Difference between revisions of "Team:Cornell/Model"

 
(16 intermediate revisions by the same user not shown)
Line 1: Line 1:
{{Cornell}}
 
 
<html>
 
<html>
 +
<head>
 +
<style>
 +
        /* hides "Team:Cornell" and iGEM logo */
 +
        #top_title {
 +
            display: none;
 +
        }
  
 +
        /* removes padding below footer */
 +
        #globalWrapper {
 +
            padding: 0;
 +
        }
  
 +
        #content {
 +
            padding: 0px;
 +
            width: 100% !important;
 +
            margin-top: 0px;
 +
            margin-left: 0px ;
 +
        }
  
 +
        /* removes default styling for home banner tagline */
 +
        #HQ_page p {
 +
            font-family: 'Open Sans', sans-serif;
 +
            font-size: 16px;
 +
            font-weight: 100;
 +
            color: #000;
 +
            padding-top: 0;
 +
            padding-bottom: 0;
 +
        }
  
<div class="clear"></div>
+
        /* removes small extra margin at very bottom below footer */
 +
        p {
 +
            margin: 0;
 +
        }
  
 +
        /* removes bullets from Toolkit dropdown menu */
 +
        ul {
 +
            list-style-image: none;
 +
        }
  
<div class="column full_size">
+
    /******************** ALL FONTS START ********************/
<h1> Modeling</h1>
+
    @import url('https://fonts.googleapis.com/css?family=Merriweather|Open+Sans:400,700|Raleway');
 +
    @font-face {
 +
        font-family: 'Futura';
 +
        src: url('../futura/futura\ medium\ bt.ttf');
 +
    }
  
<p>Mathematical models and computer simulations provide a great way to describe the function and operation of BioBrick Parts and Devices. Synthetic Biology is an engineering discipline, and part of engineering is simulation and modeling to determine the behavior of your design before you build it. Designing and simulating can be iterated many times in a computer before moving to the lab. This award is for teams who build a model of their system and use it to inform system design or simulate expected behavior in conjunction with experiments in the wetlab.</p>
+
    body {
 +
        font-family: 'Open Sans', sans-serif;
 +
    }
  
</div>
+
    .dropbtn, .dropdown-content {
<div class="clear"></div>
+
        font-size: 16px;
 +
    }
  
<div class="column full_size">
+
    .standard-page-banner > svg > text, .standard-page-content-title, .standard-page-side-bar-wrapper {
<h3> Gold Medal Criterion #3</h3>
+
        font-family: 'Futura', sans-serif;
<p>
+
    }
Convince the judges that your project's design and/or implementation is based on insight you have gained from modeling. This could be either a new model you develop or the implementation of a model from a previous team. You must thoroughly document your model's contribution to your project on your team's wiki, including assumptions, relevant data, model results, and a clear explanation of your model that anyone can understand.
+
<br><br>
+
The model should impact your project design in a meaningful way. Modeling may include, but is not limited to, deterministic, exploratory, molecular dynamic, and stochastic models. Teams may also explore the physical modeling of a single component within a system or utilize mathematical modeling for predicting function of a more complex device.
+
</p>
+
  
</div>
+
    .tile-title {
 +
        font-family: 'Futura', sans-serif;
 +
    }
  
<div class="column two_thirds_size">
+
/******************** ALL FONTS END ********************/
<h3>Best Model Special Prize</h3>
+
  
<p>
+
    html,
To compete for the <a href="https://2019.igem.org/Judging/Awards">Best Model prize</a>, please describe your work on this page  and also fill out the description on the <a href="https://2019.igem.org/Judging/Judging_Form">judging form</a>. Please note you can compete for both the Gold Medal criterion #3 and the Best Model prize with this page.
+
    body {
<br><br>
+
        width: 100%;
You must also delete the message box on the top of this page to be eligible for the Best Model Prize.
+
        height: 100%;
</p>
+
        margin: 0;
 +
        padding: 0;
 +
        overflow-x: hidden;
 +
    }
  
</div>
+
    body {
 +
        background-size: 40px 40px;
 +
    }
  
 +
    p {
 +
        color: #000;
 +
        /* font-family: 'Open Sans', sans-serif; */
 +
    }
  
<div class="column third_size">
+
        nav {
<div class="highlight decoration_A_full">
+
            padding-top: 30px;
<h3> Inspiration </h3>
+
            padding-bottom: 30px;
<p>
+
            padding-right: 100px;
Here are a few examples from previous teams:
+
            background-color: #a0e0bd;
</p>
+
            height: 98px;
<ul>
+
        }
<li><a href="https://2018.igem.org/Team:GreatBay_China/Model">2018 GreatBay China</a></li>
+
       
