Difference between revisions of "Team:Marburg/test joana"

(Blanked the page)
Line 1: Line 1:
{{Marburg}}
 
<html>
 
  <style>
 
    .box-dark {
 
      background-color: #3d404d;
 
      min-height: 30vh;
 
      box-shadow: 1px 1px 40px black;
 
      margin-left: -10vw;
 
      width: 120vw;
 
      position: relative;
 
      z-index: 2;
 
      display: flex;
 
      flex-direction: column;
 
      align-items: center;
 
      transform: rotate(355deg);
 
      justify-content: center;
 
      margin-top: -12vh;
 
    }
 
  
    .heading {
 
      color: #f5f5f5;
 
      text-align: center;
 
      font-size: 1.75em;
 
      width: fit-content;
 
      margin-top: 25px;
 
      margin-bottom: unset !important;
 
      transform: rotate(-355deg);
 
    }
 
 
    .line {
 
      border-top: 2px solid #f5f5f5;
 
      background-color: #f5f5f5;
 
      border-width: 2px;
 
      display: block;
 
      width: 100px;
 
      margin-top: 25px;
 
      margin-bottom: unset;
 
      transform: rotate(-355deg);
 
    }
 
 
    .logo {
 
      width: 100px;
 
      height: 100px;
 
      position: absolute;
 
      bottom: -50px;
 
      transform: rotate(-355deg);
 
      margin-left: -10px;
 
    }
 
 
    .main {
 
      overflow-x: hidden;
 
    }
 
 
    hr {
 
      display: block;
 
      height: 1px;
 
      border: 0;
 
      border-top: 2px solid #3d404d;
 
      padding: 0;
 
      margin: 1em auto;
 
      width: 50vw;
 
    }
 
 
    @media (max-width: 810px) {
 
 
      .logo,
 
      .line,
 
      .heading {
 
        margin-left: -30px;
 
      }
 
 
      .line {
 
        margin: 1.5rem 0 !important;
 
        margin-left: -40px !important;
 
      }
 
    }
 
 
  </style>
 
  <div>
 
    <div class="box-dark">
 
      <h1 class="heading">
 
        L A B A U T O M A T I O N
 
      </h1>
 
      <hr class="line">
 
      <img src="https://static.igem.org/mediawiki/2019/a/ac/T--Marburg--logo.svg"
 
        class="logo"
 
        alt="Syntex Logo">
 
    </div>
 
    <div style="margin-top: 10vh;">
 
      <section class="section">
 
        <h1 class="title">Amplifying new standards in measurement</h1>
 
        <p style="text-align: justify;">
 
                This year’s iGEM Team worked extensively on automating a plasmid purification on Opentrons’ OT-2. Plasmid
 
                purification is an indispensable part of completing the cloning workflow in the OT-2.<br>
 
                <br>
 
            </p>
 
            <figure style="float: right; margin-left: 25px;">
 
                <img style="height: 400px; width: 600px"
 
                    src="https://static.igem.org/mediawiki/2019/6/60/T--Marburg--SyntexConnections.png"
 
                    alt="Connections between Opentrons, Promega and QInstruments">
 
                <figcaption style="max-width: 600px">
 
                    Fig.1 - iGEM team Marburg 2019 is establishing connections between Opentrons, Promega and QInstruments.
 
                </figcaption>
 
            </figure>
 
            <div><p>
 
                Since the time of an iGEM project is limited to only one year, consequently only a limited amount of work can be
 
                done in that time, which is even reduced by failing experiments and making mistakes in the lab. To overcome this
 
                problem and increase the reproducibility and simultaneously raise the amount of experiments in the lab, we
 
                automated plasmid purification on the OT-2. Using this protocol and making it open-source <b>(GitHub Link?)</b>,
 
                we
 
                achieved to parallelize work in the lab or make more time for public engagement, human practice, IHP or
 
                everything else not directly lab-related, benefiting the whole iGEM community. This benefits will also be
 
                translated beyond iGEM community such as in the amateur biohackers, enthusiasts, and students community and even
 
                to research groups doing cutting-edge research.<br>
 
                This idea started when we found out that there is also a great need in the industry for an automated cloning
 
                workflow. Promega provided us with great advice <b>(Link to IHP)</b> and sponsored the Wizard® MagneSil® Plasmid
 
                Purification System, QInstruments sponsored the BioShake D30-T elm and Opentrons sponsored their Magnetic
 
