ABSTRACT

Plate readers report fluorescence values in arbitrary units that vary widely from instrument to instrument. Therefore absolute fluorescence values cannot be directly compared from one instrument to another. In order to compare fluorescence output of test devices between teams, it is necessary for each team to create a standard fluorescence curve. Although distribution of a known concentration of GFP protein would be an ideal way to standardize the amount of GFP fluorescence in our E. coli cells, the stability of the protein and the high cost of its purification are problematic. We therefore use the small molecule fluorescein, which has similar excitation and emission properties to GFP, but is cost-effective and easy to prepare. (The version of GFP used in the devices, GFP mut3b, has an excitation maximum at 501 nm and an emission maximum at 511 nm; fluorescein has an excitation maximum at 494 nm and an emission maximum at 525 nm).

You will prepare a dilution series of fluorescein in four replicates and measure the fluorescence in a 96 well plate in your plate reader. By measuring these in your plate reader, you will generate a standard curve of fluorescence for fluorescein concentration. You will be able to use this to convert your cell based readings to an equivalent fluorescein concentration. Before beginning this protocol, ensure that you are familiar with the GFP settings and measurement modes of your instrument. You will need to know what filters your instrument has for measuring GFP, including information about the bandpass width (530 nm / 30 nm bandpass, 25-30 nm width is recommended), excitation (485 nm is recommended) and emission (520-530 nm is recommended) of this filter.

Note: The iGEM Abs600 (OD) calibration protocol with microspheres calibration method is a pre-requisite for carrying out this protocol. You will need data from that calibration to analyse the results of this protocol.

EXTERNAL LINK

https://2019.igem.org/Measurement

GUIDELINES

For a full set of calibrations, you should run two protocols: this fluorescence calibration curve with fluorescein, and the Abs600 (OD) calibration with microspheres.

Before beginning these protocols, please ensure that you are familiar with the measurement modes and settings of your instrument. For all of these calibration measurements, you must use the same plates and volumes that you will use in your cell-based assays. You must also use the same settings (e.g., filters or excitation and emission wavelengths) that you will use in your cell-based assays. If you do not use the same plates, volumes, and settings, the calibration will not be valid.

Make sure to record all information about your instrument to document your experiment. If your instrument has variable temperature settings, the instrument temperature should be set to room temperature (approximately 20-25 C) for all measurements.
Prepare the fluorescein stock solution

1. Spin down fluorescein kit tube to make sure pellet is at the bottom of tube

 ![Fluorescein](image1)

2. Prepare 10x fluorescein stock solution (100 μM) by resuspending fluorescein in 1mL of 1X PBS

 Note: It is important that the fluorescein is properly dissolved. To check this, after the resuspension you should pipette up and down and examine the solution in the pipette tip – if any particulates are visible in the pipette tip continue to mix the solution until they disappear.

3. Dilute the 10X fluorescein stock solution with 1X PBS to make a 1X fluorescein solution with concentration 10 μM: 100 μL of 10X fluorescein stock into 900 μL 1X PBS

 ![PBS](image2)
Accurate pipetting is essential. Serial dilutions will be performed across columns 1-11. **Column 12 must contain PBS buffer only.** Initially you will setup the plate with the fluorescein stock in column 1 and an equal volume of 1X PBS in columns 2 to 12.

You will perform a serial dilution by consecutively transferring 100 μl from column to column with good mixing.