<li><a href="https://2018.igem.org/Team:Leiden/Model">2018 Leiden</a></li>
+
        .nav-bar-logo {
<li><a href="https://2016.igem.org/Team:Manchester/Model">2016 Manchester</a></li>
+
            vertical-align: top;
<li><a href="https://2016.igem.org/Team:TU_Delft/Model">2016 TU Delft</li>
+
            display: inline-block;
<li><a href="https://2014.igem.org/Team:ETH_Zurich/modeling/overview">2014 ETH Zurich</a></li>
+
            float: left;
<li><a href="https://2014.igem.org/Team:Waterloo/Math_Book">2014 Waterloo</a></li>
+
            margin-left: 80px;
</ul>
+
            margin-top: -5px;
</div>
+
        }
</div>
+
       
 +
      .nav-bar-logo img {
 +
            width: 140px;
 +
        }
 +
 
 +
    .home-banner-wrapper {
 +
        position: relative;
 +
        background: #a0e0bd;
 +
        height: 675px;
 +
        width: 100%;
 +
        margin-top: -5px;
 +
    }
 +
 
 +
    .home-banner-logo {
 +
        height: 200px;
 +
        position: absolute;
 +
        left: 75px;
 +
        bottom: 55px;
 +
        /* z-index: 1;
 +
        background-color: rgba(160, 224, 189, 0.5);
 +
        box-shadow: 10px -10px 50px 10px rgba(160, 224, 189, 0.75); */
 +
    }
 +
 
 +
    .home-banner-plants {
 +
        position: absolute;
 +
        top: 10px;
 +
        right: -10;
 +
        bottom: 20px;
 +
        height: 680px;
 +
        width: 1400px;
 +
    }
 +
 
 +
      .dropbtn {
 +
            background-color: transparent;
 +
            text-decoration: none;
 +
            padding: 15px;
 +
            margin: 0px;
 +
            font-size: 15px;
 +
            border: none;
 +
            color: #fff;
 +
        }
 +
       
 +
        @media (max-width: 1050px) {
 +
            .dropbtn {
 +
                font-size: 12px;
 +
            }
 +
        }
 +
       
 +
        .dropdown {
 +
            position: relative;
 +
            vertical-align: top;
 +
            display: inline-block;
 +
            float: right;
 +
        }
 +
       
 +
        .dropdown ul {
 +
            list-style-type: none;
 +
        }
 +
       
 +
        .dropdown a {
 +
            position: relative;
 +
            display: inline-block;
 +
            color: #e8b023;
 +
            text-decoration: none;
 +
        }
 +
       
 +
        .dropdown-content {
 +
            display: none;
 +
            position: absolute;
 +
            background-color: #016C64;
 +
            color: #ffffff;
 +
            width: 200px;
 +
            font-size: 14px;
 +
            box-shadow: 0px 8px 16px 0px rgba(0, 0, 0, 0.2);
 +
            z-index: 1;
 +
        }
 +
 
 +
      .dropdown-content a:hover {
 +
          background-color: #a0e0bd !important;
 +
      }
 +
       
 +
        .toolkit-dropdown-content {
 +
            width: 630px;
 +
            left: -160px;
 +
        }
 +
       
 +
        .modeling-dropdown-content {
 +
            left: -40px;
 +
        }
 +
       
 +
        .human-dropdown-content {
 +
            left: 12px;
 +
        }
 +
       
 +
        .outreach-dropdown-content {
 +
            width: 230px;
 +
            left: -40px;
 +
        }
 +
       
 +
        .team-dropdown-content {
 +
            width: 140px;
 +
            left: -35px;
 +
        }
 +
       
 +
        .dropdown-content a {
 +
            color: #ffffff;
 +
            padding: 12px 16px;
 +
            text-decoration: none !important;
 +
            display: block;
 +
        }
 +
       
 +
        .wet-lab-list-title,
 +
        .doc-list-title,
 +
        .pd-list-title {
 +
            padding-top: 12px;
 +
            padding-left: 16px;
 +
            padding-bottom: 14px;
 +
        }
 +
       
 +
        .nav-second-col {
 +
            margin-left: 30px;
 +
        }
 +
       
 +
        .nav-third-col {
 +
            margin-left: 30px;
 +
        }
 +
       
 +
        .dropbtn:hover,
 +
        .active-page {
 +
            color: #016C64;
 +
            transition-duration: 0.5s;
 +
        }
 +
       
