset().top-100
+
           scrollTop: $("#d-problem").offset().top-70
 
       }, 700);
 
       }, 700);
 
     });
 
     });
 
     $("#current-c-btn").click(function() {
 
     $("#current-c-btn").click(function() {
 
       $('html, body').animate({
 
       $('html, body').animate({
           scrollTop: $("#d-current").offset().top-100
+
           scrollTop: $("#d-current").offset().top-70
 
       }, 700);
 
       }, 700);
 
     });
 
     });
 
     $("#experi-c-btn").click(function() {
 
     $("#experi-c-btn").click(function() {
 
       $('html, body').animate({
 
       $('html, body').animate({
           scrollTop: $("#d-experi").offset().top-100
+
           scrollTop: $("#d-experi").offset().top-70
 
       }, 700);
 
       }, 700);
 
     });
 
     });
 
     $("#expect-s-btn").click(function() {
 
     $("#expect-s-btn").click(function() {
 
       $('html, body').animate({
 
       $('html, body').animate({
           scrollTop: $("#d-expect").offset().top-100
+
           scrollTop: $("#d-expect").offset().top-70
 
       }, 700);
 
       }, 700);
 
     });
 
     });
 
     $("#sign-t-btn").click(function() {
 
     $("#sign-t-btn").click(function() {
 
       $('html, body').animate({
 
       $('html, body').animate({
           scrollTop: $("#d-sign").offset().top-100
+
           scrollTop: $("#d-sign").offset().top-70
 
       }, 700);
 
       }, 700);
 
     });
 
     });
Line 463: Line 271:
 
             scroll_pos = $(this).scrollTop();
 
             scroll_pos = $(this).scrollTop();
  
             d_problem_pos = $("#d-problem").offset().top-101
+
             d_problem_pos = $("#d-problem").offset().top-75
             d_current_pos = $("#d-current").offset().top-101
+
             d_current_pos = $("#d-current").offset().top-75
             d_experi_pos = $("#d-experi").offset().top-101
+
             d_experi_pos = $("#d-experi").offset().top-75
             d_expect_pos = $("#d-expect").offset().top-101
+
             d_expect_pos = $("#d-expect").offset().top-75
             d_sign_pos = $("#d-sign").offset().top-101
+
             d_sign_pos = $("#d-sign").offset().top-75
  
 
             // experiment
 
             // experiment

Latest revision as of 03:50, 22 October 2019

Inspiration

Our Goal

Scientific Inquiry

Prospect

Reference

Inspiration

In our hometown, Taiwan, the color of the sky often turns gray. The amount of PM2.5, which gradually gains attention, is not just a local problem but also a global issue. Those who are sensitive to air pollution usually feel uncomfortable and have to wear a mask all the time. To avoid that many people started to go indoors. However, indoor air quality was proved to be 10 times worse than outdoors but is still often ignored. In addition, people nowadays stay indoors more often. Thus, it’s crucial to solve these problems and do human practices to raise the awareness of indoor air quality.

Indoor Air Quality

Poor air quality significantly affects our daily lives. Gases, chemicals, and other pollutants in the air can cause headaches, eye irritations, allergies, fatigue, etc. The direct way to improve indoor air quality is to simply open the windows, but sometimes the air outdoors is even worse than the air indoors, and therefore we cannot open the window in these kinds of situations due to a plentiful amount of pollutants such as toxic gases and PM (particulate matter) particles outdoors.

Air Purifiers

The air purifiers can help a little by filtering some of these particles, but there are still issues on the filtration of CO2 and toxic gases such as volatile organic compounds (VOCs), as air purifiers cannot remove all of them through filtration.

Investiations on CO2, VOCs, and their effects

CO2 and certain VOCs can hardly be dealt with through air purifiers and can cause problems to our health. High CO2 concentration indoors has an adverse effect on human performances, while a small amount of VOCs can easily cause a negative impact on us.


We measured the CO2 concentrations in common places indoors and learned a lot about how people feel about indoor air quality through human practices research.

  • 450~700 ppm: the air is fresh, and doesn’t cause any effects to people
  • 700~1000 ppm: people are more likely to get dissatisfied and brain stiffnesses
  • 1000~2500 ppm: people can already sense that the air is turbid and feel drowsy
  • 2500~5000 ppm: people can get headache, lethargy, sluggishness, heartbeat hasten, and mild nausea
  • above 5000 ppm: it may cause severe hypoxia or coma

CO2 concentration analysis in common areas of our daily lives (e.g., the classroom, auditorium, table-tennis room, school bus, gym and the vehicle) was presented on the Human Practices page.

As for VOCs such as benzene and chloroform, even a little of them will cause eye, nose and throat irritation, while if inhaled excess amount of them will cause damage to the liver, kidney and central nervous system. A brief exposure to 3000 ppm of benzene will lead to headache, 10000~20000 ppm will result in confusion and an increased heart rate, and prolonged exposure may cause death. Accordingly, the indoor concentrations of benzene are 3-4 times compared to outdoor concentrations. This is a crucial problem in our lives because people spend more time indoors nowadays.
The problem of excessive CO​2 and VOCs​ indoors is indeed existing in our daily life and may have severely influenced our health, so we must come up with a solution to solve this problem.