Add 100 μl of 1X PBS into wells A2, B2, C2, D2...A12, B12, C12, D12

Add 200 μl of fluorescein 1X stock solution into A1, B1, C1, D1

Transfer 100 μl of fluorescein stock solution from A1 into A2

Mix A2 by pipetting up and down 3x and transfer 100 μl into A3

Mix A3 by pipetting up and down 3x and transfer 100 μl into A4

Mix A4 by pipetting up and down 3x and transfer 100 μl into A5

Mix A5 by pipetting up and down 3x and transfer 100 μl into A6

Mix A6 by pipetting up and down 3x and transfer 100 μl into A7

Mix A7 by pipetting up and down 3x and transfer 100 μl into A8

Mix A8 by pipetting up and down 3x and transfer 100 μl into A9
14
Mix A9 by pipetting up and down 3x and transfer 100 μl into A10

15
Mix A10 by pipetting up and down 3x and transfer 100 μl into A11

16
Mix A11 by pipetting up and down 3x and transfer 100 μl into liquid waste

Take care not to continue serial dilution into column 12

17
Repeat dilution series for rows B, C, D

Measure fluorescence

19
Measure fluorescence of all samples in instrument. Ensure that any automatic gain setting is off (if your instrument has one).

If you will be using your data in conjunction with measurements from the Abs600 OD protocol, make sure you use the same instrument settings for both protocols.

19.1
Obtain the tube labeled “Silica Beads” from the Measurement Kit and vortex vigorously for 30 seconds.

300μl Silica beads

Microspheres should NOT be stored at 0°C or below, as freezing affects the properties of the microspheres. If you believe your microspheres may have been frozen, please contact the iGEM Measurement Committee for a replacement (measurement@igem.org).

19.2
Immediately pipet 100 μL microspheres into a 1.5 mL eppendorf tube

19.3
Add 900 μL of ddH2O to the microspheres

ddH20

This is an open access protocol distributed under the terms of the Creative Commons Attribution License (https://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
19.4 Vortex well. This is your Microsphere Stock Solution

19.5 Accurate pipetting is essential. Serial dilutions will be performed across columns 1-11. **Column 12 must contain ddH₂O only.**

Initially you will setup the plate with the microsphere stock solution in column 1 and an equal volume of 1x ddH₂O in columns 2 to 12.

You will perform a serial dilution by consecutively transferring 100 μl from column to column with good mixing.

19.6 Add 100 μl of ddH₂O into wells A2, B2, C2, D2....A12, B12, C12, D12

19.7 Vortex the tube containing the stock solution of microspheres vigorously for 10 seconds

19.8 Immediately add 200 μl of microspheres stock solution into A1

19.9 Transfer 100 μl of microsphere stock solution from A1 into A2

9.10 Mix A2 by pipetting up and down 3x and transfer 100 μl into A3

9.11 Mix A3 by pipetting up and down 3x and transfer 100 μl into A4

9.12 Mix A4 by pipetting up and down 3x and transfer 100 μl into A5

9.13 Mix A5 by pipetting up and down 3x and transfer 100 μl into A6

9.14 Mix A6 by pipetting up and down 3x and transfer 100 μl into A7
19.15 Mix A7 by pipetting up and down 3x and transfer 100 μl into A8

19.16 Mix A8 by pipetting up and down 3x and transfer 100 μl into A9

19.17 Mix A9 by pipetting up and down 3x and transfer 100 μl into A10

19.18 Mix A10 by pipetting up and down 3x and transfer 100 μl into A11

19.19 Mix A11 by pipetting up and down 3x and transfer 100 μl into liquid waste

Take care not to continue serial dilution into column 12

19.20 Repeat dilution series for rows B, C, D

19.21 IMPORTANT!

Re-Mix (pipette up and down) each row of your plate immediately before putting in the plate reader! (This is important because the beads begin to settle to the bottom of the wells within about 10 minutes, which will affect the measurements.)

Take care to mix gently and avoid creating bubbles on the surface of the liquid

19.22 Measure OD₆₀₀ of all samples in instrument

19.23 Record the data in your notebook

19.24 Import data into this Excel sheet:

iGEM Data Analysis Template - Particle Standard Curve - v1.xlsx

19.25 You have now completed this calibration protocol

20 Record the data in your notebook. Also record the gain setting that you used in your instrument, if available. Please note your standard curve should still work well even if a few of your measurements are saturating the instrument

Import data into this Excel sheet provided (fluorescein standard curve tab):
Congratulations!

You have now completed this calibration protocol.