 +
        .dropdown-content a:hover {
 +
            color: #016C64;
 +
            background-color: #ffffff;
 +
        }
 +
       
 +
        .dropdown:hover .dropdown-content {
 +
            display: block;
 +
        }
 +
       
 +
    footer {
 +
        padding: 35px;
 +
        position: relative;
 +
        text-align: center;
 +
        background-color: #a0e0bd;
 +
    }
 +
 
 +
    .footer-wrapper {
 +
        margin: auto;
 +
        display: inline-block;
 +
    }
 +
 
 +
    .icon-wrapper {
 +
        display: inline-block;
 +
        position: relative;
 +
        padding-right: 18px;
 +
        border-right: 0.5px solid white;
 +
    }
 +
 
 +
    .icon-wrapper-last {
 +
        border-right: none;
 +
    }
 +
 
 +
    .icon {
 +
        margin: 16px;
 +
    }
 +
 
 +
    .icon img {
 +
        height: 24px;
 +
    }
 +
 
 +
    .standard-page-banner {
 +
        background-image: url(https://static.igem.org/mediawiki/2019/3/35/T--Cornell--modeling-banner.jpeg);
 +
background-size: cover;
 +
    }
 +
 
 +
    .standard-page-side-bar-content-wrapper {
 +
        padding: 5% 0;
 +
    }
 +
 
 +
    .standard-page-side-bar>li>a {
 +
        text-decoration: none;
 +
        color: #016c64;
 +
        font-size: 16px;
 +
    }
 +
 
 +
    .standard-page-side-bar {
 +
        list-style-type: none;
 +
        padding-left: 15px;
 +
        padding-right: 15px;
 +
        vertical-align: middle;
 +
        margin-top: 40px;
 +
    }
 +
 
 +
    .standard-page-side-bar>li {
 +
        margin-bottom: 15px;
 +
    }
 +
 
 +
    .standard-page-content-title {
 +
        font-size: 24px;
 +
        color: #000 !important;
 +
        position: relative;
 +
    }
 +
 
 +
    .green-accent-line-left {
 +
        border: #a0e0bd solid 1px;
 +
        display: block;
 +
        float: left;
 +
        margin: 1em auto 1em auto;
 +
        width: 80px;
 +
    }
 +
 
 +
    .standard-page-content-subheading {
 +
        font-size: 18px;
 +
        font-weight: 1;
 +
        color: #000;
 +
        padding-top: 40px;
 +
        padding-bottom: 0;
 +
    }
 +
 
 +
    .standard-page-content-section {
 +
        margin-top: 40px;
 +
        margin-bottom: 40px;
 +
    }
 +
 
 +
    nav {
 +
        grid-area: navbar;
 +
    }
 +
 
 +
    .nav-bar-main-menu .dropdown:nth-child(5) .dropdown-contentx {
 +
        display: grid;
 +
        grid-template-columns: auto auto auto;
 +
    }
 +
 
 +
    .nav-first-col {
 +
        display: inline-grid;
 +
    }
 +
 
 +
    .nav-second-col {
 +
        display: inline-grid;
 +
    }
 +
 
 +
    .nav-third-col {
 +
        display: inline-grid;
 +
    }
 +
 
 +
    footer {
 +
        grid-area: footer;
 +
    }
 +
 
 +
    /******************** STANDARD PAGE START ********************/
 +
    .standard-page-wrapper {
 +
        display: grid;
 +
        grid-template-columns: auto;
 +
        grid-template-rows: 100px 550px auto 100px;
 +
        grid-template-areas: 'navbar' 'standardpagebanner' 'standardpagesidebarcontent' 'footer';
 +
    }
 +
    .standard-page-banner {
 +
        grid-area: standardpagebanner;
 +
    }
 +
    .standard-page-side-bar-content-wrapper {
 +
        display: inline-grid;
 +
        grid-area: standardpagesidebarcontent;
 +
        grid-template-columns: 7.5% 20% 65% 7.5%;
 +
        grid-template-areas: '. standardpagesidebar standardpagecontent .';
 +
    }
 +
    .standard-page-side-bar-wrapper {
 +
        grid-area: standardpagesidebar;
 +
    }
 +
    .standard-page-content-wrapper {
 +
        grid-area: standardpagecontent;
 +
    }
 +
 