Our Goal

Current way to reduce CO2/VOCs concentration

We consulted experts in order for us to understand the current methods to reduce CO2/VOCs concentration. We went to meet the professors in National Chung Hsing University and Tunghai University to find out the physical and chemical methods, respectively. We also invited an expert in algae culture from biotech industry to have a discussion with us to discover the biological approach in dealing with this issue.

Physical absorption:

One of the current physical ways is utilizing organic solvents like propylene carbonate, and using solid absorbents such as carbon or Zeolite to absorb CO2 pr VOCs. The methods aren't feasible due to the demand of much energy and high temperature during the process of absorption and desorption. In addition, the materials have a limited regeneration time because of the corrosion by oxidative solvents.

Chemical absorption:

The chemical materials with CO2/ VOCs-binding or -holding capacities are used to capture solvents including monoethanolamine, potassium carbonate and chilled ammonia, etc. The complexity of the system makes it difficult to achieve a consistent and optimal performance.

Biological absorption:

The biological way is to take advantage of photosynthesis in plants or microalgae but with limited efficiency. Some kinds of indoor potted plants are found and can remove VOCs, but very slowly.
The table below shows the advantages and disadvantages of current methods and a comparison to our idea in this project.

Compared to other absorption approaches, our product can reduce CO2 and VOCs concentration efficiently, which is a function that traditionl air purifiers don't have, and it only requires little space and power.

Our approach in Synthetic Biology - Microalgae Purification System with Bio-active Enzymes

We thought about applying synthetic biology to develop a photobioreactor system consisting of microalgae (or cyanobacteria) with a few kinds of enzymes produced by genetically engineered Bacillus subtilis. The system is more efficient in improving indoor air quality than traditional air purifiers which are unable to remove CO2 and VOCs.

Scientific Inquiry For Our Project

  1. Plants perform poorer photosynthesis and CO2 fixation rate than microalgae. The plants also take up a lot of space.

    We did some research about indoor plants to reduce CO2. But after some calculations, we obtained 2777 potted plants needed for the CO2 exhaled by one person at any time.
  2. Micro-algae can remove CO2 with higher efficiency but still has a wide space demand.

    In order to figure out the efficiency of CO2 removal with microalgae, we studied the related papers and got the number of 16 m2/day/person. It’s not feasible to build up such a volume for one person in a limited space.
  3. Thinking based on Synthetic Biology theories, we searched for enzymes to facilitate the microalgae purification system.
    • Carbonic anhydrase (CA): CA is an enzyme that catalyzes the reaction of converting gaseous CO2 to dissolved bicarbonate, which can easily be taken up by microalgae in the culture media.
    • Cytochrome P450 2E1 (CYP2E1): CYP2E1 can break down benzene and chloroform (i.e., VOCs) to small molecules such as phenol and CO2, respectively, which can be absorbed and metabolized by microalgae.
  4. Make like an iGEMer. We plan to genetically engineer Bacillus subtilis 168, which is a GRAS (Generally Recognized as Safe (GRAS)) strain. We design a BioBrick with genes of GFP, CA and CYP2E1 under Bacillus promoter of PliaI, which can be controlled and induced by bacitracin. We construct the expression cassette onto pSB1C3 as BioBrick parts and onto pBS0E as a replicative plasmid in Bacillus subtilis.

    Furthermore, we will use the Bacillus total lysates as biocatalysts instead of the purified proteins because of its ability to lower the technical difficulty and reduce the cost of production.

Prospect

In the future, we will put more efforts on making more multifunctional enzymes to remove other indoor air pollutants to make indoor air fresh.

Reference

  1. Chen, P.H., Liu, H.L., Chen, Y.J., Cheng, H., Lin, W.L., Yeh, C.H., Chang, C.H., 2012. Enhancing CO2 bio-mitigation by genetic engineering of cyanobacteria. Energy and Environmental Science 5, 8318–8327.
  2. Satish, Usha, et al. “Is CO2an Indoor Pollutant? Direct Effects of Low-to-Moderate CO2Concentrations on Human Decision-Making Performance.” Environmental Health Perspectives, vol. 120, no. 12, 2012, pp. 1671–1677., doi:10.1289/ehp.1104789.
  3. “Volatile Organic Compounds' Impact on Indoor Air Quality.” EPA, Environmental Protection Agency, 6 Nov. 2017, https://www.epa.gov/indoor-air-quality-iaq/volatile-organic-compounds-impact-indoor-air-quality.
  4. “Agency for Toxic Substances and Disease Registry.” Centers for Disease Control and Prevention, Centers for Disease Control and Prevention, https://www.atsdr.cdc.gov/.
  5. a SELECTED POLLUTANTS - Euro.who.int. http://www.euro.who.int/__data/assets/pdf_file/0009/128169/e94535.pdf.
  6. Carbon Dioxide Capture by Chemical Absorption: A Solvent Comparison Study
  7. Ozturk, B., and D. Yilmaz. “Absorptive Removal of Volatile Organic Compounds from Flue Gas Streams.” Process Safety and Environmental Protection, vol. 84, no. 5, 2006, pp. 391–398., doi:10.1205/psep05003.
  8. Study of the removal difference in indoor particulate matter and volatile organic compounds through the application of plants