                Module. Through our work aligned with the philosophy of iGEM for nurturing collaborations, we enabled
 
                connections between these companies to achieve the true potential of their products. This kind of bridge would
 
                not have been possible otherwise.<br>
 
                <br>
 
                Nevertheless, a massive amount of barriers had to be broken down. The shaker was a bit bigger than the space
 
                normally occupied by modules in the OT-2 and needed stabilizing support, so it was obvious to design a
 
                custom-made shaker adapter and print it with our own in-house 3D printer, which would keep the costs for the
 
                automation of this workflow extremely low. Moreover, the 3D design will be publicly available in our GitHub
 
                repository (LINK), which will make our solution accessible to everyone with access to a 3D printer.<br>
 
                <br>
 
                Additionally, we stumbled across serious problems with the calibration of our OT-2 and accessing the shaker with
 
                the pipette. The BioShake D30-T elm is currently not a usual labware defined by Opentrons’, so we had to be
 
                creative and come up with our own labware definition. Opentron is recently rolling out a major update from their
 
                OT-2 3.9 to 4.0 firmware that includes a lot of paradigm changes, making it impossible for us to define it as a
 
                decent custom labware. That is why we came up with the idea to use Opentrons’ internal coordinate system and
 
                defining the required 96 Deep Well Plate on the shaker as coordinates. This facilitated accessing the shaker
 
                with the pipette, being as precise as Opentrons’ own labware definitions, but a whole series of problems
 
                followed, as we tried to use Opentrons’ pipette functions to transfer the chemicals. We managed these problems
 
                as well, by defining our own Python functions, telling the pipette how to transfer liquids from and to the
 
                defined shaker. In the end when running the script, one would not be able to tell the difference between the
 
                labware and functions defined by us from the ones defined by Opentrons’.<br>
 
                <br>
 
            </p>
 
            <figure align=center>
 
                <img style="height: 500px; width: 300px"
 
                    src="https://static.igem.org/mediawiki/2019/b/bb/T--Marburg--opentrons_magnetic_module.JPG"
 
                    alt="OT-2 left">
 
                <img style="height: 500px; width: 300px"
 
                    src="https://static.igem.org/mediawiki/2019/3/30/T--Marburg--opentrons_shaker.JPG" alt="OT-2 right">
 
                <figcaption style="max-width: 1400px">
 
                    Fig.2 - Single-Channel pipette, magnetic module and shaker in action while performing the plasmid
 
                    purification.
 
                </figcaption>
 
            </figure>
 
            <br>
 
            <p>
 
                Putting the pieces together, we were able to translate the manual plasmid purification protocol provided by Nans
 
                Bodet into an Opentrons protocol, being the very first of its kind. We pioneered a workflow for up to six
 
                samples with the p300 Single-Channel Electronic Pipette and a scaled-up version for up to 48 samples with the
 
                p300 8-Channel Electronic Pipette without having to intervene even once. This scalability provides important
 
                flexibility for various kinds of experiments.<br>
 
                <br>
 
                In our process of developing and running the protocol we determined some problems on increasing the yield of our
 
                plasmids. There was a large number of parameters that could be varied, changing the final concentration of the
 
                plasmids. For example, we realized that the duration of lysis is paramount for the yield and success of plasmid
 
                purification. Over-lysis will lead to a decrease in plasmid yield, whereas under-lysis will induce clumping of
 
                magnetic beads; thus failing the experiment. After a whole heap of plasmid purifications we managed to identify
 
                the most relevant parameters and improve the protocol in the best way possible.<br>
 
                <br>
 
            </p>
 
            <figure align=center>
 
                <img style="height: 700px; width: 600px"
 
                    src="https://static.igem.org/mediawiki/2019/e/ea/T--Marburg--SingleChannelSetup.png" alt="OT-Layout left">
 
                <img style="height: 700px; width: 600px"
 
                    src="https://static.igem.org/mediawiki/2019/d/df/T--Marburg--8channelSetup.png" alt="OT-Layout right">
 
                <figcaption style="max-width: 1400px">
 
                    Fig.3 - Final setup for the automated plasmid purification workflows in the OT-2. The left picture shows the
 
                    setup for the single channel workflow, the right picture for the 8-channel workflow.
 
                </figcaption>
 
            </figure>
 
       
 
            <video src="https://static.igem.org/mediawiki/2019/c/c4/T--Marburg--PlasmidPurificationMarburg.mp4" controls
 
                poster="vorschaubild.jpg"></video>
 
       
 
            <br>
 
        </p>
 
      </section>
 
      <section class="section">
 
        <article>
 
          <h1 class="title"></h1>
 
          <p style="text-align: justify; margin-bottom: 1em;">
 
         
 
          </p></div>
 
        </article>
 
      </section>
 
      <hr>
 
     
 
    </div>
 
  </div>
 
  </body>
 
 
</html>
 

Revision as of 18:24, 21 October 2019