 +
    /******************** STANDARD PAGE END ********************/
 +
 
 +
    </style>
 +
    <title>Team:Cornell - 2019.igem.org</title>
 +
    <!-- CSS -->
 +
    <link rel="stylesheet" type="text/css" href="styles/styles.css">
 +
    <link rel="stylesheet" type="text/css" href="styles/grids.css">
 +
    <!-- JS -->
 +
    <script src="https://2019.igem.org/Team:Cornell/jquerymin?action=raw&ctype=text/javascript"></script>
 +
</head>
 +
<body>
 +
    <div class ="standard-page-wrapper">
 +
        <!------------------------ NAV BAR START ------------------------>
 +
        <nav>
 +
            <div class="nav-bar-wrapper">
 +
                <div class="nav-bar-logo">
 +
                        <a href="https://2019.igem.org/Team:Cornell"><img src="https://static.igem.org/mediawiki/2019/9/94/T--Cornell--Logo.png" alt="reHAB"></a>
 +
                </div>
 +
                <div class="nav-bar-main-menu">
 +
                    <div class="dropdown">
 +
                        <button class="dropbtn">TEAM</button>
 +
                        <div class="dropdown-content team-dropdown-content">
 +
                            <a href="https://2019.igem.org/Team:Cornell/Team">BIOS</a>
 +
                            <a href="https://2019.igem.org/Team:Cornell/Sponsors">SPONSORS</a>
 +
                            <a href="https://2019.igem.org/Team:Cornell/Attributions">ATTRIBUTIONS</a>
 +
                        </div>
 +
                    </div>
 +
                    <div class="dropdown">
 +
                        <button class="dropbtn">OUTREACH</button>
 +
                        <div class="dropdown-content outreach-dropdown-content">
 +
                            <a href="https://2019.igem.org/Team:Cornell/Public_Engagement">EDUCATION & ENGAGEMENT</a>
 +
                            <a href="https://2019.igem.org/Team:Cornell/Collaborations">COLLABORATIONS</a>
 +
                        </div>
 +
                    </div>
 +
                    <div class="dropdown">
 +
                        <button class="dropbtn">HUMAN PRACTICES</button>
 +
                        <div class="dropdown-content human-dropdown-content">
 +
                            <a href="https://2019.igem.org/Team:Cornell/Human_Practices">INTEGRATED PRACTICES</a>
 +
                            <a href="https://2019.igem.org/Team:Cornell/Policies">POLICIES</a>
 +
                            <a href="https://2019.igem.org/Team:Cornell/Entrepreneurship">ENTREPRENEURSHIP</a>
 +
                        </div>
 +
                    </div>
 +
                    <div class="dropdown">
 +
                        <button class="dropbtn active-page"
 +
                            onclick="location.href='https://2019.igem.org/Team:Cornell/Model'">MODELING</button>
 +
                    </div>
 +
                    <div class="dropdown">
 +
                        <button class="dropbtn">TOOLKIT</button>
 +
                        <div class="dropdown-content toolkit-dropdown-content">
 +
                            <ul>
 +
                                <div class="nav-first-col">
 +
                                    <li class="wet-lab-list-title"><b>WET LAB</b></li>
 +
                                    <li><a href="https://2019.igem.org/Team:Cornell/Foundations">FOUNDATIONS</a></li>
 +
                                    <li><a href="https://2019.igem.org/Team:Cornell/Demonstrate">DEMONSTRATE</a></li>
 +
                                    <li><a href="https://2019.igem.org/Team:Cornell/Parts">PARTS</a></li>
 +
                                    <li><a href="https://2019.igem.org/Team:Cornell/BasicParts">BASIC PARTS</a></li>
 +
                                    <li><a href="https://2019.igem.org/Team:Cornell/CompositeParts">COMPOSITE PARTS</a></li>
 +
                                </div>
 +
                                <div class="nav-second-col">
 +
                                    <li class="pd-list-title"><b>PRODUCT DEVELOPMENT</b></li>
 +
                                    <li><a href="https://2019.igem.org/Team:Cornell/DesignProcess">DESIGN PROCESS</a></li>
 +
                                    <li><a href="https://2019.igem.org/Team:Cornell/Hardware">HARDWARE</a></li>
 +
                                </div>
 +
                                <div class="nav-third-col">
 +
                                    <li class="doc-list-title"><b>DOCUMENTATION</b></li>
 +
                                    <li><a href="https://2019.igem.org/Team:Cornell/Notebook">NOTEBOOK</a></li>
 +
                                    <li><a href="https://2019.igem.org/Team:Cornell/Safety">SAFETY</a></li>
 +
                                </div>
 +
                            </ul>
 +
                        </div>
 +
                    </div>
 +
                    <div class="dropdown">
 +
                        <button class="dropbtn"
 +
                            onclick="location.href='https://2019.igem.org/Team:Cornell/Description'">ABOUT</button>
 +
                    </div>
 +
                    <div class="dropdown">
 +
                        <button class="dropbtn"
 +
                            onclick="location.href='https://2019.igem.org/Team:Cornell'">HOME</button>
 +
                    </div>
 +
                </div>
 +
            </div>
 +
        </nav>
 +
        <!------------------------ NAV BAR END ------------------------>
 +
        <!------------------------ STANDARD PAGE BANNER START ------------------------>
 +
        <header class="standard-page-banner">
 +
            <svg viewBox="0 0 100 100" width=100% height=100%>
 +
                <text text-anchor="middle" alignment-baseline="middle" x=50% y=50%>Modeling</text>
 +
            </svg>
 +
        </header>
 +
        <!------------------------ STANDARD PAGE BANNER END ------------------------>
 +
        <!------------------------ STANDARD PAGE SIDE BAR + CONTENT START ------------------------>
 +
        <div class="standard-page-side-bar-content-wrapper">
 +
            <!------------------------ STANDARD PAGE SIDE BAR START ------------------------>
 +
            <div class="standard-page-side-bar-wrapper">
 +
                <ul class="standard-page-side-bar">
 +
                    <li><a href="#pageheading1">Overview</a></li>
 +
                    <li><a href="#pageheading2">Mass Transfer</a></li>
 +
                    <li><a href="#pageheading3">Molecular Diffusion and Reaction</a></li>
 +
                    <li><a href="#pageheading4">Fluidics Model</a></li>
 +
                </ul>
 +
            </div>
 +
            <!------------------------ STANDARD PAGE SIDE BAR END ------------------------>
 +
            <!------------------------ STANDARD PAGE CONTENT START ------------------------>
 +
            <div class="standard-page-content-wrapper">
 +
                <div class="standard-page-content-section">
 +
                    <div class="standard-page-content-title"><div id="pageheading1">Overview</div></div>
 +
                    <hr class="green-accent-line-left">
 +
                    <div class="standard-page-content-subheading"></div>
 +
                    <p class="standard-page-content-text">
 +
                      Our bioreactor is similar to a traditional packed-bed reactor. In packed bed reactors, porous pellets support a small catalyst pellet at the center. Likewise, in our system, inert alginate beads support E. coli - effectively a catalyst for microcystin breakdown. For a fluid carried through the bioreactor, there are three steps for mass transport and the reaction.<br><br>
 +
                      1. Mass transfer through the boundary layer<br>
 +
                      2. Molecular diffusion down the length of the pore<br>
 +
                      3. Reaction
 +
                    </p>
 +
                    <img class="standard-page-content-image" src="">
 +
                </div>
 +
                <div class="standard-page-content-section">
 +
                    <div class="standard-page-content-title"><div id="pageheading2">Mass Transfer</div></div>
 +
                    <hr class="green-accent-line-left">
 +
                    <div class="standard-page-content-subheading"></div>
 +
                    <p class="standard-page-content-text">
 +
                      We modeled mass transfer through the boundary layer using a simple mass transfer model. The model is based on correlated data for forced convection through boundary layers.<br><br>
 +
                      <img class="standard-page-content-image"  style="height: 100px; width: 500px" src="https://static.igem.org/mediawiki/2019/b/b7/T--Cornell--Model1.png"><br>
 +
                      Where 𝚽 is the mass flux and k is the mass transfer coefficient. The mass transfer coefficient was determined by correlation.<br><br>
 +
                      <img class="standard-page-content-image"  style="height: 100px; width: 400px" src="https://static.igem.org/mediawiki/2019/2/2d/T--Cornell--Model2.png"><br>
 +
                      Here, D is the diffusion constant for microcystin-LR, d is the pellet diameter, Re is the dimensionless Reynolds number, and Sc is the dimensionless Schmidt number. The Reynolds number is related to the fluid flow regime - a ratio of the inertial to viscous forces in the fluid. The Schmidt number relates the resistance of momentum diffusion to mass diffusion. We found that the diffusion constant D = 1.4 × 10-6 cm2/s according to Zastepa et. al (1).<br><br>
 +
                      We anticipated that the boundary layer diffusion would likely not be the limiting factor in our system due to the relatively inviscid behavior of water. Regardless, we aimed to introduce mixing and eddy flow in the reactor to induce turbulent flow, since the mass transfer coefficient is proportional to the Reynolds number (turbulent flows are characterized by high Reynolds numbers). Figure 1 illustrates the dependence of the mass transfer coefficient on the degree of turbulence, or mixing, in the system.<br><br>
 +
                      <img class="standard-page-content-image"  style="height: 500px; width: 675px" src="https://static.igem.org/mediawiki/2019/3/3d/T--Cornell--Figure1.png"><br>
 +
                      <figcaption><strong>Figure 1. </strong>Influence of turbulence on the mass transfer coefficient. Reynolds numbers above roughly 2000 indicate turbulent flow, or a high degree of mixing.</figcaption><br>
 +
                    </p>
 +
                </div>
 +
                <div class="standard-page-content-section">
 +
                    <div class="standard-page-content-title"><div id="pageheading3">Molecular Diffusion and Reaction</div></div>
 +
                    <hr class="green-accent-line-left">
 +
                    <div class="standard-page-content-subheading"></div>
 +
                    <p class="standard-page-content-text">
 +
                      We coupled our modeling for molecular diffusion and the actual reaction - the classical treatment by chemical engineers. The E. coli are encapsulated in porous alginate pellets. The microcystins, once they diffuse through the boundary layer, must diffuse down the length of a pore and then react in the bacteria. We approximated the reaction as a first-order reaction. Michaelis-Menten kinetics, commonly used in biological systems, is approximately a first-order reaction at low substrate (microcystin) concentrations.<br><br>
 +
                      <img class="standard-page-content-image"  style="height: 100px; width: 350px" src="https://static.igem.org/mediawiki/2019/5/56/T--Cornell--Model3.png"><br>
 +
                      To relate the reaction rate to the timescale on which pore diffusion takes place we introduce a new dimensionless group, the Thiele modulus (2).<br><br>
 +
                      <img class="standard-page-content-image"  style="height: 100px; width: 500px" src="https://static.igem.org/mediawiki/2019/8/80/T--Cornell--Model4.png"><br>
 +
                      R is the pellet radius, D is the diffusion constant for microcystin, and k’ is the rate constant divided by the total pellet volume. In a randomly packed reactor, the total pellet volume is approximately 64% of the total reactor volume. <br><br>
 +
                      We can relate the Thiele modulus to another group called the effectiveness factor, the ratio of the actual reaction rate to the ideal reaction rate. The effectiveness factor tells us how much mass transfer resistance (on a molecular level) harms the overall reaction rate. Analytically, the effectiveness factor is <br><br>
 +
                      <img class="standard-page-content-image"  style="height: 100px; width: 450px" src="https://static.igem.org/mediawiki/2019/c/c3/T--Cornell--Model5.png"><br>
 +
                      Where coth is the hyperbolic cotangent function. Figures 2 and 3 predict how the effectiveness factor varies with the Thiele modulus and pellet diameter, respectively. <br><br>
 +
                    </p>
 +
                    <img class="standard-page-content-image"  style="height: 500px; width: 675px" src="https://static.igem.org/mediawiki/2019/5/53/T--Cornell--Figure2.png"><br>
 +
                    <figcaption><strong>Figure 2.</strong> Effectiveness factor vs. Thiele Modulus, for a rate constant of k = 0.1.</figcaption><br>
 +
                    <img class="standard-page-content-image"  style="height: 500px; width: 675px" src="https://static.igem.org/mediawiki/2019/c/cb/T--Cornell--Figure3.png"><br>
 +
                    <figcaption><strong>Figure 3.</strong> Effectiveness factor vs. Pellet Diameter.</figcaption><br>
 +
                    <p class="standard-page-content-text">
 +
                      Our modeling has informed our decision to minimize the size of the pellet to decrease the characteristic time for molecular diffusion down the length of the pore. We made the pellets as small as we reasonably could (3 mm diameter). We lacked the ability with our available tools to make smaller pellets; however, decreasing the pellet size further should be a trivial matter with more advanced manufacturing techniques and greater control over the process.<br><br>
 +
                    </p>
 +
                </div>
 +
<div class="standard-page-content-section">
 +
                    <div class="standard-page-content-title"><div id="pageheading4">Fluidics Model</div></div>
 +
                    <hr class="green-accent-line-left">
 +
                    <div class="standard-page-content-subheading"></div>
 +
                    <p class="standard-page-content-text">
 +
                    We modeled the fluid flow of our bioreactor with our nozzle using COMSOL to see if there was computational support for mixing inside the bioreactor. The negative space of the inlet, which is the volume that the fluid would flow through, of our bioreactor was used as the geometrical model in Comsol. We first assumed that flow through the nozzle was turbulent and followed a κ-ε model of flow, which utilizes a wall function to bridge the region between the wall and the fully developed flow. A wall function significantly reduces the computation time though the solution near the walls is less accurate. We further assumed that mixing results near the beginning of the bioreactor would be indicative of mixing throughout the bioreactor. When alginate beads were incorporated we assumed that the alginate beads operated under ideal conditions, are static and deflect fluid similar to a wall. All tests were conducted with the material properties of water flowing through the inlet at 10 m/s and exiting the outlet at similar pressure to the inlet. <br><br>
 +
Initially, a COMSOL model was generated, composing of only the nozzle and the beginning of the bioreactor. Significant mixing was shown to occur within the nozzle head with mixing occurring within the bioreactor, though only minimal mixing was observed in the center of the bioreactor. As you can see below, the streamline exhibits eddy flow and turbulent mixing, an indication that our bioreactor will be well mixed. <br><br>
 +
<img class="standard-page-content-image"  style="height: 500px; width: 675px" src="https://static.igem.org/mediawiki/2019/f/f7/T--Cornell--ModelNew1.png"><br><br>
 +
Next we incorporated the alginate beads into the model. The beads were assumed to be 3mm in diameter or approximately 0.1 inches and were symmetrically distributed within the bioreactor with some spacing between beads. <br><br>
 +
<img class="standard-page-content-image"  style="height: 500px; width: 675px" src="https://static.igem.org/mediawiki/2019/a/a9/T--Cornell--ModelNew2.png"><br><br>
 +
Results showed significant mixing shortly after entering the bioreactor with more mixing occurring in the center of the bioreactor than in the initial model. The results from this model provided analytical support for the occurrence of mixing within the bioreactor. The resulting arrow lines of our model is displayed below.<br><br>
 +
<img class="standard-page-content-image"  style="height: 500px; width: 675px" src="https://static.igem.org/mediawiki/2019/8/87/T--Cornell--ModelNew3.png"><br><br>
 +
                      1. Zastepa, A., Pick, F. R., & Blais, J. M. (2017). Distribution and flux of microcystin congeners in lake sediments. Lake and Reservoir Management, 33(4), 444-451.<br>
 +
                      2. Levenspiel, O. (1999). Chemical Reaction Engineering (3rd ed.). John Wiley and Sons.<br>
 +
                    </p>
 +
                    <img class="standard-page-content-image" src="">
 +
                </div>
 +
            </div>
 +
            <!------------------------ STANDARD PAGE CONTENT END ------------------------>
 +
        </div>
 +
        <!------------------------ STANDARD PAGE SIDE BAR + CONTENT END ------------------------>
 +
        <!------------------------ FOOTER START ------------------------>
 +
        <footer>
 +
            <div class="footer-wrapper">
 +
                <div class="icon-wrapper">
 +
                    <a class="icon" href="http://facebook.com/cornelligem"><img src="https://static.igem.org/mediawiki/2019/4/44/T--Cornell--Facebook.png"></a>
 +
                </div>
 +
                <div class="icon-wrapper">
 +
                    <a class="icon" href="http://twitter.com/cugem"><img src="https://static.igem.org/mediawiki/2019/8/80/T--Cornell--Twitter.png"></a>
 +
                </div>
 +
                <div class="icon-wrapper">
 +
                    <a class="icon" href="https://www.instagram.com/cugem/"><img src="https://static.igem.org/mediawiki/2019/3/37/T--Cornell--Instagram.png"></a>
 +
                </div>
 +
                <div class="icon-wrapper icon-wrapper-last">
 +
                    <a class="icon" href="https://www.youtube.com/channel/UCJt-5JfyoucUJXC1EsTllhg"><img src="https://static.igem.org/mediawiki/2019/3/3c/T--Cornell--Youtube.png"></a>
 +
                </div>
 +
            </div>
 +
        </footer>
 +
        <!------------------------ FOOTER END ------------------------>
 +
    </div>
 +
</body>
  
 
</html>
 
</html>

Latest revision as of 22:40, 21 October 2019

Team:Cornell - 2019.igem.org

Modeling
Overview

Our bioreactor is similar to a traditional packed-bed reactor. In packed bed reactors, porous pellets support a small catalyst pellet at the center. Likewise, in our system, inert alginate beads support E. coli - effectively a catalyst for microcystin breakdown. For a fluid carried through the bioreactor, there are three steps for mass transport and the reaction.

1. Mass transfer through the boundary layer
2. Molecular diffusion down the length of the pore
3. Reaction

Mass Transfer

We modeled mass transfer through the boundary layer using a simple mass transfer model. The model is based on correlated data for forced convection through boundary layers.


Where 𝚽 is the mass flux and k is the mass transfer coefficient. The mass transfer coefficient was determined by correlation.


Here, D is the diffusion constant for microcystin-LR, d is the pellet diameter, Re is the dimensionless Reynolds number, and Sc is the dimensionless Schmidt number. The Reynolds number is related to the fluid flow regime - a ratio of the inertial to viscous forces in the fluid. The Schmidt number relates the resistance of momentum diffusion to mass diffusion. We found that the diffusion constant D = 1.4 × 10-6 cm2/s according to Zastepa et. al (1).

We anticipated that the boundary layer diffusion would likely not be the limiting factor in our system due to the relatively inviscid behavior of water. Regardless, we aimed to introduce mixing and eddy flow in the reactor to induce turbulent flow, since the mass transfer coefficient is proportional to the Reynolds number (turbulent flows are characterized by high Reynolds numbers). Figure 1 illustrates the dependence of the mass transfer coefficient on the degree of turbulence, or mixing, in the system.


Figure 1. Influence of turbulence on the mass transfer coefficient. Reynolds numbers above roughly 2000 indicate turbulent flow, or a high degree of mixing.

Molecular Diffusion and Reaction

We coupled our modeling for molecular diffusion and the actual reaction - the classical treatment by chemical engineers. The E. coli are encapsulated in porous alginate pellets. The microcystins, once they diffuse through the boundary layer, must diffuse down the length of a pore and then react in the bacteria. We approximated the reaction as a first-order reaction. Michaelis-Menten kinetics, commonly used in biological systems, is approximately a first-order reaction at low substrate (microcystin) concentrations.


To relate the reaction rate to the timescale on which pore diffusion takes place we introduce a new dimensionless group, the Thiele modulus (2).


R is the pellet radius, D is the diffusion constant for microcystin, and k’ is the rate constant divided by the total pellet volume. In a randomly packed reactor, the total pellet volume is approximately 64% of the total reactor volume.

We can relate the Thiele modulus to another group called the effectiveness factor, the ratio of the actual reaction rate to the ideal reaction rate. The effectiveness factor tells us how much mass transfer resistance (on a molecular level) harms the overall reaction rate. Analytically, the effectiveness factor is


Where coth is the hyperbolic cotangent function. Figures 2 and 3 predict how the effectiveness factor varies with the Thiele modulus and pellet diameter, respectively.


Figure 2. Effectiveness factor vs. Thiele Modulus, for a rate constant of k = 0.1.


Figure 3. Effectiveness factor vs. Pellet Diameter.

Our modeling has informed our decision to minimize the size of the pellet to decrease the characteristic time for molecular diffusion down the length of the pore. We made the pellets as small as we reasonably could (3 mm diameter). We lacked the ability with our available tools to make smaller pellets; however, decreasing the pellet size further should be a trivial matter with more advanced manufacturing techniques and greater control over the process.

Fluidics Model

We modeled the fluid flow of our bioreactor with our nozzle using COMSOL to see if there was computational support for mixing inside the bioreactor. The negative space of the inlet, which is the volume that the fluid would flow through, of our bioreactor was used as the geometrical model in Comsol. We first assumed that flow through the nozzle was turbulent and followed a κ-ε model of flow, which utilizes a wall function to bridge the region between the wall and the fully developed flow. A wall function significantly reduces the computation time though the solution near the walls is less accurate. We further assumed that mixing results near the beginning of the bioreactor would be indicative of mixing throughout the bioreactor. When alginate beads were incorporated we assumed that the alginate beads operated under ideal conditions, are static and deflect fluid similar to a wall. All tests were conducted with the material properties of water flowing through the inlet at 10 m/s and exiting the outlet at similar pressure to the inlet.

Initially, a COMSOL model was generated, composing of only the nozzle and the beginning of the bioreactor. Significant mixing was shown to occur within the nozzle head with mixing occurring within the bioreactor, though only minimal mixing was observed in the center of the bioreactor. As you can see below, the streamline exhibits eddy flow and turbulent mixing, an indication that our bioreactor will be well mixed.



Next we incorporated the alginate beads into the model. The beads were assumed to be 3mm in diameter or approximately 0.1 inches and were symmetrically distributed within the bioreactor with some spacing between beads.



Results showed significant mixing shortly after entering the bioreactor with more mixing occurring in the center of the bioreactor than in the initial model. The results from this model provided analytical support for the occurrence of mixing within the bioreactor. The resulting arrow lines of our model is displayed below.



1. Zastepa, A., Pick, F. R., & Blais, J. M. (2017). Distribution and flux of microcystin congeners in lake sediments. Lake and Reservoir Management, 33(4), 444-451.
2. Levenspiel, O. (1999). Chemical Reaction Engineering (3rd ed.). John Wiley and Sons.